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Multi-agent learning is an area of intense research, and ¥’
challenging because the problem dynamics are often co
plex and fraught with local optima. These difficulties have
made evolutionary computation (EC) an attractive approacﬁ
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Abstract

Evolutionary computation is a useful technique for
learning behaviors in multiagent systems. Among
the several types of evolutionary computation, one
natural and popular method is to coevolve multi-
agent behaviors in multiple, cooperating popula-
tions. Recent research has suggested that coevo-
lutionary systems may favor stability rather than
performance in some domains. In order to im-
prove upon existing methods, this paper examines
the idea of modifying traditional coevolution, bias-
ing it to search for maximal rewards. We introduce
a theoretical justification of the improved method
and present experiments in three problem domains.
We conclude that biasing can help coevolution find
better results in some multiagent problem domains.
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to learning multiagent behaviors (for exampléha, 1996;
Luke et al, 1998; Wu et al, 1999; Bull et al, 1995;

Bassett and De Jong, 2000; Bull, 1P 7This work has led to
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EC fits nicely with multiagent systems because it is already
population-orientedit searches over a set of multiple agents
(the individuals). Further, an EC population may be broken
down into distinct subpopulations, each yielding agentseto
tested together in a multiagent environment, with each sub-
population “evolving” in parallel. This notion of separite
evolving, interacting populations of agents is knowncas
evolution Coevolution has proven a useful technique for
multiagent problems where the quality of agent is typically
assessed in the context of competing or cooperating peers.

But coevolution is no panacea. Recent research has shown
that a coevolutionary system does not necessarily search
for better teams of agents, but can instead search for agent
populations that represestable equilibriain the coopera-
tive search spackFicici and Pollack, 2000; Wieganret al.,
20024. This paper will explore this problem, then introduce
a method for biasing coevolution so that the search forlstabi
ity coincides with optimization for improvement.

We continue this paper with a brief description of coevo-
lution and present an experimental and a theoretical frame-
ork. We then suggest a method for biasing the coevolu-

r.rg_onary process, describe a theoretical investigation@m h

iasing modifies the search space, and discuss experimental
esults on three problem domains. The paper ends with a set
of conclusions and directions for future work.

2 Evolutionary Computation and Coevolution

interesting research questions in applying EC in a multihge Evolutionary computation is a family of techniques, known
setting, including communication, representation, galivea-
tion, teamwork, and collaboration strategies.

as evolutionary algorithmswidely used for learning agent
behaviors. In EC, abstract Darwinian models of evolution

As itis very general (and relatively knowledge-poor), evo-are applied to refine populations of agents (known as indi-
lutionary computation is particularly useful in problerhat  viduals) representing candidate solutions to a given jrobl
are of high dimensionality, are non-Markovian, or yield few An evolutionary algorithm begins with an initial populatio
heuristic clues about the search space that otherwise woulaf randomly-generated agents. Each member of this popu-
make reinforcement learning or various supervised legrninlation is then evaluated and assigned a fitness (a quality as-
methods good choices. We believe that multiagent learningessment). The EA then uses a fithess-oriented procedure
problem domains often exhibit such features. These problero select agents, breeds and mutates them to produce child
domains are often complex and “correct” actions cannot bagents, which are then added to the population, replacing
known beforehand in a given situation. Further, even relaolder agents. One evaluation, selection, and breeding cycl
tively simple problems can require large numbers of exfernais known as a generation. Successive generations continue t
and, even more challenging, internal state variables. , Lastefine the population until time is exhausted or a sufficient!
many such problems exhibit changing environments, evefit agentis discovered.
ones that adapt to make the problem harder for the learner Coevolutionary algorithms (CEAS) represent a natural ap-
(due to the presence of co-learning opponents). proach to applying evolutionary computation to refine mul-



tiagent behaviors. In a CEA, the fitness of an individual is v} AY (1)
based on its interaction with other individuals in the papul W AT )
tion: thus the fitness assessment is context-sensitiveldnd s

jective. Incompetitivesystems, agents benefit at the expense X = ( Ui ) Xi (3)

of other agents; but icooperativesystems, agents succeed X-AY

or fail together in collaboration. The focus of this papeinis Wi

cooperative coevolutionary algorithms. Interesting CEA i Y= <7—ATX) Yi (4)
sues include communicatid®ull et al, 1993, teamwork,

and collaboratiofiBull, 1997. ...wherex’ andy’ represent the new population distributions

