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Abstract— With the success of randomized sampling-based
motion planners such as Probabilistic Roadmap Methods, much
work has been done to design new sampling techniques and
distributions. To date, there is no sampling technique that out-
performs all other techniques for all motion planning problems.
Instead, each proposed technique has different strengths and
weaknesses. However, little work has been done to combine
these techniques to create new distributions. In this paper, we
propose to bias one sampling distribution with another such
that the resulting distribution out-performs either of its parent
distributions. We present a general framework for biasing
samplers that is easily extendable to new distributions and
can handle an arbitrary number of parent distributions by
chaining them together. Our experimental results show that by
combining distributions, we can out-perform existing planners.
Our results also indicate that not one single distribution combi-
nation performs the best in all problems, and we identify which
perform better for the specific application domains studied.

I. INTRODUCTION

Motion planning has many applications outside of robotics

such as computer animation [16], [4], drug design [21],

computational biology [3], and computer aided design [9],

[22]. Complete motion planning algorithms are rarely used

in practice because they are computationally infeasible for

all but the simplest problems [20]. Instead, attention has

turned to randomized algorithms that sacrifice complete-

ness for computational feasibility. In particular, Probabilistic

Roadmap Methods (PRMs) [15] have been highly successful

in solving difficult problems in different application domains.

PRMs require two basic operations: (1) the ability to

randomly sample a configuration of the robot and (2) a

feasibility/validity test for samples (e.g., collision detection).

While PRMs are simple to apply and highly successful, they

perform poorly in some situations, particularly when the

robot must pass through a narrow passage. To overcome

this, much work has been done to design new sampling

techniques to increase the probability of sampling these nar-

row passages. Techniques include biasing sampling around

obstacles [2], [6], [13], [19], biasing sampling toward the

medial axis of the free space [23], [10], biasing sampling

toward unknown/uncertain areas [8], [7], etc.

None of these sampling techniques has been shown to

out-perform all other existing techniques for all problem

instances. Instead, each sampling technique has different

strengths and weaknesses. In fact, that is the motivation be-

hind most recent research. However, many of these sampling
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methods start from a uniform random distribution and filter

or perturb samples to create a new distribution. Little work

has been done to combine existing sampling techniques.

We propose a general framework of biasing one sampling

distribution with another such that the resulting distribution

out-performs either of its parent distributions. Instead of

filtering/perturbing samples from a uniform random dis-

tribution (as with many existing sampling schemes), we

filter/perturb samples from some other existing distribution.

Consider the 2D configuration space example in Fig-

ure 1(a). Assume that roadmaps are built by sampling

nodes and for each node only connecting a small number

of neighboring nodes, as is typical of many planners. A

distribution that samples obstacle surfaces (Figure 1(b)) may

have trouble bridging the obstacle gaps because connections

are attempted between nodes that are likely to be near the

same obstacle. Conversely, a distribution that samples the

medial axis (Figure 1(c)) may have trouble finding samples

in the narrow passages because the surrounding obstacles are

“thin”. However, if we combine these distributions by first

sampling near obstacles and then retracting these samples

to the medial axis (instead of retracting samples from the

uniform random distribution), we can sample the narrow pas-

sages and bridge the large gaps between them (Figure 1(d)).
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Fig. 1. (a) A 2D example where biased sampling is useful. Existing
techniques such as sampling around obstacles (b) or the medial axis
(c) may have difficulty capturing the connectivity. Combining these
distributions, e.g., using the distribution (b) to bias the distribution
(c), may overcome their weaknesses (d).

In this paper, we present a general framework for biasing

samplers that is easily extendable to new distributions and

can handle an arbitrary number of parent distributions by

chaining them together. To our knowledge, this has not been

done before in the motion planning community. Our experi-

mental results show that by combining distributions, we can

out-perform existing planners. Our results also indicate that

not one single combination of distributions performs the best

in all problems, and we identify which combinations perform

better for the specific application domains studied.
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II. RELATED WORK

The motion planning problem is to find a valid path for a

movable object/robot between some start configuration and

some goal configuration. A useful abstraction is configura-

tion space (C-space), the set of all possible configurations,

valid or not. Thus, motion planning algorithms can handle

arbitrary robots by simply planning the motion in the robot’s

C-space instead of in its workspace.

