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Abstract—In this paper, we propose three divide-and-conquer
approaches for BIC-based speaker segmentation. The approaches
detect speaker changes by recursively partitioning a large analy-
sis window into two sub-windows and recursively verifying the
merging of two adjacent audio segments using ∆BIC, a widely-
adopted distance measure of two audio segments. We compare
our approaches to three popular distance-based approaches,
namely, Chen and Gopalakrishnan’s window-growing-based ap-
proach, Siegler et al.’s fixed-size sliding window approach, and
Delacourt and Wellekens’s DISTBIC approach, by performing
computational cost analysis and conducting speaker change de-
tection experiments on two broadcast news data sets. The results
show that the proposed approaches are more efficient and achieve
higher segmentation accuracy than the compared distance-based
approaches. In addition, we apply the segmentation approaches
discussed in this paper to the speaker diarization task. The
experiment results show that a more effective segmentation
approach leads to better diarization accuracy.

Index Terms—speaker segmentation, speaker change detection,
Bayesian Information Criterion, divide-and-conquer, speaker di-
arization

I. INTRODUCTION

The goal of speaker (audio) segmentation is to detect

speaker (acoustic) change boundaries in an audio stream. In the

last decade, researchers in the speech processing community

have expended a great deal of effort on this problem because

of its application to many speech and audio processing tasks,

such as audio classification [1], [2], automatic transcription of

audio recordings [3], [4], speaker tracking [5], [6], and speaker

diarization [7], [8].

Existing audio segmentation approaches generally fall into

two categories, namely, distance-based segmentation [9], [10],

[11], [12], [13] and model-decoding-based segmentation [4],

[11]. In distance-based segmentation, a distance measure of

two audio segments is defined first, and then an acoustic

change detection strategy is designed based on the distance
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measure. In contrast to model-decoding-based segmentation,

which detects acoustic changes in a supervised manner,

distance-based segmentation has the advantage that acoustic

changes can be detected in an unsupervised manner, i.e., a

priori knowledge about the content of the input audio stream

is unnecessary. In this paper, we focus on distance-based

segmentation.

When low-level acoustic features like mel-scale frequency

cepstral coefficients (MFCCs) are used in distance-based seg-

mentation, the distance measure is usually derived from a

statistical modeling framework. More precisely, it is assumed

that the feature vectors in each of the two audio segments

arise from some probability distribution (e.g., the multivariate

Gaussian distribution); then, the distance between the two

segments is represented by the dissimilarity between the two

distributions. Several distance measures have been proposed,

e.g., the Kullback-Leibler distance (KL or KL2) [10], the

Generalized Likelihood Ratio (GLR) [9], [14], ∆BIC [11],

[15], [16], [13], [17], [18], the Bhattacharyya distance [12],

and the XBIC [19]. In addition, some high-level features have

been used for audio segmentation; e.g., the spectrum flux and

zero-crossing rate (ZCR) [20], [21], and the smoothed zero-

crossing rate (SZCR) [22].

Window-growing-based segmentation (WinGrow) [11],

[15], [23], [17], fixed-size sliding window segmentation (FixS-

lid) [10], [12], [24], [25], [26], and DISTBIC [9] are three

popular distance-based segmentation approaches.

1) The WinGrow approach was first proposed by Chen

and Gopalakrishnan [11]. For the distance measure of

two audio segments, they used the Bayesian Information

Criterion (BIC) [27], [28] to evaluate the following two

hypotheses: 1) the union of the feature vectors of the

two segments forms a Gaussian cluster in the feature

space, and 2) the feature vectors of each segment form

a distinct Gaussian cluster. Then, the difference between

the two evaluation scores, ∆BIC, is used as the distance

measure. In the acoustic change detection procedure, a

small analysis window is put at the beginning of the

audio stream initially. If no change point is detected in

that analysis window, the search range is increased. The

decent segmentation accuracy of this approach is widely

recognized; however, as the window size grows, it incurs

a heavy computational cost due to numerous ∆BIC
computations, especially when the audio stream contains

many long homogenous segments. To reduce the com-

putational cost, Tritschler and Gopinath [29] proposed
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some heuristics that ignore the distance computations at

locations where acoustic changes are unlikely to occur.

Zhou and Hansen [17] used Hotelling’s T 2-Statistic,

which has the advantage of low computational cost, as

the distance measure in the WinGrow detection process,

and only used ∆BIC to verify the acoustic change

candidates. In addition, [15] and [13] proposed more

efficient implementations for the ∆BIC computation

that do not affect the segmentation accuracy.

2) In FixSlid, a certain distance measure is used to evaluate

the dissimilarity between two adjacent windows that

slide along the audio stream to produce a distance

curve; then, some heuristic thresholds are used to judge

whether the locations of peaks are acoustic changes.

To detect the change boundary associated with a short

homogeneous segment, the size of the analysis window

is usually set at a small value (e.g., two seconds).

This is a dilemma because a small analysis window

does not contain sufficient feature vectors to obtain a

reliable distance statistic. For this approach, the KL2,

GLR, and ∆BIC derived from the uni-Gaussian model

are popular distance measures because they have the

advantage of low computational cost; however, their

effectiveness may be limited due to the limited gener-

alization ability of uni-Gaussian. In [25], the authors

proposed a bilateral scoring approach for calculating

the distance between two segments based on adapted

Gaussian mixture models (GMMs). Because of the good

generalization ability of GMMs, this approach has been

shown to be more effective than WindGrow and XBIC,

which are developed on the basis of the uni-Gaussian

model; however, it suffers from a higher computational

cost due to the requirement for the adaptation of GMMs

and calculation of mixture likelihoods in the distance

measure.

3) Under the DISTBIC approach, the input audio stream

is first segmented by FixSlid; then, the acoustic change

candidates are verified sequentially by segment merging

using ∆BIC. In practical use of this approach, FixSlid

is usually applied to over-segment the audio stream to

ensure a low miss detection rate at the cost of a high

false alarm rate; then, the segment merging process is

applied to reduce false alarms while maintaining the

low miss detection rate. This approach is highly effi-

cient. Moreover, it has been reported that this approach

achieves decent segmentation accuracy [9]. The sequen-

tial segment merging process can be replaced by the

hierarchical agglomerative clustering (HAC), which has

been widely used in many speaker diarization systems

[7], [8], [30]. However, it is not as efficient as DISTBIC

because of the essential computational cost of HAC.

Although WinGrow is more efficient than the adapted-

GMMs approach while maintaining high segmentation accu-

racy, the computational cost is still quite considerable when

applying it to a large-scale task, e.g., the indexing of a database

containing thousands of audio recordings. Therefore, more

efficient segmentation approaches are desirable. In this paper,

we propose three divide-and-conquer approaches for distance-

based speaker segmentation. The first approach (DACDec1)

detects speaker changes by recursively partitioning a large

analysis window into two sub-windows at the position with

the largest positive ∆BIC value obtained by Chen’s one-

change-point detection algorithm [11], rather than by applying

a size-growing analysis window. All the divided points are

output as change points. The second approach (DACDec2),

which is a variant of DACDec1, recursively partitions a large

analysis window into two sub-windows at the position with the

largest ∆BIC value, no matter whether it is larger than zero

or not. It then recursively verifies whether the divided points

with negative ∆BIC values calculated in the division stage

are speaker changes based on the new ∆BIC measurements

of their left and right neighbor segments. The third approach

(DACDec3) is a recursive variant of DISTBIC. It recursively

partitions an audio stream at the locations of speaker change

candidates obtained by FixSlid, and then recursively verifies

those candidates based on the ∆BIC measurements of their

left and right neighbor segments. To compare the performance

of WinGrow, FixSlid, DISTBIC, the HAC-based approach and

the proposed approaches, we conducted speaker change detec-

tion experiments on two broadcast news data sets, namely the

MATBN corpus [31] and the broadcast news data in the 2003

NIST rich transcription evaluation data (RT03) [32]. For the

efficiency comparison, we analyzed their computational costs

and reported their respective run times in the experiments. The

experiment results show that DACDec1 and DACDec2’s re-

cursive (top-down) multiple-change-point detection strategies

are more effective and efficient than WinGrow’s bottom-up

multiple-change-point detection strategy. The results also show

that, by providing a more effective and efficient segment merg-

ing process, DACDec3 outperforms DISTBIC and the HAC-

based approach. Moreover, it achieves similar segmentation

accuracy as WinGrow at a much lower computational cost. We

applied the segmentation approaches discussed in this paper to

the speaker diarization task, where the segmentation result is

input to a HAC speaker clustering module. The experiment

results on RT03 show that a more effective segmentation

approach leads to better diarization accuracy.