A standard approackPotter, 1997 to applying coopera- for the next generation. Here it is assumed that an individ-
tive coevolutionary algorithms (or CCEAS) to an optimiza- ual’s fitness is assessed through pair-wise collaboratiiths
tion problem starts by identifying a static decompositidn o €verymember of the cooperating population. We call this
the problem representation into subcomponents, each-repréleacomplete mixing The equations above describe a two-
sented by a separate population of individuals. For exampléStep process. First, the vectarsandw are derived; these
if a task requires two agents whose collaboration must be ogepresent the fitness assessments of strategies in theagener
timized, one might choose to use two populations, one pefions X andy respectively. Note that an infinite population
agent in the task. The fitness of an individual in a populainodel considers the fitness assessment for a strategy, and no
tion is then determined by testing the individual in collabo for a particular instance of that strategy (an individu@hen
ration with one or more individuals from the other popula- Selection is performed by computing the proportion of the fit
tion. Aside from this collaborative assessment, each gopul Ness of a specific strategy over the sum fitness of the entire
tion follows its own independent evolution process in patal Population.

with other populations. 2.2 Optimization versus Balance

2.1 Formalizingthe CCEA CCEA researchers apply these algorithms hopingptiimize

An appealing abstract mathematical model for this systeni€ collaborations between the populations, but it isréacl
comes from the Biology literature: Evolutionary Game The-that this system is meant to do this. In fact, the system seeks
ory (EGT)[Maynard Smith, 1982; Hofbauer and Sigmund, & form ofbalancebetween strategies, which may not corre-
1994. EGT provides a formalism based on traditional gameSPONd with what we, as external viewers of the system, would
theory and dynamical systems techniques to analyze the linfOnsider optimal. In the context of a payoff matrix, an op-
iting behaviors of interacting populations under longater timal position is the pair of strategies that yield the highe

evolution. For specifics about applying EGT to the analykis oPaYoff for the cooperating agents. This position is a stable
multi-population cooperative coevolutionary algorithrese  attracting fixed point of such a system; but it is also the case
[Wiegandet al, 20024. that there are other suboptimal points, which can alsocttra

In this paper, we consider only two-population models. |ntrajectprieiWiegar_1det al, 20024. Indeed, itis possible that
such a model, a common way of expressing the rewards frof10st, if not all, trajectories can be pulled toward suboptim
individual interactions is through a pair payoff matrices ~ SPOtS. These points correspond to Nash equilibria: subopti
We assume a symmetric model such that when individua/§@l combinations of strategies where if aoe strategy is
from the first population interact with individuals from the changed, the net reward for both agents will decrease.
second, one payoff matri& is used, while individuals from As a result, |nd|v!duals in a CCEA are not nece_ssanly re-
the second population receive rewards defined by the trandned to be the optimal subcomponent of the optimal com-
pose of this matrixAT). In our theoretical exploration of Ponent; instead they are refined to be jacks-of-all-trabas t
EGT in this paper, we will use ainfinite population thus dovetail nicely with thecurrent individuals from the other
a population can be thought of not as a set of individualsPoPulation What does this mean for practitioners wanting
but rather as a finite-length vectgrof proportions, where to coevolve “optimal” (or perhaps, even “good”) cooperativ
each element in the vector is the proportion of a given indi-Stratégies using a coevolutionary algorithm? It means that
vidual configuration (popularly known asgenotypeor, as CI_EAs_are_n_ot necessarily optimizers in thg sense that one
we will term it, astrategy in the population. As the pro- might intuitively expect them to be. Something must be done
portions in a valid vector must sum to one, all legal vectorslC modify the existing algorithms or our expectations of wha

make up what is commonly known as thait simplex de-  these algorithms really do.
notedA", wheren here is the number of distinct strategies .. ) .
possiblex € A" x; € [0,1], 51, % = 1. 3 Biasing for Optimal Cooperation