A. Sample-based Motion Planning

One class of randomized algorithms builds a roadmap, or

graph, that can be used to answer many different queries

like the Probabilistic Roadmap Methods (PRMs) [15]. To

construct a roadmap, configurations are randomly sampled

from C-space and kept if they satisfy feasibility requirements

(e.g., collision-free). Then connections between neighboring

configurations are attempted using a simple local planner

(e.g., a straight-line in C-space). Valid connections become

edges in the roadmap. To process a given query, or start and

goal configuration pair, first the start and goal are connected

to the roadmap using a local planner, and then a graph search

returns the shortest path in the roadmap between the start and

the goal, or reports that none exists.

Another class of randomized algorithms explores C-space

beginning from a start configuration to produce a tree such as

Rapidly-exploring Randomized Trees (RRTs) [17], Ariadne’s

Clew [5], and Hsu’s expansive planner [14]. For example,

RRTs bias tree growth toward unexplored regions of C-space

stopping when the tree has reached the goal configuration.

B. Overcoming the Narrow Passage Problem

Although randomized motion planning methods have been

successful in solving many difficult problems, they perform

poorly when the solution path must go through a narrow pas-

sage in C-space. These methods are based in uniform random

sampling, so the probability of sampling a configuration in

a particular passage is equal to the percentage of C-space

volume which that passage occupies. Thus, research has

focused on sampling strategies that increase this probability.

Many sampling strategies attempt to generate samples near

the surface of C-space obstacles. For example, [2] generates

samples near these surfaces by first generating a random

colliding (resp., collision-free) sample and searching along

a random direction until the sample becomes collision-free

(resp., colliding). In [6], pairs of samples are created that

are a distance d apart, where d has a Gaussian distribution,

until one sample is collision-free and the other is not. The

collision-free sample is kept in the roadmap. [13] is similar to

Gaussian sampling in that it samples pairs of configurations

a distance d apart. The difference is pairs are sampled until

they are both colliding and their midpoint is collision-free.

This collision-free sample is stored in the roadmap. Finally,

[19] creates local paths in the robot’s contact space by using

contact information from continuous collision detection to

generate samples in the robot’s contact space.

Other strategies bias sampling toward the medial axis of

the free space since the medial axis encodes the C-space

topology and samples on it have maximal clearance. In [23],

both colliding and collision-free samples are retracted to

the medial axis of the free C-space. By retracting colliding

samples, the probability of sampling narrow passages is

increased. In [10], the medial axis of the workspace is used

to bias sampling in the C-space. The workspace medial axis

is quickly computed using graphics hardware.

Finally, [8], [7], bias sampling toward unknown/uncertain

areas. As they sample, they build a model of C-space that

records the entropy of each sample. To generate a new

sample, they compute the expected information gain over

a set of random samples. The sample with the greatest

information gain is added to the model and also added to

the roadmap if it is valid.

C. Measuring Performance

Recent research on C-space model evolution provides

metrics to evaluate the performance of proposed sampling

strategies. An ideal roadmap should reflect C-space cover-

age and connectivity. Some studies have compared C-space

coverage and connectivity with those achieved by different

sampling strategies [11]. This would require a discretization

that is not always feasible to obtain.

Instead, we use a set of metrics proposed in [18] that

characterize the planner’s progress as it constructs the

roadmap. These metrics classify nodes in four different

categories: (1) cc-create when a new component is produced,

(2) cc-merge when components are combined improving

model connectivity, (3) cc-expand when the added sample

increases the coverage of exactly one component, and (4)

cc-oversample when the added sample does not increase the

model’s coverage nor connectivity. Keeping track of how the

different node types evolve allows us to observe the stages

of the planner’s progress. Here, we apply these metrics to

compare the quality of the roadmaps achieved by combining

sampling distributions.

III. BIASING SAMPLERS

Each sampling technique is known to perform well with

certain types of problems and not as well with others. We

propose to combine existing sampling techniques to create

a new sampling distribution that exploits the strengths of its

parent distributions.

Consider the heterogeneous environment in Figure 2(b).