The remainder of this paper is organized as follows. To

help explain our proposed approaches, we review the ∆BIC
distance measure and the WinGrow approach in Section II.

We then present the proposed divide-and-conquer approaches

for speaker segmentation in Section III. In Section IV, we

analyze the computational costs of the baseline approaches and

the proposed approaches. Section V details the experiments on

speaker segmentation, Section VI details the application of the

segmentation approaches to the speaker diarization task, and

Section VII contains some concluding remarks.

II. WINDOW-GROWING-BASED SEGMENTATION

We review the ∆BIC distance measure of two audio

segments in Section II-A and window-growing-based segmen-

tation (WinGrow) in Section II-B.
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A. ∆BIC as the distance measure of two audio segments

1) Model selection and BIC: Given a data set Z =
{z1, z2, · · · , zn} ⊂ R

d and a set of candidate models M =
{M1,M2, · · · ,Mk}, the purpose of model selection is to

choose the model that best fits the distribution of Z from

M. When using the Bayesian Information Criterion (BIC) for

model selection, the BIC value of Mi for Z is

BIC(Mi,Z) = log p(Z | Θ̂i) −
1

2
λ#(Mi) log n, (1)

where λ = 1, Θ̂i is the maximum likelihood estimate of the

parameter set of Mi, and #(Mi) is the number of parameters

of Mi. The model with the largest BIC value will be selected.

2) ∆BIC as the distance measure: Given two audio seg-

ments represented by feature vectors, X = {x1,x2, · · · ,xnx
}

⊂ R
d and Y = {y1,y2, · · · ,yny

} ⊂ R
d, we evaluate the

following two hypotheses [11]:

H0 : x1,x2, · · · ,xnx
,y1,y2, · · · ,yny

∼ N (µ,Σ),

H1 :x1,x2, · · · ,xnx
∼ N (µX ,ΣX );

y1,y2, · · · ,yny
∼ N (µY ,ΣY). (2)

H0 posits that X and Y are derived from the same multivariate

Gaussian, while H1 posits that they are derived from two

distinct multivariate Gaussians.

Let Z = X
⋃
Y and n = nx + ny . Then, the ∆BIC value

can be computed as the difference between the BIC values of

H1 and H0 as follows:

∆BIC{X ,Y} = BIC(H1,Z) − BIC(H0,Z)

= log p(X | µ̂X , Σ̂X ) + log p(Y | µ̂Y , Σ̂Y)

− log p(Z | µ̂, Σ̂) −
1

2
λ(d +

1

2
d(d + 1)) log n

=
n

2
log |Σ̂| −

nx

2
log |Σ̂X | −

ny

2
log |Σ̂Y |

−
1

2
λ(d +

1

2
d(d + 1)) log n, (3)

where µ̂, µ̂X , and µ̂Y are, respectively, the sample mean

vectors of Z , X , and Y; Σ̂, Σ̂X , and Σ̂Y are, respectively,

the sample covariance matrices of Z , X , and Y; and d is

the dimension of the feature vector [13]. The larger the value

of ∆BIC, the less similar the two segments will be; thus,

the larger the distance between the two segments will be.

When λ = 0, the ∆BIC distance between two segments is

equivalent to the GLR distance [11], [33].

B. Window-growing-based segmentation

1) One-change-point detection: Let the feature vectors of

the input audio stream be Z = {z1, z2, · · · , zn}. In Chen and

Gopalakrishnan’s one-change-point detection algorithm [11]

(denoted as OCD-Chen in this paper), it is assumed that there

is at most one change point in Z . Then, the ∆BIC{Xi,Yi}(i)
value for imin < i ≤ n − imin is computed as

∆BIC{Xi,Yi}(i) =
n

2
log |Σ̂| −

i

2
log |Σ̂Xi

| −
n − i

2
log |Σ̂Yi

|

−
1

2
λ(d +

1

2
d(d + 1)) log n, (4)

Audio stream

iniN
gN

max
N

sN

Seg1 Seg2 Seg3

Audio stream

iniN
gN

max
N

sN

Seg1 Seg2 Seg3

The initial

analysis

window

P Q

iniNiniN

iniNiniN

Fig. 1. Diagram of the multiple-change-point detection in window-growing-
based segmentation (WinGrow). The audio stream contains three segments,
namely Seg1, Seg2, and Seg3; P and Q denote the change points.

where Σ̂, Σ̂Xi
, and Σ̂Yi

are, respectively, the sample covari-

ance matrices of Z , Xi={z1, z2, · · · , zi}, and Yi={zi+1,
zi+2, · · · , zn}. If maximin<i≤n−imin

∆BIC{Xi,Yi}(i) > 0,

the time index corresponding to the maximum value is output

as the change point; otherwise, there is no change point in

Z . It is not necessary to compute the ∆BIC value for time

indices within the ranges 1 to imin and n − imin + 1 to n
because in these cases the number of samples in Xi or Yi

is insufficient to give a reliable estimate of the parameters.

Empirically, it is appropriate to set imin at a value within the

range 30 to 50 for practical applications. According to the

BIC theory, the penalty factor λ in Eq. (4) is 1; however, in

practical segmentation tasks, it is usually adjusted to allow a

tradeoff between error types.

2) Multiple-change-point detection: OCD-Chen outputs at

most one change point, even though there are multiple change

points in the analysis window. To detect multiple change points

in an audio stream, as shown in Fig. 1, OCD-Chen can be

applied sequentially to a sliding, size-growing analysis window

whose initial size is Nini samples. The window repeatedly

grows by Ng samples until a change point is detected or

its size exceeds a pre-defined upper bound Nmax. Here, the

upper bound ensures the search efficiency [15], [13]. If a

change point is detected during the window growing step, the

detection process restarts at that change point with an analysis

window of Nini samples. When the size of the window grows

to Nmax, it is repeatedly shifted by Ns samples until a change

point is detected or the analysis window reaches the end of

the audio stream. In this way, the change points in the audio

stream can be detected sequentially.

III. DIVIDE-AND-CONQUER-BASED SEGMENTATION

In this section, we present three implementations of the

divide-and-conquer paradigm for detecting multiple change

points in an analysis window. Note that the proposed ap-

proaches are based on the same assumption as that of

WinGrow, i.e., the feature vectors of audio segments from
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Algorithm 1 CP←DACDec1(W )

Require: W : the analysis window
Ensure: CP : the set of change points detected in W

Begin

1) detect whether there is a change point in W by OCD-Chen;
2) //Check termination

if (there is no change point in W or the size of W is smaller than
Nmin)

CP ← φ; //empty set
goto End; //return

3) //Divide
let t̂ be the change point detected in 1);
divide W into two sub-windows, W1 and W2, at t̂;

4) //Solve sub-instances
CPW1

← DACDec1(W1); CPW2
← DACDec1(W2);

5) //Combine
CP ← t̂ ∪ CPW1

∪ CPW2
;

End

different speakers are derived from different Gaussian distrib-

utions.

A. The DACDec1 approach

We use the example in Fig. 2 to explain the concept of

divide-and-conquer-based segmentation. It is assumed that the

audio stream in Fig. 2 (a) consists of three homogeneous

segments derived from different speakers. Initially, OCD-Chen

is applied in an analysis window that covers the entire audio

stream. After the change point C2 has been detected with

the ∆BIC curve in Fig. 2 (b), the audio stream is divided

into two analysis windows. Then, OCD-Chen is recursively

applied in these two windows to search for the remaining

change points so that C1 can be detected. This approach,

called DACDec1, allows us to detect the change points by a

divide-and-conquer (DAC) strategy. As described in Algorithm

1, DACDec1 terminates (returns) if no change point is detected

by OCD-Chen in the analysis window or the size of the

analysis window is smaller than a pre-defined value, denoted

as Nmin samples. In the Divide stage, the analysis window is

partitioned into two sub-windows at the change point detected

by OCD-Chen. Then, the sub-windows are input to DACDec1

in the Solve sub-instances stage. Finally, the Combine stage

outputs all the change points detected in step 1) and step 4)

(i.e., the Solve sub-instances stage).

1) Discussion: In general, when the data samples are de-

rived from more than one Gaussian distribution, two Gaussians

(the H1 hypothesis) fit the distribution of the data better than

one Gaussian (the H0 hypothesis) if the samples belonging to

the same Guassian are used together to estimate the parame-

ters. For example, Fig. 3 schematically illustrates a case where

the three audio segments are derived from three different

speakers and their feature vectors distribute as three Gaussian

clusters. This case explains why the ∆BIC values at C1 and

C2 in Fig. 2 (b) are positive. From the above perspective, if the

homogeneous segments in the analysis window of DACDec1

are always derived from different speakers during the recursive

process, we can be confident that, at each change point, the

H1 hypothesis will fit the data better than the H0 hypothesis;

thus, the ∆BIC value will be positive.