Formally we can model the effects of evaluation and pro-One reason CCEAs tend toward “balance” is that an individ-
portional selection over time using a pair of difference@qu ual’s fitness is commonly assessed based on how well it per-
tions, one for each population. The proportion vectorstiert forms with immediate individuals from the other population
two populations ar& andy respectively. Neglecting the is- To find optimal cooperation, the search process may need to
sue of mutation and breeding and concentrating only on thee more optimistic than this: assessing fitness based more
effects of selection, we can define the dynamical system of an thehighest-rewardnteractions between an individual and
two-population cooperative coevolutionary algorithm as:  various members of the other population. A previous investi

gation in this direction is reported {iWiegandet al.,, 2001:
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assessing an individual’s fithess based omisimunperfor- . N . ]
mance with other agents in a collaborative domain was showhigure 1: Probability of converging to the optimum as the
to yield better results than when using the mean or minimuniias parametey is varied between 0 and 1.

performance. The idea presented in this paper is relatively

$|mple:_ base an '”d"’!d“?"s fltngss on a.cor.n.blnatlon of Itsrative fitness for an individual. However, if the approxiiat
immediate reward while interacting with individuals in the

opulation, and on an estimate for the reward it would hav IS too I.arge (or has too strong an effectlon the overall f|t);ess
Pecpeived h:ad it interacted with ifdeal collaborators The nd if it appears too early in the evolutionary run, then it ca
fracti f d due to the | diat dt thdeform the search space to drive search trajectories itto su
i(;aé(;;)om t%rerl?tlivt?r: ch:r? eos dSriIrrwnTr?e Igoir(saeso?gﬁgfﬁn 0 %ptimal parts of the space from which they cannot escape. On
) 9 Ing . . the other hand, if the approximation affects the fithess mea-
We note that this notion of bias towards maximum possibléy,-ement very weakly, and too late in the run, then it may not
reward has also been used in the reinforcementlearnimgite po ot much help, and the system will still gravitate towards
ture in subtly different ways than we use it here. For example, 5oncer '
maximurm reward was used pglaus and Boutilier, 19980 To better see this tradeoff, we again alter equations 1
modify the exploration strategy of the agent, and[bguer and 2, this time adding a bias weight parameier Now
and Riedmiller, 200Pto modify the update rule for the Q ta- O— (1,—6) AY+3-maxa! andw=(1—0)-AT+3- ma)wT_’
ble. To some extent, the “Hall of Fame” method 'ntrOducedVarying 0 between 0 and 1 will control the degree to which
by [Rosin and Belew, 1997or competitive coevolution is  ho"model makes use of the bias. Consider@himb payoff
also re_Iate_d to biased cooperatwg co_evolut|on. matrix on the left side of Table 1. We select 500 initial psint
We justify the use of such a bias in a CCEA as follows. ¢ the dynamical system uniformly at random frafix A™,
Recall that if an individual’s fitness is based on its immé&glia 5,4 iterate the system until it converges. While convergenc
interaction with iTndividuaIs from the other populationeth s yirtyally guaranteed in traditional two-matrix EGT gasne
U= Ayandw = A'X, as described in equations 1 and 2. Now, [jothauer and Sigmund, 19BS8it is not necessarily guar-
let us consider a function maxhat returns a column Vector anieed in our modified system. In our experimental results,
corresponding to the maximum value of each row in matrix,o\ever, we obtained convergence in all cases to within some
A. Now, if an individual's fitness is based on its maximum geqree of machine precision. Figure 1 shows the probapbility
possible performance in conjunction with any individuahr ¢4\ arious levels 0B, of the dynamical system converging
the other popuTIa'uonLthen we rTnay modify equations 1 and 2, e optimum when the penalty is sett80, —300,—3000
to bel =max" andw = max.r . o or —30000. Notice that, as the penalty worsens, the transition
In this modified system, the tendency to optimize perfor-petween optimal and suboptimal convergence becomes more
mance is clear. At each iteration of the model, the fitness oevere. This suggests that for some problems, any benefits

eaph strategy will be its best _possible fitnt_ass. If _there is drovided by this type of bias may be quite sensitive to the
unigue maximum, that result will have the highest fithess a”‘aegree of bias.