In this environment, there are large regions of free space

separated by thin obstacles with narrow passages. Samplers

that bias sampling toward the medial axis will be able to

quickly and efficiently map the free regions of the space.

However, to increase sampling in narrow passages, it relies

on the volume of C-space obstacles surrounding the passages.

In this environment, this volume is still small relative to the

entire C-space, thus sampling in these passages may prove

difficult. On the other hand, samplers that bias sampling near

C-space obstacle surfaces will be more likely to sample the

narrow passages. However, they may require many samples

near the surface to find connections from one narrow passage

to the next. By combining these two types of sampling
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distributions, we can exploit the strengths of each. For

example, we can first generate samples near the obstacle

surfaces, and then use these samples as starting points for

a sampler that biases toward the medial axis.

Algorithm III.1 outlines the general strategy of chaining

samplers together. It is simple and general. Any component

sampler may be used as long as it has a method to output

a new sample biased by an input sample (e.g., perturbed,

filtered). Note that a few select samplers, such as uniform

random sampling, are not biased by definition. These sam-

plers will simply ignore the input sample.

Algorithm III.1 Biased Sampling Framework

Input: List of samplers S, number of samples n.

Output: Set of configurations C.

Assumption: Each sampler in S has an operation “Sample”

that outputs a new sample biased with an input sample.

1: for i=1 to n do

2: Let c be a uniform random configuration.

3: for each sampler s ∈ S do

4: c = s.Sample(c).

5: end for

6: Add c to C.

7: end forreturn C.

IV. RESULTS AND DISCUSSION

In this section, we present experimental results and analyze

the performance of different samplers and sampler combina-

tions. We study both rigid body problems and articulated

linkage problems. All results were run on 700 MHz Intel

Pentium III Xeon processors using the C++ motion planning

library developed in the Parasol Lab at Texas A&M Univer-

sity. Collision detection was performed by RAPID [12].

We study the following component samplers: uniform

random sampling, OBPRM [2], Gaussian sampling [6], Bridge

test sampling [13], and MAPRM [23]. Because OBPRM can

generate samples on either side of an obstacle boundary,

we use two versions: one returning free samples and one

returning colliding samples. Similarly, Gaussian sampling

generates pairs of (free, colliding) samples, so we use two

variants: one returning the free sample and one returning the

colliding sample. We use the following abbreviations: BT for

Bridge Test, Gf for Gauss free, Gc for Gauss collision, MA

for Medial-axis based, OBf for Obstacle-based free, and OBc

for Obstacle-based collision.

For each experiment, we first sample 5000 collision-

free nodes and attempt connections between the 20 nearest

neighbors for each node. Two different local planners are

used to connect nodes together: straight-line and rotate at 0.5

[1]. We compute the following performance metrics: types

of samples created, diameter changes (of the entire roadmap

and the largest connected component), ability to solve a user-

defined witness query, and number of samples in narrow

passages (when defined). Results are averaged over 10 runs.

A. Rigid Body Problems

First we consider rigid body problems. We look at the

three different environments in Figure 2: (a) the s-tunnel that

has a narrow passage surrounded by “thick” obstacles, (b)

the walls environment that has narrow passages surrounded

by “thin” obstacles, and (c) a random environment with

no clearly defined narrow passage. Table I summarizes

the results. Note that the percentage of samples in narrow

passages is extremely small in the walls environment because

the volumes of all the narrow passages combined is only

about 1% of the entire volume. We do not report the per-

centage of narrow passage samples for the random cluttered

environment because it has no well-defined narrow passage.

While some individual samplers perform well, they do not

in general out-perform certain sampler combinations. Sam-

pler performance is reflected in the percentage of samples

that are not cc-oversample, the percentage of samples in nar-

row passages, and how fast and consistently it can solve the

given query. In the s-tunnel for example, OBPRM and MAPRM

perform the best individually, but OBcGf and OBfMA are

able to solve the query quicker and more consistently.

In the walls environment, the best performing component

samplers, Gauss and Bridge Test, are out-performed by GcBT.

In general, combining more successful individual samplers

leads to better performance. In addition, combining a poorly

performing sampler with a more successful one sometimes,

but not always, leads to improved performance.