However, if two or more segments in the analysis win-

dow are derived from the same speaker, the performance of

DACDec1 may decline dramatically. For example, in Fig. 4

(a), the first and third segments are derived from the same

speaker (Speaker1), while the second segment is derived from

another speaker (Speaker2). When applying OCD-Chen to the

audio stream in Fig. 4 (a) with the same λ value of BIC used

in the example in Fig. 2, we obtain the ∆BIC curve in Fig.

4 (b). The curve still has two peaks at the change points C1

and C2 because the H1 hypothesis models the distribution

of the data samples better at change points than it does at

non-change points. We use Figs. 4 (c) and (d) to explain

this perspective. Fig. 4 (c) diagrammatically illustrates the two

hypotheses at C2, where all the data samples of Speaker2 (the

circles) are used with those of Speaker1 (the stars) to estimate

one Gaussian in H1. In contrast, at the non-change point R in

Fig. 4 (b), as shown in Fig. 4 (d), the data samples of Speaker2

are divided into two parts, each of which is combined with the

data samples of Speaker1 (one with the stars and the other with

the diamonds) to estimate a distinct Gaussian in H1. Clearly,

the H1 hypothesis in Fig. 4 (c) fits the data better than that in

Fig. 4 (d).

In this example, we have peaks at C1 and C2. However,

their ∆BIC values are negative, and no change point will be

output by OCD-Chen because, as illustrated in Fig. 4 (c), H1

over-fits the data samples of Speaker1 and obtains a smaller

BIC value than that of H0. We may adjust the value of λ
so that, at C2, the ∆BIC value will be positive (i.e., the

hypothesis test favors H1). However, this may result in false

alarms when the recursive process continues to detect change

points in a homogeneous segment. In other words, it is difficult

to determine a reliable λ value for an audio stream like the

example in Fig. 4 (a). Moreover, it is infeasible to adjust

the value of λ for each specific audio stream in practical

applications.

B. The DACDec2 approach

To overcome the performance limitation caused by un-

reliable ∆BIC measurements of the over-fitting cases in

DACDec1, we developed an alternative implementation of

the divide-and-conquer paradigm, called DACDec2. In this

approach (Algorithm 2), the ∆BIC value is not used to check

the termination in the Check termination stage because it may

be unreliable, as illustrated in Figs. 2 and 4. The recursive

process terminates (returns) when the size of the analysis

window is smaller than Nmin samples. In the Divide stage,

the analysis window is partitioned into two sub-windows at

the time index t̂ that has the largest ∆BIC value located by

OCD-Chen. Then, the sub-windows are input to DACDec2

in the Solve sub-instances stage. In the Combine stage, t̂ is

labeled as a change point if the ∆BIC value at t̂ calculated

in the Divide stage is positive; otherwise, it needs to be

verified using its two neighboring segments X and Y . In the

verification process, t̂ is only labeled as a change point if

∆BIC{X ,Y}(t̂) > 0.

Fig. 5 illustrates a recursive tree that simulates the recursive

process of DACDec2 on the audio stream in Fig. 4 (a). We
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(a) (b)

Fig. 2. (a) An audio stream comprised of three speech segments, each derived from a distinct speaker. C1 and C2 are the change points. (b) The ∆BIC
curve obtained by applying OCD-Chen to the audio stream in (a).

Algorithm 2 CP←DACDec2(W )

Require: W : the analysis window
Ensure: CP : the set of change points detected in W

Begin

1) //Check termination
if (the size of W is smaller than Nmin)

CP ← φ; //empty set
goto End; //return

2) //Divide
apply OCD-Chen to W and let t̂ be the time index with the largest
∆BIC value;
divide W into two sub-windows, W1 and W2, at t̂;

3) //Solve sub-instances
CPW1

← DACDec2(W1); CPW2
← DACDec2(W2);

4) //Combine
if (∆BIC{W1,W2}(t̂) calculated in 2) is positive)

CP ← t̂ ∪ CPW1
∪ CPW2

;
else

let X be the segment on the left of t̂ in W1 and Y be the segment
on the right of t̂ in W2;

if (∆BIC{X ,Y}(t̂) > 0) //t̂ is a change point

CP ← t̂ ∪ CPW1
∪ CPW2

;

else //t̂ is not a change point
merge X and Y;
CP ← CPW1

∪ CPW2
;

End

assume that there are no miss and false alarm errors in the

detection process. In the figure, each tree node corresponds

to a divide-point (i.e., t̂) in the analysis window; the number

inside the node indicates the order of the division, while the

number below the node indicates the order in which the divide-

point is verified in the Combine stage. In Fig. 4 (b), Node 1

(C2) has a negative ∆BIC value in the Divide stage; however,

it will be labeled as a change point by the verification process

with segments {c, d, e, f} and {g, h, i} in the Combine stage.

Node 2 (C1) has a positive ∆BIC value in the Divide stage;

thus, it is labeled as a change point and verification is not

necessary. Segments {a} and {b} will be used for verifying

Node 3; segments {c, d} and {e, f} will be used for verifying

Node 4, and so on.

0
H

1
H

Fig. 3. An illustration that data samples distribute as three Gaussian clusters.
For this case, generally, two Gaussians (H1) fit the distribution of the data
better than one Gaussian (H0) if the samples belonging to the same Gaussian
cluster are used together to estimate the parameters.

1) Advantages of DACDec1 and DACDec2: We use Fig.

6 to explain the potential advantages of using DACDec1 and

DACDec2 for speaker change detection. In the figure, there

are two change points, C1 and C2. For WinGrow, if there is a

false alarm error at F near C1, the detection process restarts

at F , but the false alarm error may lead to miss errors in

the subsequent detection process. For example, if the three

segments are derived from different speakers, like the case in

Fig. 2 (a), it is very likely that C2 will be detected and C1

will be missed because the analysis window does not contain

sufficient data from Seg1. On the other hand, if Seg1 and Seg3

are spoken by the same speaker and Seg2 is from another

source, C1 may be missed for the same reason mentioned

above. If C1 is missed, we may suffer from the unreliable

∆BIC measurement issue as the example in Fig. 4 when

OCD-Chen continues to detect C2; thus, C2 may also be

missed.

In DACDec1, the Divide stage partitions the audio stream

into two sub-streams at the point with the largest positive
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(a) (b)

0
H

1
H

Speaker2

Speaker1

Speaker1

(c)

0
H

1
H

Speaker2

Speaker1

Speaker1

(d)

Fig. 4. (a) An audio stream comprised of three speech segments; the first and third segments are derived from the same speaker (Speaker1), while the
second is derived from another speaker (Speaker2). (b) The ∆BIC curve obtained by applying OCD-Chen to the audio stream in (a). (c) The diagram of
the hypothesis test at the change point C2 in (b). (d) The diagram of the hypothesis test at the non-change point R in (b).

Fig. 5. A recursive tree that simulates the recursive process of DACDec2
on the audio stream in Fig. 4 (a).

∆BIC value. As shown in Figs. 4 (c) and (d), change points

usually have larger ∆BIC values than non-change points;

thus, false alarm errors may only occur after the true change

points have been detected, and they will not lead to miss errors

in the subsequent detection process. For example, in Fig. 6,

the false alarm errors in Seg1 only occur after C1 has been

detected, and so on.

In DACDec2, false alarm errors may not cause a true

change point with a positive ∆BIC value calculated in the

Divide stage to be missed; however, the false alarm points’

neighboring true change points with negative ∆BIC values

calculated in the Divide stage may be missed. For instance,

for the example in Fig. 4, DACDec2 first divides the audio

stream at C2 and generates the recursive tree shown in Fig.

5. C2 needs to be verified in the Combine stage because its

∆BIC value calculated in the Divide stage is negative, as

shown in Fig. 4 (b). However, if there is a false alarm point

near C2, it may be missed. We explain this phenomenon as

follows. In Fig. 5, the boundary between segments {e} and {f}
(i.e., Node 6) is verified before C2. If it is detected as a change

point, {f} and {g, h, i} are used to verify C2. However, the

number of data samples in segment {f} may be insufficient to
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Fig. 6. An example of the WinGrow detection process. The audio stream
contains two change points C1 and C2, and the detection process generates
a false alarm error at F .

obtain a reliable ∆BIC measurement, thus C2 may be missed.