so the proportion of the corresponding strategy will inseea
in the next step. When the global maxima are not unique, th(zL E .
resulting fixed point is a mixed strategy, with weights split Xperiments
between those maxima. While this theoretical discussion helps justify our inioiit

The reason for this is straightforward: the problem has losfor including a performance bias in fithess evaluation, it is
the dimensionality added due to the nature of the interastio not immediately applicable to real problems. In a more real-
between the agents. Without this, the problem reduces to iatic setting, simplifying model assumptions such as itdini
simple evolutionary algorithm: regardless of the conteént o populations, lack of variational operators, complete nuxi
the opposing population, the fithess measure for a givet straanda priori knowledge of the maximum payoff are not pos-
egy is the same. As shown [Rose, 1999 an infinite popu- sible. To convert theory into practice, we have adopted an
lation model of this reduced evolutionary algorithm willleo  approximation to the performance bias that is based on his-
verge to a unique global maximum. torical information gathered during the evolutionary rive

But it is difficult to imagine how a real CCEA algorithm also decreased the bias through the course of a run to take ad-
would know the maximum possible reward for a given indi- vantage of the fact that initial partners are likely to be kyea
vidual a priori. One approach is to use historical information while later partners are stronger.
during the run to approximate the maximum possible collabo- We performed several experiments to compare simple co-



Penalty
| -30 | -300 | -3000 | -30000
SC+MSR 21% 7.58| 16% 7.04| 16% 4.61] 15% -7.69
_ BC+MSR)| 100% 10.6100% 10.0100% 9.17 97% 1.25
N\ SC+PSR100% 11.0100% 11.0100% 11.G100% 11.0
5SS BC+PSR 100% 11.0100% 11.0100% 11.4100% 11.0
00“‘\1

Table 2: Proportion of runs that converged to global optimum
and average best individual fitness, Climbing Domain

Penalty

| -10 | -100 | -1000 | -10000

Figure 2: Joint reward in the continuous Two Peaks domain SC+MSR 100% 9.69 66% 6.92| 60% 6.24] 61% 3.55
BC+MSR|100% 9.71100% 9.40 100% 8.99 100% 3.36
SC+PSR100% 10.0100% 10.0100% 10.0100% 10.0

evolution (SC) with biased coevolution (BC) in three prob- BC+PSK 100% 10.9100% 10.0 100% 10.0 100% 10.0

lem domains detailed later. Both SC and BC base fithness on ) )

the immediate performance of an individual in the context ofable 3: Proportion of runs that converged to global optimum

individuals from one other cooperating population. BC ad-and average best individual fitness, Penalty Domain

ditionally includes a bias factor: part of the fitness is lohse

on an approximation of what an individual’s fithess would be

were it to cooperate with its ideal partners.

ular strategy, over all possible partner strategies. Irexper-

We compared these two techniques in combination wit{MeNts in this paper, we chose to approximéexRewardoy
two approaches to representing an individual. In the pursetting itto the maximum reward seen so far in the run for the

Strategy Representation (PSR), an individual represemted 9VN Strategy. o .

single strategy. PSR individuals stored a single integanere I @ll experiments, the most fit individual survived auto-
senting the strategy in question. A PSR individual bred-chil ”?a%ca':yf frobm or(‘f generatlr?n totwe _n%xt:dTolseItect a(r; In-
dren through mutation: a coin was repeatedly tossed, and trfividual for breeding, we chose two individuals at random
individual's integer was increased or decreased (the itirec  ith replacement from the population, then selected therfitt
chosen at random beforehand) until the coin came up headgf the_ tWO't Eacf(lj fr)](peE”Cn‘q]Snt \;\;as repeatﬁe: éooztélggs. The
In the Mixed Strategy Representation (MSR), an individual®*PE"MeNts used the software paciagee, '
represented not a single strategy but a probability distrib 41  problem Domains

tion over all possible strategies. When evaluating an MS . ted with three diff t single-st q
individual with a partner agent, 50 independent trials were' 'c. SXPermented with three dilierent single-stage game do-

performed, and each time each agent's strategy was chos?é?ins; twg gmptl_?r onlzsq(CIin(;b and Penalty)lintrodtl_;_cgdl in
at random from the the agent’s probability distribution. 1S aus and boutilier, 8and a more complex artificia