Figure 3 shows in detail how four different samplers

perform over time in the s-tunnel environment for a single

random seed. Roadmap diameters reflect how the roadmap

topology evolves. All of the samplers quickly map the

two free portions of the environment, as indicated by the

rapid increase in the largest connected component’s diameter.

In addition, the sum of the diameters during this phase

is roughly twice the maximum diameter suggesting the

roadmap has two large connected components. As more

samples are added, the diameter measures converge signaling

the emergence of one large connected component. For this

environment, this also signifies when the witness query can

be solved. Uniform sampling (a) and OBPRM (b) fail to solve

the query in this particular run, while MAPRM (c) solves

it after 2500 samples and OBfMA (d) solves it after 1100

samples. Notice too that the diameter measures for these two

samplers have the same shape, but the diameters for OBfMA

grow, converge, and stabilize much faster, also suggesting

the sampler is learning the C-space topology quicker.

These plots also explain why OBfMA performs better than

the individual component samplers. First, OBPRM generates

more cc-expand samples than MAPRM early on (see both the

% of cc-expand and the expansion ratio). Thus, OBfMA can

boost the performance of MAPRM simply by using OBPRM

samples as starting points. Second, OBPRM has more cc-

create samples than MAPRM implying that it generates sam-

ples closer to constrained areas that are difficult to connect

while MAPRM generates samples with larger clearances that

are easier to connect. OBfMA uses this strength of MAPRM
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(a)

(b) (c) (d) (e)

Fig. 2. Environments Studied. (a) S-tunnel environment. The robot must pass through the narrow tunnel. (b) Walls environment. The
robot must pass through each narrow passage. (c) Environment with randomly placed obstacles. The stick robot must move from one
corner to the opposite corner. (d) Hook environment. The articulated linkage must find the hole in the obstacle to solve the query. (e)
Maze environment. The articulated linkage travels through the tunnels to move from the top to the bottom.

(a) (b)

(c) (d)

Fig. 3. Detailed s-tunnel results of a single run comparing (a) uniform sampling, (b) OBPRM, (c) MAPRM, and (d) OBfMA.

to move the original OBPRM samples to more connectable

areas solving the query faster.

Finally, note that the best performing samplers are not the

same across all environments. For example, OBfMA performs

well in the s-tunnel, but not well in the walls environment.

Also, there is a sharp performance difference in Gauss,

Bridge, and combinations involving them between the s-

tunnel and the walls environment. This may be attributed to

the relation between the sampling parameter d and obstacle

“thickness”. The selection of d in the walls environment with

“thin” obstacles was much better for building roadmaps to

solve the query than in the s-tunnel with “thick” obstacles.

Observe that there are not as many samplers who out-

perform uniform random sampling in the random cluttered

environment due to the unordered nature of its C-space.

In general, sophisticated samplers like OBPRM and MAPRM

suffer when there is little structure to exploit.

B. Articulated Linkage Problems

We study two different articulated linkage problems: the

hook environment (Figure 2(d)) that has a narrow passage

surrounded by “thin” obstacles and the maze environment

(Figure 2(e)) that has a narrow passage surrounded by “thick”

obstacles. Table II summarizes the results.

Unlike the rigid body problems studied, no samplers were

able to solve the witness query. We believe that due to the

higher dimensionality of C-space, more samples or more so-

phisticated connection strategies are needed. However, there

are still some trends in the other performance metrics. In the

hook environment, GcMA generates the most samples in the

narrow passage, the most cc-create and cc-merge samples,

and the fewest cc-oversample samples. This suggests that it
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Sampling Sample Type % % Narrow Witness Query
Environment Method cc-create cc-merge cc-expand cc-oversample Passage % Solved # Nodes Time (s)