On the other hand, if DACDec2 first divides the audio stream

at C1 and outputs a false alarm point at F near C1, like the

case in Fig. 6, C1 may be missed for the same reason. Even

so, missing C1 may not cause DACDec2 to miss C2 because,

in the Divide stage, C2 will be determined whether it is a

change point using complete, pure Seg2 and Seg3; therefore,

it is very likely that the ∆BIC value will be positive. In

contrast, WinGrow may not be able to use complete, pure

Seg2 and Seg3 for speaker change detection if C1 is missed.

2) Sequential segmentation by DACDec1 and DACDec2:

For a long audio stream, such as a one-hour broadcast news

program, the segmentation task becomes computationally in-

tractable when DACDec1 or DACDec2 are used to detect

change points. Moreover, if the initial analysis window con-

tains too many segments, it may be difficult for OCD-Chen to

find an appropriate λ value to obtain robust ∆BIC measure-

ments for the various hypothesis tests in the recursive process.

Therefore, in practical applications, we apply DACDec1 and

DACDec2 in a large analysis window of fixed-size (e.g., 20

seconds) that moves from the beginning to the end of the

audio stream to detect the speaker changes sequentially. The

proposed sequential segmentation algorithms, SeqDACDec1

and SeqDACDec2, are shown in Fig. 7. In SeqDACDec1 (or

SeqDACDec2), if a change point is detected in the fixed-size

analysis window by DACDec1 (or DACDec2), the window

is moved to the change point with the largest time index.

Otherwise, it is moved forward by ηL samples, where L
denotes the window size, and η > 0. Note that a small η will

allow a missed change point to be checked again by DACDec1

(or DACDec2) in the subsequent fixed-size analysis window.

Like WinGrow, SeqDACDec1 and SeqDACDec2 are suitable

for on-line applications.

C. The DACDec3 approach

The third implementation (DACDec3) of the divide-and-

conquer paradigm is detailed in Algorithm 3. In DACDec3,

Audio stream

Lh

Seg1 Seg2 Seg3 Seg4

DACDec1 or

DACDec2

Analysis

window

Fig. 7. Diagram of the detection process of SeqDACDec1 and SeqDACDec2.
If a change point is detected in the fixed-size analysis window by DACDec1
or DACDec2, the window is moved to the change point with the largest time
index. Otherwise, it is moved forward by ηL samples, where L denotes the
window size, and η > 0.

we use FixSlid instead of OCD-Chen to detect the divide-

points of an input audio stream. As shown in Fig. 8 (a), given

the distance curve obtained by FixSlid using the GLR [9]

distance measure, the time index t associated with the peak

that has the largest GLR value within the interval [t−pRange,

t+ pRange] is considered a divide-point. In this example, all

the peaks except S are divide-points. Let DPset be the set of

divide-points obtained by FixSlid. As described in Algorithm

3, DACDec3 returns if a divide-point is not found in DPset.

In the Divide stage, the analysis window is partitioned at the

time index of the divide-point with the largest GLR value.

Then, in the Combine stage, each divide-point is evaluated to

determine whether it is a change point based on the ∆BIC
measurement of its two neighboring segments X and Y .

The major difference between DACDec2 and DACDec3

is as follows. DACDec2 detects change points by OCD-

Chen in the Divide stage. Then, only the divide-points with

negative ∆BIC values calculated in the Divide stage are

verified by segment merging based on the ∆BIC values of

their neighboring segments in the Combine stage. In contrast,

DACDec3 detects change points by verifying all the input

divide-points indicated by FixSlid using segment merging. For

example, if we apply FixSlid to the audio stream in Fig.

5 and obtain the distance curve in Fig. 8 (a), the recursive

tree for DACDec3 will be the same as that in Fig. 5. In this

case, DACDec2 finds the change point C1 using OCD-Chen

in the Divide stage, while DACDec3 finds it in the Combine

stage using segment merging; however, both DACDec2 and

DACDec3 find the change point C2 in the Combine stage.

There is a close link between DISTBIC [9] and DACDec3.

In DISTBIC, a distance curve is first generated by FixSlid, and

then the “significant” local maximums on the distance curve

are evaluated to determine whether they are change points

by a sequential, left-to-right (in time order) segment merging

process. As shown in Fig. 9, a local maximum is significant

if |d(max) − d(min
r

)| > ασ and |d(max) − d(min
l

)| > ασ,

where σ is the standard deviation of the distance values on

the distance curve, α is a positive real number, and min
r

and min
l

are, respectively, the locations associated with the

right minimum and left minimum around the local maximum.
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Algorithm 3 CP←DACDec3(W , DPset, GLRset)

Require: W : the analysis window
DPset = {DP1, . . . , DPN}: the divide-points in W obtained by FixSlid using the GLR distance measure
GLRset = {GLR1, . . . , GLRN}: GLRi denotes the GLR value at DPi for i = 1, 2, · · · , N

Ensure: CP : the set of change points detected in W
Begin

1) //Check termination
if (DPset is empty)

CP ← φ; //empty set
goto End; //return

2) //Divide
search in DPset and let DPk be the divide-point whose GLR value is the largest in GLRset;
let t̂ be the time index of DPk; divide W into two sub-windows, W1 and W2, at t̂;
divide DPset into two sub-sets, DPset1 = {DP1, . . . , DPk−1} and DPset2 = {DPk+1, . . . , DPN};
divide GLRset into two sub-sets, GLRset1 = {GLR1, . . . , GLRk−1} and GLRset2 = {GLRk+1, . . . , GLRN};

3) //Solve sub-instances
CPW1

← DACDec3(W1, DPset1, GLRset1); CPW2
← DACDec3(W2, DPset2, GLRset2);

4) //Combine
let X be the segment on the left of t̂ in W1 and Y be the segment on the right of t̂ in W2;
if (∆BIC{X ,Y}(t̂) > 0) //t̂ is a change point

CP ← t̂ ∪ CPW1
∪ CPW2

;

else //t̂ is not a change point
merge X and Y;
CP ← CPW1

∪ CPW2
;

End

If DISTBIC takes the divide-points of DACDec3 as change

point candidates to be verified (we denote this approach as

DISTBIC pR), it is identical to applying DACDec3 in that

the recursive division is performed in a right-to-left manner,

whereas the recursive segment merging is performed in a left-

to-right manner. As shown in Fig. 8 (b), Node 8 is verified

by segments {a} and {b} first, then Node 7 is verified by

segments {a, b} and {c}, and so on.

DACDec3 should be more effective than DISTBIC pR

because it evaluates the divide-points with smaller GLR values

to determine whether they are change points before those with

larger GLR values. In contrast, in DISTBIC pR, the divide-

points are simply verified sequentially without considering

the GLR information. The advantage of DACDec3 can be

seen by comparing the recursive tree of DACDec3 in Fig.

5 to that of DISTBIC pR in Fig. 8 (b). In DACDec3, C1

may be verified with segments {a, b} and {c, d, e, f},

which are complete homogeneous segments of Speaker1 and

Speaker2, respectively; whereas, in DISTBIC pR, C1 can only

be verified with segments {a, b} and {c} or segments {b} and

{c}, where only a small portion of Speaker2’s data is used.

In addition to the recursive (sequential) segment merging

process of DACDec3 (DISTBIC pR), one can use the hier-

archical agglomerative clustering (HAC) to merge the seg-

ments obtained with DACDec3’s divide-points [7], [8], [30].

We denote this segmentation approach as FixSlidHAC pR.

Compared to DACDec3 (or DISTBIC pR), which performs

segment merging locally, FixSlidHAC pR performs segment

clustering globally. When performing HAC, each segment is

considered as a cluster initially; then, in each merging step, the

two clusters with the smallest distance are merged into a new

cluster. The globality feature of FixSlidHAC pR is particularly

beneficial to the speaker diarization task because the segment

merging process groups the segments into clusters such that

each cluster contains segments of the same speaker. However,

this feature might not be as beneficial to the speaker segmen-

tation task because the goal is to merge adjacent segments

into longer segments. For example, in Fig. 5, the goal of the

segment merging process in the speaker segmentation task is

to merge segments {a} and {b} into one larger segment and to

merge segments {g}, {h} and {i} into another larger segment,

rather than to merge these five segments into one cluster.

In FixSlidHAC pR, if segment {h} is incorrectly merged

with a segment of a different speaker, say {d}, the error

will propagate in the following clustering process. DACDec3

might not suffer the same fate because its locality constraint

enforces that segment {h} is first checked with its neighboring

segment, {g} or {i}. Therefore, we think DACDec3’s segment

merging process meets the goal of speaker segmentation better

than that of FixSlidHAC pR. Moreover, it is clear that the

computational cost of FixSlidHAC pR is much larger than

that of DACDec3 due to the essential computational cost of

the HAC-based global clustering process.