N g : problem (Two Peaks). Evolutionary runs in the Climb and
hngg'g:ilssﬁgiggzzobngcfgsggﬁgf:gng g? tﬁ)é ?j(ljsdtﬁgjr Penalty problem domain lasted 200 generations and used 20

tion values, followed by renormalization of the distritmrti individuals per population. Runs in the Two Peaks _dor_nf’:\in
Observe that using MSR creates a potentially more difficul{2St€d 500 generations and used populations of 100 individu

. ) each.
girzo: la?rzg g?orgﬁg]stir::?g/ g?'t?]% I;;Zé;c;rerseualts ons of search Spa@ésThe joint reward matrices for the Climb and the Penalty

We chose a common approach to cooperative coevolutio omains are presented in Table 1. The domains are difficult
fitness assessment. An individual is assessed twice to-detetc USe of the penalties assom_ated with mlsc_oord|na_1'eed ac
mine fithess: once with a partner chosen at random, then on¢&"S l?_nd ”;? presgnce of StUbOpt'":.al collabora_t|onsfth1tl|g§\_/r
partnered with the individual in the other population thatlh geni I€S. &gurf presen sgconllnudous versionora tth w
received the highest fithess in the previous generationnAn i €axs coordination game, wnere yaxes represent (e

dividual's fitness is set to the maximum of these two asses$:0NtiNUOUS range of actions for the two agents, and ts
ments. During a fitness assessment, an individual receive%‘ows the joint reward. The reward surface has wo peaks,
some number ofewardsfor trying certain strategies in the one lower but spread over a large surface, and theyother one
context of partners. For a PSR individual, the assessment wgs“pg;g izu(::r?t\i/r?l:g?saoigay]aﬁ:diec(r:eatlijzs: dai?iﬁ?oem csr zr:\teg
simply the single reward it received for trying its strateg ; o el . ]
its p%?/tners. Ags an MSR individual tried f}i/ﬁygstrategie?e%g- |n_gly d_'ff'c!”t sets of 8, 16, 32, 64 or 128 strategies. The
sessment was the mean of the fifty rewards it received. discretizations result in slightly different optimal vaki

SC and BC differ in that BC adds into the reward a bias
term, that is,Reward— (1 — 9) - Reward+ & - MaxReward 5 Results
whered is a decreasing bias rate that starts at 1.0 and linTables 2—4 present the proportion (out of 100 runs) that con-
early decreases until it reaches 0 when 3/4 of the maximal rumerged to the global optimum, plus the mean fitness of the
length has passed. Ideally, theaxRewardbias factor would  best individuals in the runs. MSR individuals were consid-
be the highest possible reward received for trying thaigart ered optimal if and only if the optimal strategy held over 50



Discretization Level (Number of Actions)

8 | 16 | 32 | 64 | 128
SC+MSR| 0% 8.98 | 0% 7.48| 0% 6.70| 0% 6.47| 0% 6.36
BC+MSR| 0% 8.99 | 0% 7.51| 0% 6.70| 0% 6.47| 0% 6.36
SC+PSR100% 11.041% 11.632% 11.542% 12.148% 12.4
BC+PSR 100% 11.071% 12.8§ 72% 13.461% 13.0 70% 13.0

s

Distance to Max
0.174 0.177 0.180
| |

Table 4: Proportion of runs that converged to global optimum
and average best individual fitness, Two Peaks Domain
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Figure 4: Distance from best-of-generation individualspe
timal strategy for the 32 actions Two Peaks domain using SC
(top) and BC (bottom).