S-Tunnel Uniform 0.15 0.00 0.25 99.60 0.14 0 n/a n/a
Gf 1.21 0.24 1.30 97.25 2.36 0 n/a n/a
BT 0.69 0.17 1.01 98.14 1.48 0 n/a n/a
OBf 2.00 1.25 17.91 78.84 8.21 60 4166 531.59
MA 1.10 0.69 2.28 95.93 4.42 90 3317 384.15
GcOBf 4.26 1.56 21.39 72.78 8.98 10 1725 212.09
GcBT 1.07 0.17 1.61 97.15 1.81 0 n/a n/a
GcMA 2.42 0.82 3.04 93.72 5.30 0 n/a n/a
GfOBf 1.58 0.36 18.19 79.88 2.30 0 n/a n/a
Gf BT 1.11 0.30 1.25 97.34 2.28 0 n/a n/a
GfMA 0.98 0.36 1.08 97.57 2.44 10 3102 289.29
OBcGf 1.50 0.99 6.00 91.51 6.88 100 2840 304.97
OBcBT 1.18 0.81 7.08 90.93 6.09 80 1903 184.90
OBcMA 1.47 0.94 8.38 89.21 6.72 90 2955 401.72
OBfGf 1.99 1.29 17.89 78.83 8.20 70 3578 429.32
OBf BT 2.00 1.26 17.62 79.12 8.03 70 3606 465.43
OBfMA 1.35 1.01 5.96 91.68 8.31 100 2140 242.19
BTGf 0.72 0.23 0.95 98.10 1.55 0 n/a n/a
BTOBf 1.21 0.29 17.45 81.05 1.61 0 n/a n/a
BTMA 0.68 0.20 0.71 98.41 1.47 0 n/a n/a

Walls Uniform 0.24 0.19 1.88 97.69 0.19 30 3800 168.61
Gf 0.30 0.23 3.02 96.45 0.43 70 3725 164.00
BT 0.40 0.32 4.53 94.74 0.88 80 2515 108.59
OBf 0.77 0.45 12.57 85.22 0.73 10 4579 278.85
MA 0.40 0.30 2.65 96.66 0.83 40 3438 188.73
GcOBf 1.73 0.77 16.62 80.88 1.70 0 n/a n/a
GcBT 0.61 0.51 7.73 91.15 1.33 100 1802 70.29
GcMA 1.11 0.64 8.01 90.25 1.98 0 n/a n/a
GfOBf 0.67 0.39 14.33 84.71 0.55 0 n/a n/a
Gf BT 0.36 0.27 3.53 95.84 0.50 40 3827 208.42
GfMA 0.27 0.20 1.81 97.71 0.46 20 4446 268.96
OBcGf 0.44 0.27 5.67 93.62 0.50 0 n/a n/a
OBcBT 0.44 0.32 6.39 92.86 0.89 50 4106 249.97
OBcMA 0.53 0.30 5.51 93.65 0.70 0 n/a n/a
OBfGf 0.76 0.42 13.79 85.04 0.76 10 4417 299.36
OBf BT 0.75 0.40 13.82 85.03 0.80 0 n/a n/a
OBfMA 0.45 0.29 3.87 95.40 0.74 10 2926 154.66
BTGf 0.37 0.28 4.46 94.89 0.82 60 2926 138.56
BTOBf 0.78 0.42 14.90 83.89 0.89 0 n/a n/a
BTMA 0.35 0.27 2.54 96.84 0.75 80 2827 155.02

Random Uniform 10.29 5.27 52.76 31.68 n/a 70 2471 182.96
Cluttered Gf 14.01 6.97 53.42 25.60 n/a 100 3111 240.58

BT 19.48 9.12 51.73 19.67 n/a 50 2036 201.00
OBf 27.57 11.34 50.06 11.03 n/a 70 3043 308.70
MA 20.58 9.28 50.23 19.92 n/a 60 2375 352.60
GcOBf 29.61 12.02 48.61 9.77 n/a 50 2921 330.33
GcBT 20.32 9.58 51.12 18.98 n/a 40 3107 357.22
GcMA 22.21 9.50 49.70 18.60 n/a 10 1484 238.81
GfOBf 20.11 9.55 54.57 15.76 n/a 60 2215 199.88
Gf BT 14.12 7.13 53.54 25.22 n/a 90 2620 220.38
GfMA 13.06 6.66 50.39 29.90 n/a 90 1847 202.47
OBcGf 14.27 7.15 53.12 25.48 n/a 60 3199 339.65
OBcBT 17.69 8.61 52.80 20.90 n/a 60 2329 245.91
OBcMA 21.62 9.64 51.03 17.71 n/a 70 2279 319.13
OBfGf 27.86 11.71 49.62 10.82 n/a 60 2600 273.22
OBf BT 26.84 11.18 50.75 11.24 n/a 60 2925 308.35
OBfMA 21.94 9.71 51.30 17.06 n/a 80 1913 233.55
BTGf 19.46 9.18 51.46 19.90 n/a 50 1738 166.45
BTOBf 25.66 11.16 50.83 12.35 n/a 30 2236 247.03
BTMA 17.87 8.19 50.62 23.32 n/a 60 1241 152.66