Like DACDec1 and DACDec2, DACDec3 can also be

applied sequentially in a fixed-size analysis window for on-

line applications.

IV. COMPUTATIONAL COST ANALYSIS

WinGrow, DACDec1, and DACDec2 detect acoustic

changes by applying the OCD-Chen process to the analysis

window. From Eq. (4), it is clear that the computational cost

of ∆BIC is mainly from the cost of calculating covariance

matrices, which is proportional to the number of data samples.

Let the time cost of calculating ∆BIC with m samples be

mτ , where τ represents the time unit; then, m2τ denotes the

time cost of applying OCD-Chen to an analysis window of m
samples1.

1As mentioned in Section II-B1, the ∆BIC value is not computed for
samples at the beginning and the end of the analysis window. However, to
simplify the analysis, we assume that the ∆BIC value is computed for each
sample of the window.
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Fig. 8. (a) The distance curve obtained by FixSlid using the GLR distance
measure, where the time index t associated with the peak that has the largest
GLR value within the interval [t − pRange, t + pRange] is considered a
divide-point in DACDec3. On this curve, all the peaks, except S, are divide-
points. (b) The recursive tree representation of DISTBIC pR based on the
divide-points in (a) for the audio stream in Fig. 5.

To simplify the analysis, we assume that each homogeneous

segment in the input audio stream (i.e., the initial analysis

window for DACDec1, DACDec2, and DACDec3) contains m
samples. Moreover, we assume the detection process is perfect,

i.e., miss and false alarm errors never occur.

1) For DACDec1: Let T1(k) denote the time cost of

applying DACDec1 to an audio stream of k change points

(i.e., k + 1 homogeneous segments). When the audio stream

is divided at the i-th change point, as shown in Fig. 10, we

obtain the following recursive expression of T1(k):

T1(k) = T1(i − 1) + T1(k − i) + (k + 1)2m2τ, (5)

where (k + 1)2m2τ is the time cost of finding the divide-

point by OCD-Chen; T1(i − 1) and T1(k − i) are the time

Fig. 9. A significant local maximum on the distance curve.

Fig. 10. An audio stream comprised of k + 1 homogeneous segments, each
containing m samples. The stream is divided at the i-th change point.

costs of applying DACDec1 in the left sub-stream and the

right sub-stream, respectively. We have T1(0) = m2τ , since it

represents the time cost of applying OCD-Chen to a m-sample

homogeneous segment.

We assume that the division occurs at each change point

with equal probability; therefore, the average time cost of

DACDec1 is

T1(k) =
1

k

k∑

i=1

(T1(i − 1) + T1(k − i)) + (k + 1)2m2τ. (6)

After the algebraic manipulation detailed in Appendix A,

we obtain

T1(k) ≈ (3(k + 1)2 − 2(k + 1) ln(k + 1))m2τ

= O(k2m2τ). (7)

2) For DACDec2: Compared to DACDec1, DACDec2 in-

curs an additional time cost in the Combine stage as it has

to determine whether the divide-point with a negative ∆BIC
value calculated in the Divide stage is a change point. The cost

is 2mτ because each of the divide-point’s two neighboring

segments contains m samples. To simplify the analysis, we

assume that each divide-point must be verified, even though

its ∆BIC value calculated in the Divide stage is positive.

Hence, the average time cost of DACDec2 is

T2(k) =
1

k

k∑

i=1

(T2(i− 1)+T2(k− i))+ (k +1)2m2τ +2mτ.

(8)
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Unlike DACDec1, DACDec2 recursively partitions each ho-

mogeneous segment of m samples until the analysis window is

smaller than the pre-defined minimum value Nmin. Therefore,

T2(0) is equivalent to the time cost of applying DACDec2 to

an m-sample stream in which each sample can be a divide-

point. The cost of finding a divide-point in an m-sample stream

in the Divide stage is m2τ . In the Combine stage, the cost

of verifying the divide-point is at most mτ because the two

segments used for verification are sub-segments of the m-

sample segment. Therefore, the upper bound of T2(0) is

T ′(m) =
1

m

m∑

i=1

(T ′(i − 1) + T ′(m − i)) + m2τ + mτ, (9)

where T ′(0) = 0. After the algebraic manipulation detailed in

Appendix B, we obtain

T2(0) ≤ T ′(m) ≈ (3m + 4 − 4 ln(m + 1))(m + 1)τ. (10)

Then, we can solve the recursive equation in Eq. (8) with

T2(0) in Eq. (10). After the algebraic manipulation detailed in

Appendix C, we obtain

T2(k) ≤ (3k + 5 − 2 ln(k + 1))(k + 1)m2τ

+(9 + 2 ln k − 2 ln(k + 1) − 4 ln(m + 1))(k + 1)mτ

+(4 − 4 ln(m + 1))(k + 1)τ

= O(k2m2τ). (11)

3) For FixSlid, DACDec3, and DISTBIC pR: Suppose

FixSlid uses GLR (∆BIC) as the distance measure and the

analysis window consists of ω samples. Then, the time cost

of FixSlid is

T3(k) = (2ωτ)(k + 1)m

= O(kmτ). (12)

DACDec3 and DISTBIC pR incur a higher time cost than

FixSlid when verifying divide-points in the segment merging

process. Suppose the audio stream is equally divided into
(k+1)m

β sub-segments of β samples, where β > 0. Since

we assume that the segmentation derived by DACDec3 and

DISTBIC pR is perfect, each of the change points is also a

divide-point and the time cost of segment merging verification

is less than 2mτ for each divide-point. Therefore, the time cost

of DACDec3 and DISTBIC pR is less than

T4(k) = (2ωτ)(k + 1)m + (
(k + 1)m

β
− 1)2mτ

= O(km2τ). (13)

4) For WinGrow: We analyze the case where the maximum

window size Nmax is large enough to ensure that the search

process always restarts at a true change point2. In this case, the

2Without this assumption, the time cost analysis for WinGrow might be
intractable. However, this assumption is appropriate for many kinds of real-
world data. For example, in our experiments on the broadcast news data
described in Sec. V, it is appropriate to set Nmax at 20 seconds, which
is longer than most of the homogeneous segments in the data set.

analysis window W initialized with a small number of Nini

samples grows repeatedly by Ng samples until it contains more

than m samples, so that there is at least one change point in

W . Suppose W needs to grow to γm samples to detect the

change point, where γ > 0; then, the time cost of sequentially

detecting k change points will be

T ′
1(k) = k[N2

ini +

(γm−Nini)/Ng∑

i=1

(Nini + iNg)
2]τ. (14)

After the k-th change point has been detected, the detection

process continues to search in the last homogeneous segment;

the time cost is

Cs = [N2
ini +

(m−Nini)/Ng∑

i=1

(Nini + iNg)
2]τ. (15)

In practical applications, both Nini and Ng are set at small

values. To simplify the analysis, we assume Nini≈Ng . Then,

the time cost of WinGrow is

T5(k) = T ′
1(k) + Cs

≈ k[

(γm−Ng)/Ng∑

i=1

(iNg)
2]τ + [

(m−Ng)/Ng∑

i=1

(iNg)
2]τ

= (
γ3m3

3Ng
−

γ2m2

2
+

γmNg

6
)kτ

+(
m3

3Ng
−

m2

2
+

mNg

6
)τ

= O(km3τ). (16)

5) Discussion: From Eqs. (7), (11), (12), (13), and (16),

it is obvious that FixSlid, DACDec3, and DISTBIC pR are

more efficient than DACDec1, DACDec2, and WinGrow.

DACDec1 and DACDec2 are more efficient than WinGrow

when the input audio stream is composed of long homoge-

neous segments. For example, if the frame rate is 100 frames

per second (i.e., there are 100 feature vectors for a one-second

audio stream), it is appropriate to set the value of Nini and Ng

at 100. Moreover, the value of γ can be set at 1.5 generally.

Then, for a 30-second audio stream (which consists of 3000

feature vectors) containing only one change point (i.e., k = 1
and m = 1500), the speedups of DACDec1 and DACDec2

over WinGrow are 2.55 and 1.78, respectively. When there

is no change point in the 30-second stream, the speedups of

DACDec1 and DACDec2 over Wingrow are 10.51 and 3.51,

respectively. In contrast, when the audio stream is composed of

short homogeneous segments, WinGrow is more efficient than

DACDec1 and DACDec2. For example, for a 30-second stream

containing five change points (i.e., k = 5 and m = 500), the

speedups of DACDec1 and DACDec2 over WinGrow are 0.42

and 0.37, respectively.