Distance to Max

0.400.35

§ successful applications of this biasing method are tiedite s
o cessfully determining the appropriate degree of bias tdyapp
S : - - - o o o Due to MSR’s increased difficulty, it may be more challeng-

ing to find an appropriate balance for the bias. Figure 3 sug-
gests exactly this. Notice that, in the early part of the run
(whend is strong), the algorithm tends towards the optimal
Figure 3: Distance from best-of-generation individualepe  solution; however, as the bias is reduced, it becomes over-
timal strategy for the 8 actions Two Peaks domain using SGvhelmed and the trajectories are eventually drawn towagd th
(top) and BC (bottom). suboptimal local attractor. Moreover, as the problem bezom
larger (i.e., Figure 4, as well as others not shown), thisfai

percent of the distribution (in fact, most optimal MSR indi- occurs earlier in the run. This suggests more careful attent

viduals had over 90 percent) is r_1eeded to setthe parameters and to ac!just the bias rate whe
Biased coevolution consistently found the global optimaUSIng MSR versus PSR. Indeed, by running longer and allow-

as often as. or more often than. standard coevolution. Thid for more interactions during evaluation, we were able to

only times where standard coevolution held its own was inObtaln convergence to the global optimum when using MSR

the Climbing and Penalty domains, where PSR individuals(nOt shown).
found the optimum 100% of the time, as well as in the harder .
Two Peaks domain, where no MSR individuals found the op® ~ Conclusionsand Future Work
timum. For those problems when individuals found the op-Although cooperative coevolution has been successfully ap
timum less than 100% of the time, we also compared difplied to the task of learning multiagent behaviors, as re-
ferences in mean best fithess of a run, using a two-factosearch about these algorithms advances, it becomes increas
ANOVA with repetitions, factored over the method used andingly clear that these algorithms may favor stability oveti-o
the problem domain. mality for some problem domains. In this paper, we develop
The ANOVA results allow us to state with 95% confi- a very simple idea: improve coevolution through the use of
dence that biased coevolution is better than simple coevolta maximum reward bias. We introduce a theoretical justifi-
tion when MSR is used in the Climbing domain, and alsocation for the idea, then present experimental evidende tha
in the Two Peaks domain when PSR is used; the tests giveonfirms that biasing coevolution can yield significantly-be
only a 90% confidence for stating that BC+MSR is better tharter results than standard coevolution when searching for op
SC+MSR in the Penalty domain. timal collaborations. Our work further reveals that domain
In order to better understand what happens when usinfgatures greatly influence the levels of biasing necessary f
MSR in the Two Peaks domains, we plotted the average ewconvergence to optima: for some problems the performance
clidian distance from the best individual per generatiothto  changes slowly when the level of bias is modified, while for
known global optima (Figures 3 and 4). The graphs presemther domains there is a rapid degradation in results. This
the 95% confidence interval for the mean of the fithesses. Insuggests that, while adding some kind of maximum reward
vestigations showed that SC converged to suboptimal ictera bias can be helpful, there is still work to be done in under-
tions (the lower, wider peak in Figure 2) in all cases. On thestanding how best to apply this bias in different problem do-
other hand, the trajectories of the search process areatydic mains.
different when using BC. Let's take a closer look as to why Our initial experimental results in this paper suggest that
this might be so. it is effective to use a history as an approximation to the tru
As we learned from our discussion surrounding Figure 1maximal collaborative reward for a given strategy. For fatu

Generations



work we intend to extend these experiments to problem dofLauer and Riedmiller, 2000M. Lauer and M. Riedmiller.
mains with search spaces much larger than the ones used in An algorithm for distributed reinforcement learning in co-
these experiments. In such domains, the number of strate- operative multi-agent systems. Rioceedings of the Sev-
gies may be very large, even infinite. Keeping an effective enteenth International Conference in Machine Learning
history of strategies may thus be infeasible in certainuire 2000.

stances; we intend to explore ways to sample the space ¢f e et al, 1999 S. Luke, C. Hohn, J. Farris, G. Jackson,
cache the most significant strategy results. Repeated games 5.4 3 Hendler. Co-evolving soccer softbot team coordi-

such as the Iterated Prisoner’s Dilemma, or stochastic game - o+ion with genetic programming. RoboCup-97: Robot

may also require different approaches to biasing coewmluti  gqccer World Cup | (Lecture Notes in Al No. 139%ges
Understanding these issues, we hope, can lead to significant 393_411 Berlin. 1998. Springer-Verlag.

improvements in cooperative coevolution’s effectiveresa

multi-agent optimization technique. [Luke, 2002 Sean Luke. ECJ9: A Java EC research system.
http://www.cs.umd.edu/projects/plus/ec/ecj/, 2002.
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