TABLE I

RIGID BODY PERFORMANCE RESULTS FOR VARIOUS ENVIRONMENTS.

is able to find “important” samples but lacks sophisticated

methods to connect them. This trend repeats in the maze

environment. Finally, we can see how obstacle “thickness”

affects the performance of samplers sensitive to this like

MAPRM. Notice that OBcMA performs better than OBfMA

in the hook environment while OBfMA performs better than

OBcMA in the maze environment. This directly follows from

the obstacle “thicknesses”: obstacles are “thin” in the hook

so colliding surface nodes are critical while obstacles are

“thick” in the maze so free surface nodes are critical.
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HOOK ENVIRONMENT MAZE ENVIRONMENT
Sampling Sample Type % % Narrow Sample Type % % Narrow
Method cc-create cc-merge cc-expand cc-oversample Passage cc-create cc-merge cc-expand cc-oversample Passage

Uniform 1.87 1.22 50.00 46.92 0.32 1.37 0.99 51.48 46.16 0.03

Gf 2.62 1.59 50.71 45.09 1.28 3.73 2.36 59.09 34.83 0.46

BT 4.50 3.16 44.21 48.12 0.56 3.82 2.71 49.17 44.29 0.26

OBf 3.07 1.94 48.59 46.40 1.04 5.84 1.95 54.36 37.84 2.95

MA 5.06 2.86 46.97 45.11 1.42 3.57 1.81 55.77 38.85 0.34

GcOBf 3.82 2.53 51.29 42.35 1.07 3.64 2.63 59.13 34.60 0.07

GcBT 5.82 4.14 38.99 51.06 0.60 4.21 3.12 48.82 43.85 0.02

GcMA 10.27 6.00 48.40 35.33 2.19 9.45 5.31 60.61 24.62 0.18

GfOBf 2.83 1.93 49.60 45.64 0.87 3.84 2.46 59.19 34.51 0.43

Gf BT 2.82 1.83 50.72 44.64 0.83 3.67 2.40 59.84 34.09 0.40

GfMA 2.20 1.30 44.57 51.93 0.64 3.52 2.12 56.54 37.82 0.44

OBcGf 2.85 1.85 50.07 45.23 0.77 3.15 1.94 56.13 38.77 0.31

OBcBT 5.67 3.77 39.52 51.04 0.62 3.33 2.31 44.89 49.47 0.19

OBcMA 7.87 4.65 47.60 39.88 1.68 5.78 3.24 58.64 32.34 0.12

OBfGf 3.00 1.91 49.27 45.83 0.95 5.88 2.00 53.16 38.95 2.94

OBf BT 3.06 1.98 49.38 45.59 1.00 5.88 2.02 53.61 38.48 2.79

OBfMA 2.68 1.70 42.71 52.90 0.79 5.26 1.67 51.62 41.45 2.91

BTGf 4.29 2.99 43.71 49.01 0.60 3.66 2.60 48.28 45.47 0.26

BTOBf 4.19 3.00 43.90 48.91 0.64 3.84 2.80 49.05 44.30 0.22

BTMA 3.71 2.62 38.10 55.57 0.45 3.54 2.52 46.93 47.01 0.20

TABLE II

ARTICULATED LINKAGE PERFORMANCE RESULTS FOR VARIOUS ENVIRONMENTS.

V. CONCLUSION

We presented a simple, general framework for combining

existing sampling techniques. The advantage is that we can

exploit the strengths of existing sampling methods to create

a new sampling method that out-performs it’s component

samplers. We demonstrated the performance of this frame-

work in various environment types for both rigid bodies

and articulated linkages. In all environments, some strategies

generated large amounts of samples in narrow passages and

were unable to solve the query. This signifies the importance

for sophisticated connection methods in addition to sampling.
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