V. EXPERIMENTS ON SPEAKER SEGMENTATION

We conducted experiments on a synthetic data set us-

ing SeqDACDec1 and SeqDACDec2 to verify the unreliable
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∆BIC measurement issue in DACDec1, and on two real-

world broadcast news data sets to evaluate the performances

of the baseline and proposed segmentation approaches.

For feature extraction, we used a 32-ms Hamming window

shifted with a step of 10-ms to extract 24 mel-frequency

cepstral coefficients as the acoustic features [11]. There were

100 24-dimensional feature vectors in a one-second audio

stream.

For the performance evaluation, we used the Receiver

Operating Characteristic (ROC) curve to show the various

miss detection (MD) rates and false alarm (FA) rates yielded

by adjusting the threshold parameters. A true change point t
was counted as a miss detection if there was no hypothesized

change point within [t−ξ, t+ξ] (a 2ξ-second window centered

on t); and a hypothesized change point t̂ was counted as a false

alarm if there was no true change point within [t̂ − ξ, t̂ + ξ].
The miss detection rate (MDR) and false alarm rate (FAR) are

defined as

MDR=100% ×
number of MD

number of true change points
,

FAR=100% ×
number of FA

number of hypothesized change points
.

A. Experiments on the synthetic data

1) Data set description: We used the training data of six

speakers from the 2001 NIST speaker recognition evalua-

tion corpus [34] to create three artificial audio streams of

conversational speech as the synthetic data set. The speech

from speaker#5077 and speaker#5232 was divided into three-

second utterances and interlaced to form an audio stream of

conversational speech of two speakers. In the same way, the

speech from speaker#5326 and speaker#5333 was used to form

the second audio stream; and the speech from speakers#5446

and speaker#5269 was used to form the third audio stream.

There were 231 speaker change points in total in the three

audio streams.

2) Experiment results: Fig. 11 shows the ROC curves

obtained by running SeqDACDec1 and SeqDACDec2 on the

synthetic data with different analysis window sizes. η was set

at 0.25, Nmin in DACDec1 and DACDec2 was set at one

second (i.e., 100 samples), and the penalty factor λ in ∆BIC
was set at 0.7 initially and increased to 1.7 in 0.05 increments.

The ∆BIC distance was evaluated every 0.1 seconds in both

approaches; that is, the resolution for change point detection

was 0.1 seconds. The tolerance ξ for counting the number

of miss detection or false alarm was set at 0.5 seconds.

From the figure, we observe that SeqDACDec2 outperforms

SeqDACDec1 for every window size. Moreover, SeqDACDec2

yields similar performances at different window sizes, whereas

the performance of SeqDACDec1 declines significantly when

the window size is increased from 10 seconds to 20 or

30 seconds. In other words, SeqDACDec2 is more robust

to the size of the analysis window than SeqDACDec1. The

experiment results conform to the discussion in Sec. III;

that is, DACDec1 might not work as well as DACDec2 if

the condition that the homogeneous segments in the analysis
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Fig. 11. ROC curves obtained by running SeqDACDec1 and SeqDACDec2
on the synthetic data using 10-second, 20-second, and 30-second analysis
windows. L denotes the size of the analysis window.

window are derived from different acoustic sources is not met.

B. Experiments on broadcast news data

1) Data set description: We evaluated FixSlid, FixSlid-

HAC pR, DISTBIC pR, DISTBIC, WinGrow, and the pro-

posed methods on two broadcast news data sets. The broadcast

news data in the 2003 NIST rich transcription evaluation

data [32], which is comprised of six 30-minute audio streams

recorded from channels ABC, NBC, CNN, PRI, VOA, and

MNB, was used as the evaluation set (denoted as RT03).

Three one-hour broadcast news programs (PTSND-20011203,

PTSND-20011204, and PTSND-20011205) selected from the

MATBN corpus [31] were used as the development set (de-

noted as MATBN3hr). To be consistent with RT03, each file

in MATBN3hr was divided into two 30-minute audio streams

in the experiments. According to the manual transcriptions,

there were 1261 and 444 speaker change points in MATBN3hr

and RT03, respectively. Note that, in the evaluation, we

ignored the hypothesized change points that locate in the non-

speech regions labeled in the transcription when evaluating the

segmentation errors because the detection of acoustic changes

within the non-speech regions was outside the scope of this

study.

Fig. 12 shows the empirical cumulative distributions of the

size of homogeneous segments in the two data sets. As shown

in the figure, the average length of the segments in RT03 is

longer than that in MATBN3hr.

2) Parameter setting and system description: For FixSlid,

we used the GLR distance as the distance measure of two

adjacent windows. In the experiments, the window size was

fixed at two seconds; and the value of α used to evaluate

the “significant” local maximum, as shown in Fig. 9, was

set at 0.4 initially, and increased to 2 in 0.05 increments

to obtain the ROC curve. For DACDec3, DISTBIC pR, and

FixSlidHAC pR, the parameter pRange was tuned with the
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Fig. 12. The empirical cumulative distributions of the size of homogeneous
segments in MATBN3hr and RT03.

development set. For WinGrow, the values of Ng and Ns were

set at one second and Nmax/4 seconds, respectively; and the

values of Nini and Nmax were tuned with the development

set. For SeqDACDec1 and SeqDACDec2, η was fixed at 0.25;

and L and Nmin in DACDec1 and DACDec2 were tuned

with the development set. For each BIC-based segmentation

approach, various λ values for ∆BIC were applied in order

to obtain the ROC curve. Like the above experiments on the

synthetic data, the resolution for change point detection was

0.1 seconds for all the approaches. However, the tolerance

ξ for counting the number of miss detection or false alarm

was set at one second rather than 0.5 seconds. Basically, we

made this change because of the limited precision of human

reference annotation.

For FixSlidHAC pR, we first applied FixSlid with the

threshold parameter pRange to segment the input audio

stream, then we pruned non-speech regions within the audio

segments and grouped the segments using HAC with multiple

stages, which have been applied in state-of-the-art speaker

diarization systems [8], [7], [35], [30]. As shown in Fig.

13, we applied HAC with ∆BIC as the inter-cluster dis-

tance measure (HAC-BIC) for initial clustering; the clustering

process was stopped if the smallest ∆BIC value among all

the cluster pairs was larger than zero. Then, we classified the

resultant clusters into four classes, namely, male speech with

studio/wide-bandwidth condition (WM), male speech with

telephone/narrow-bandwidth condition (TM), female speech

with studio condition (WF), and female speech with telephone

condition (TF). After the gender/bandwidth classification, we

applied HAC with the cross log-likelihood ratio derived from

GMMs as the inter-cluster distance measure (HAC-SID) to the

four classes, individually [7]. The cross log-likelihood ratio is

defined as

CLRGMM (πi, πj) =
1

ni
log

p(πi|Mj)

p(πi|B)
+

1

nj
log

p(πj |Mi)

p(πj |B)
,

(17)

where Mi and Mj are, respectively, the GMMs for clus-

HAC-BIC

HAC-SID

Gender/bandwidth classification

Audio segments

Prune non-speech

WM TM

WF TF

Speaker times

clusters

Fig. 13. A multi-stage HAC that consists of BIC clustering (HAC-BIC),
gender/bandwidth classification and SID clustering (HAC-SID).

ters πi and πj , which are MAP-adapted from the universal

background model (UBM [36]) B. Here, only Gaussian mean

vectors were adapted, and the relevant factor for controlling

the adaptation rate was experimentally set at 16. CLRGMM

reveals the similarity between πi and πj . Therefore, when

applying this measure in HAC, the two clusters with the largest

CLRGMM value are merged; and the clustering process is

terminated when it is smaller than a pre-defined stopping

threshold. We used 15 MFCCs and energy plus their delta

coefficients, which were normalized by feature warping, as

the speech feature for HAC-SID [7]. We used the 1998

DARPA/NIST HUB-4 broadcast news evaluation test data to

train the UBMs for WM and WF, and the NIST 2000 speaker

recognition evaluation corpus for TM and TF; each of the

UBMs contained 128 mixture Gaussians.

3) Experiment results: We first evaluated all the segmen-

tation approaches on MATBN3hr. Fig. 14 (a) shows the ROC

curves obtained by DACDec3 and DISTBIC pR with different

pRange values. From the figure, we observe that DACDec3

outperforms DISTBIC pR; and the best setting of pRange for

DACDec3 and DISTBIC pR are 0.5 seconds and one second,

respectively. Table I shows the results of FixSlidHAC pR,

where for each pRange case, various settings for λ and the

stopping threshold in HAC-SID were evaluated to obtain the

lowest equal error rate (EER). From the table, we observe that

FixSlidHAC pR achieves the lowest EER with pRange =
1.5 seconds. Both DACDec3 and DISTBIC pR achieve a

lower EER compared to FixSlidHAC pR; this shows that

DACDec3’s recursive and DISTBIC pR’s sequential strategies

for segment merging outperform the hierarchical agglomera-

tive approach.

We also evaluated DACDec3 using the “significant” local

maximums obtained by FixSlid as the divide-points (denoted
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TABLE I
THE EERS OF FIXSLIDHAC PR, DACDEC3, AND DISTBIC PR ON

MATBN3HR, WHERE M AND F DENOTE THE MISS DETECTION RATE AND

THE FALSE ALARM RATE, RESPECTIVELY.

Approach pRange (in second) EER (in %)

FixSlidHAC pR 1 M:26.05, F:24.60
1.5 M:21.09, F:22.22
2 M:24.35, F:25.10

DACDec3 0.5 M:17.61, F:17.46

DISTBIC pR 1 M:19.19, F:18.44

as DACDec3 SP). We ran DACDec3 SP and DISTBIC with

α = 0.4 and α = 0.85. From Fig. 14 (b), it is clear that

DACDec3 SP and DISTBIC substantially outperform FixS-

lid, while DACDec3 SP outperforms DISTBIC. Moreover,

DACDec3 with pRange = 0.5 seconds (the line marked

with diamonds) slightly outperforms DACDec3 SP. In our

experience, pRange is easier to tune than α. Therefore, we

did not analyze DACDec3 SP and DISTBIC further in the

remaining experiments for speaker change detection.

When conducting the experiments, we found that it was

appropriate to set Nini at three seconds and Nmax at 20 sec-

onds for WinGrow. For both SeqDACDec1 and SeqDACDec2,

it was appropriate to set Nmin at two seconds and the

window size L at 20 seconds. Fig. 15 (a) shows the ROC

curves obtained by SeqDACDec1 with analysis windows of

different size. Unlike the results for the synthetic data in

Fig. 11, the results with 10-second and 20-second analy-

sis windows are similar. This is because, in the broadcast

news data, if a 10-second or 20-second analysis window

contains multiple homogeneous segments, the segments are

usually derived from different speakers. For SeqDACDec2,

the results for 10-second, 20-second, and 30-second analysis

windows are similar, as shown in Fig. 15 (b). The ROC

curves obtained by the different approaches are shown in Fig.

15 (c). We observe that the proposed approaches, namely,

SeqDACDec1, SeqDACDec2, and DACDec3, outperform the

other approaches, while SeqDACDec2 performs the best. Table

II shows the speeds of all the approaches in terms of “times

real-time” (real-time factor, xRT 3) in the EER case. All the

programs were implemented with MATLAB, except that the

MAP training of GMMs and calculation of mixture likelihood

in FixSlidHAC pR was implemented with C language via

MATLAB’s API. The programs were run on a machine with

a 3.2GHz Intel Xeon CPU. From the table, we observe

that SeqDACDec1, SeqDACDec2, and DACDec3 are more

efficient than WinGrow. DACDec3 in particular runs much

faster than WinGrow. Moreover, FixSlidHAC pR is much

slower than the other approaches.

Next, we conducted experiments on RT03 with the pa-

rameters tuned with MATBN3hr. Fig. 16 shows the ROC

curves for all approaches. Again, we observe that the pro-

posed approaches, namely, SeqDACDec1, SeqDACDec2, and

DACDec3, outperform the other approaches. Table III shows

the real-time factor of all the approaches in the EER case.

Comparing Table III to Table II, it is clear that every approach

3xRT =Ts/Td, where Ts is the system run-time and Td denotes the time
duration of the test data set.

achieves a higher speedup over WinGrow on RT03 than

on MATBN3hr. This is because the homogeneous segments

in RT03 are longer than those in MATBN3hr on average,

as shown in Fig. 12, and these approaches achieve higher

speedup over WinGrow for an audio stream comprised of

longer homogeneous segments, as mentioned in Sec. IV (cf.

Eqs. (7), (11), (12), (13), and (16)).

VI. APPLICATION TO SPEAKER DIARIZATION

Speaker diarization, also known as the “who spoke when”

task, aims to group together speech segments produced by the

same speaker within an audio stream [8]. It has been studied

in various data domains, e.g., conversational telephone speech

[16], broadcast news data [7], [35], and meeting data [37].

Speaker diarization systems usually consist of two core

components, namely speaker segmentation, which chops the

audio stream into homogeneous segments, and speaker clus-

tering, which groups the homogeneous segments into speaker

clusters. Currently, leading speaker diarization systems usually

apply hierarchical agglomerative clustering (HAC) to perform

speaker clustering after segmentation [7], [35], [30]. Here, we

would like to evaluate the performance of the segmentation

approaches discussed above in terms of speaker diarization

error by integrating them with the multi-stage HAC in Fig. 13.

The diarization system that combines SeqDACDec1 and the

multi-stage HAC is denoted as SeqDACDec1 HAC. Similarly,

the diarization systems based on the segmentation meth-

ods SeqDACDec2, DACDec3, WinGrow, DISTBIC pR, and

FixSlid are denoted as SeqDACDec2 HAC, DACDec3 HAC,

WinGrow HAC, DISTBIC pR HAC, and FixSlid HAC, re-

spectively.

In the implementation, following the speech activity detec-

tion (SAD) method in [7], the GMMs for speech, noisy speech,

speech over music, pure music, and silence/noise were trained

beforehand, and the non-speech regions in the audio segments

were pruned by using Viterbi decoding.

A. Experiments on speaker diarization

1) Data set description and performance evaluation: We

used RT03 described in Section V-B1 in the speaker diarization

experiments. The audio recordings from channels ABC, NBC,

and CNN were used as the development set (RT03 Dev);

while the recordings from PRI, VOA, and MNB were used

as the evaluation set (RT03 Eval).

For the performance evaluation, we used the diarization

evaluation tool (md-eval-v21.pl) released by NIST [38] to

evaluate the diarization error rate (DER), which takes into

account three kinds of error, namely missed speech (MiS),

false alarm speech (FaS), and speaker error (SpE). Readers

can refer to [7] for a detailed description of these error types.

2) Parameter setting and system description: We used

RT03 Dev to tune the parameters for each system, and then

evaluated the diarization performance on RT03 Eval. These

parameters include λ in the ∆BIC-based inter-cluster distance

measure in HAC-BIC, the stopping threshold in HAC-SID,

λ in BIC-based segmentation in SeqDACDec1 HAC, Seq-

DACDec2 HAC, DACDec3 HAC, DISTBIC pR HAC and
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Fig. 14. ROC curves for MATBN3hr obtained by (a) DACDec3 and DISTBIC pR with different pRange values, and (b) FixSlid, DACDec3 SP, DISTBIC
and DACDec3.

TABLE II
THE REAL-TIME FACTOR (xRT ) OF DIFFERENT SEGMENTATION APPROACHES EVALUATED ON MATBN3HR IN THE EER CASE AND THE ASSOCIATED

EERS, WHERE M AND F DENOTE THE MISS DETECTION RATE AND THE FALSE ALARM RATE, RESPECTIVELY.

Approach WinGrow SeqDACDec1 SeqDACDec2 DACDec3 DISTBIC pR FixSlid FixSlidHAC pR

xRT 0.38 0.1 0.19 0.023 0.026 0.02 1.81

Speedup over 1 3.8 2 16.52 14.61 19 0.21
WinGrow

EER (in %) M:18.08, M:17.84, M:16.42, M:17.61, M:19.19, M:29.42, M:21.09,
F:18.65 F:17.21 F:15.92 F:17.46 F:18.44 F:29.82 F:22.22

TABLE III
THE REAL-TIME FACTOR (xRT ) OF DIFFERENT SEGMENTATION APPROACHES EVALUATED ON RT03 IN THE EER CASE AND THE ASSOCIATED EERS.

Approach WinGrow SeqDACDec1 SeqDACDec2 DACDec3 DISTBIC pR FixSlid FixSlidHAC pR

xRT 0.53 0.11 0.22 0.022 0.025 0.019 1.87

Speedup over 1 4.82 2.41 24.09 21.2 27.89 0.28
WinGrow

EER (in %) M:17.79, M:17.34, M:16.44, M:18.47, M:22.3, M:34.68, M:23.19,
F:16.59 F:18.32 F:15.95 F:17.24 F:21.08 F:33.12 F:24.88

WinGrow HAC, and α in FixSlid segmentation in FixS-

lid HAC. For each system, the remaining parameters in the

segmentation stage were the same as those yielding the seg-

mentation results in Figs. 15 (c) (for MATBN3hr) and 16 (for

RT03).

3) Post processing by Viterbi re-segmentation: As reported

in [35], one can use Viterbi re-segmentation after speaker

clustering to improve the diarization accuracy; thus, we used

this technique as a post processing step and evaluated how it

effects on each diarization system. For the re-segmentation,

the speech in each cluster was used to train a MAP-adapted

GMM from a gender- and channel-independent UBM first,

which represents one state in the applied ergodic HMM. Then,

Viterbi decoding was applied to perform the re-segmentation

(diarization). The GMM training and re-segmentation were

done iteratively.

4) Experiment results: Tables IV and V show the DERs

of the diarization systems without and with the Vitrebi re-

segmentation based post processing step, respectively. From

these two tables, two observations can be drawn. First, a

more accurate speaker change detection algorithm leads to

better diarization accuracy. For example, FixSlid HAC obtains

a higher DER than the other systems. As shown in Fig. 16, its

segmentation method, FixSlid, achieves a higher segmentation

error. Second, Vitrebi re-segmentation consistently improves

the diarization accuracy of all the systems. The improvement

is more significant on FixSlid HAC, which achieves a higher

DER originally; however, its DER is still higher than those

of the other systems that are based on more accurate speaker

segmentation methods.

VII. CONCLUSION

We have proposed three BIC-based speaker segmenta-

tion approaches that employ divide-and-conquer strategies for

speaker change detection. In contrast to the well-known and

highly accurate window-growing-based approach (WinGrow),

which searches for change points in a bottom-up manner by

using a sequentially growing analysis window, the proposed

DACDec1 and DACDec2 approaches search for change points

in a top-down manner. The proposed DACDec3 approach is
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Fig. 15. The ROC curves for MATBN3hr obtained by (a) SeqDACDec1 with Nmin = 2 seconds and analysis windows of different size (L); (b) SeqDACDec2
with Nmin = 2 seconds and analysis windows of different size (L); and (c) SeqDACDec1 with Nmin = 2 seconds and L = 20 seconds, SeqDACDec2
with Nmin = 2 seconds and L = 20 seconds, DACDec3 with pRange = 0.5 seconds, WinGrow with Nmin = 3 seconds and Nmax = 20 seconds,
DISTBIC pR with pRange = 1 second, and FixSlid with a 2-second sliding window.

TABLE IV
THE DERS (IN %) OF DIFFERENT DIARIZATION SYSTEMS. VITERBI RE-SEGMENTATION IS NOT APPLIED.

Approach RT03 Dev RT03 Eval
MiS FaS SpE DER MiS FaS SpE DER

SeqDACDec1 HAC 0.6 0.4 7.9 8.86 0 4 9.3 13.34
SeqDACDec2 HAC 0.6 0.4 7.7 8.7 0 4 9.4 13.39

DACDec3 HAC 0.6 0.4 7.5 8.46 0 4 9.7 13.69
WinGrow HAC 0.6 0.4 8.3 9.29 0 4 10.1 14.12

DISTBIC pR HAC 0.6 0.4 8.2 9.19 0 4 9.9 13.94
FixSlid HAC 0.6 0.4 10.5 11.52 0 4 13.3 17.57

a recursive variant of another popular approach, DISTBIC.

We compared our approaches to these well-known approaches

analytically by performing computational cost analysis. The

results of experiments conducted on broadcast news data

demonstrate that the proposed approaches are more efficient

and achieve higher segmentation accuracy than the existing

approaches discussed in this paper. In addition, we applied the

segmentation approaches to the speaker diarization task. The

experiment results show that a more accurate segmentation

approach leads to better diarization accuracy.
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TABLE V
THE DERS (IN %) OF DIFFERENT DIARIZATION SYSTEMS. VITERBI RE-SEGMENTATION IS APPLIED AS A POST PROCESSING STEP.

Approach RT03 Dev RT03 Eval
MiS FaS SpE DER MiS FaS SpE DER

SeqDACDec1 HAC 0.6 0.4 7.4 8.37 0 4 9.2 13.15
SeqDACDec2 HAC 0.6 0.4 7.4 8.35 0 4 9.2 13.16

DACDec3 HAC 0.6 0.4 7 7.96 0 4 9.7 13.67
WinGrow HAC 0.6 0.4 7.7 8.65 0 4 9.8 13.79

DISTBIC pR HAC 0.6 0.4 7.5 8.51 0 4 9.1 13.06
FixSlid HAC 0.6 0.4 8.2 9.22 0 4 10.9 14.91
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Fig. 16. The ROC curves for RT03.

APPENDIX

A. Compute T1(k)

T1(k) is expressed as

T1(k) =
1

k

k∑

i=1

(T1(i − 1) + T1(k − i)) + (k + 1)2m2τ

=
2

k

k∑

i=1

T1(i − 1) + (k + 1)2m2τ, (18)

where T1(0) = m2τ . To solve this recursive equation, we can

apply the technique used for analyzing the time cost of the

Quicksort algorithm [39]. First, we multiply both sides of Eq.

(18) by k as follows:

kT1(k) = 2

k∑

i=1

T1(i − 1) + k(k + 1)2m2τ. (19)

Replacing k in Eq. (19) with k − 1, we obtain

(k − 1)T1(k − 1) = 2

k−1∑

i=1

T1(i − 1) + (k − 1)k2m2τ. (20)

Subtracting Eq. (20) from Eq. (19), we obtain

kT1(k)−(k−1)T1(k−1) = 2T1(k−1)+(3k2+k)m2τ. (21)

Rearranging the terms in Eq. (21) yields

T1(k)

k + 1
=

T1(k − 1)

k
+

(3k + 1)m2τ

(k + 1)
. (22)

Let ak = T1(k)/(k + 1), then Eq. (22) can be rewritten as

ak = ak−1 + (3 −
2

k + 1
)m2τ, (23)

where a0 = m2τ . Recursively substituting the aks′ in Eq.

(23), we obtain

ak = a0 + (3k − (
2

2
+

2

3
+ · · · +

2

k + 1
))m2τ

= (3k + 3 − 2

k+1∑

i=1

1

i
)m2τ. (24)

Because
∑k+1

i=1
1
i≈ln(k + 1) [39], we have

ak ≈ (3k + 3 − 2 ln(k + 1))m2τ. (25)

Since ak = T1(k)/(k + 1), T1(k) can be expressed as

T1(k) = ak(k + 1)

≈ (3(k + 1)2 − 2(k + 1) ln(k + 1))m2τ. (26)

B. Compute T ′(m)

T ′(m) is expressed as

T ′(m) =
1

m

m∑

i=1

(T ′(i− 1) + T ′(m− i)) + m2τ + mτ, (27)

where T ′(0) = 0. Similar to the manipulation of Eq. (18) in

Appendix A, by setting am = T ′(m)/(m+1), we have a0 = 0
and

am = am−1 +
(3m − 1)τ

m + 1

= am−1 + (3 −
4

m + 1
)τ

= a0 + (3m − (
4

2
+

4

3
+ · · · +

4

m + 1
))τ

≈ (3m + 4 − 4 ln(m + 1))τ. (28)

Since am = T ′(m)/(m + 1), we have

T ′(m)=am(m + 1)

≈(3m + 4 − 4 ln(m + 1))(m + 1)τ. (29)
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C. Compute T2(k)

T2(k) is expressed as

T2(k) =
1

k

k∑

i=1

(T2(i− 1)+T2(k− i))+ (k +1)2m2τ +2mτ,

(30)

where T2(0) ≤ (3m + 4 − 4 ln(m + 1))(m + 1)τ . Similar

to the manipulation of Eq. (18) in Appendix A, by setting

ak = T2(k)/(k + 1), we have

ak = ak−1 +
(3k2 + k)m2τ + 2mτ

k(k + 1)
,

= ak−1 + (3 −
2

k + 1
)m2τ + 2(

1

k
−

1

k + 1
)mτ,

≈ a0 + (3k + 2 − 2 ln(k + 1))m2τ

+2(ln k − ln(k + 1) + 1)mτ. (31)

Substituting a0 = T2(0) into Eq. (31), we obtain

ak ≤ (3k + 5 − 2 ln(k + 1))m2τ + (9 + 2 ln k − 2 ln(k + 1)

−4 ln(m + 1))mτ + (4 − 4 ln(m + 1))τ. (32)

Since ak = T2(k)/(k + 1), we have

T2(k) ≤ (3k + 5 − 2 ln(k + 1))(k + 1)m2τ

+(9 + 2 ln k − 2 ln(k + 1) − 4 ln(m + 1))(k + 1)mτ

+(4 − 4 ln(m + 1))(k + 1)τ. (33)
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