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BICAV: A Block-Iterative Parallel Algorithm for
Sparse Systems With Pixel-Related Weighting

Yair Censor*, Dan Gordon, and Rachel Gordon

Abstract—Component averaging (CAV) was recently intro- In practice, the system (1.1) is often inconsistent, and one usu-
duced by Censor, Gordon, and Gordon as a new iterative parallel ally seeks a point* € R™ which minimizes some predeter-
technigue suitable for large and sparse unstructured systems of mined optimization criterion. Even then, the problem is fre-

linear equations. Based on earlier work of Byrne and Censor, v ill d and th b th timal
it uses diagonal weighting matrices, with pixel-related weights quently Iil-posed an ere may be more than one opumal So-

determined by the sparsity of the system matrix. CAV is inherently lution. The standard approach to dealing with that problem is
parallel (similar to the very slowly converging Cimmino method) via regularization, i.e., by aiming at an optimal solution with a
but its practical convergence on problems of image reconstruction minimal Euclidean norm.

from projections is similar to that of the algebraic reconstruction Equation (1.1) may also be viewed as a special case of the

technique (ART). Parallel techniques are becoming more impor- - L . L B
tant for practical image reconstruction since they are relevant not convex feasibility problenwhich is to find a point.* € € =

only for supercomputers but also for the increasingly prevalent Mz, Ci, whereC is the intersection of finitely many closed
multiprocessor workstations. This paper reports on experimental convex set&; C R", i =1, 2, ..., m, in the Euclidean space.
results with a block-iterative version of component averaging |n the inconsistent case, whéhis empty, some iterative pro-
(BICAV). When BICAV is optimized for block size and relaxation jection algorithms (mostly of the simultaneous type) converge

parameters, its very first iterates are far superior to those of CAV, s . S . S .
and more or less on a par with ART. Similar to CAV, BICAV is to a pointz* which minimizes a certaiproximity function In

also inherently parallel. The fast convergence is demonstrated image recovery the task of estimating an image from the mea-
on problems of image reconstruction from projections, using the surements of one or more signals, physically related to it, can
SNARK93 image reconstruction software package. Detailed plots often be modeled by a (not necessarily linear) convex feasibility
of various measures of convergence, and reconstructed images ar€yroblem, see, e.g., Combettes [20] or Stark and Yang [29]. Al-
presented. gorithmic schemes for this problem are, in general, eiteer
Index Terms—Block-iterative, component averaging, image re- quentialor simultaneousr block-iterative see, e.g., Censor and
construction, parallel processing, pixel-related weighting, sparse Zenios [18, Section 1.3] for a classification of projection algo-
systems. rithms into such classes, and the review paper of Bauschke and
Borwein [4] for a variety of specific algorithms of these types.
I. INTRODUCTION A typical example of a sequential method for solving (1.1) is
ROBLEMS of image reconstruction from projections, aftetrr|e row-action algebrai.c reconstructiqn technique (ART)—see,
suitable discretization, can be represented by a systemia " an_sor_and .Zemos [18, Algonth_m 5'4'.3] and I—_Ierman
linear equations 11. Originating with Kaczmarz [24], this algorithm cyclically
projects the current iterate onto the hyperplanes represented
by the rows of the system (1.1). In the inconsistent case, it
converges cyclically (Tanabe [30]), and for a fixed positive re-
laxation parameter, the limits of the cycles lie within a bounded
distance from the geometric least-squares solution—see Censor
et al. [15]. This distance approaches zero as the relaxation
parameter tends to zero, so ART with small relaxation param-
eters can also be used to approach the geometric least squares
solution arbitrarily closely. In practice, ART performs very
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Az =b (1.1)

A m X n system matrix;

m  number of equations;

n size of the (unknown) image vector
b vector (of sizem) of readings.

1=1,2,...,m. (1.2)
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called the orthogonal projection. The next iterate! is then {0 relaxation parameters;
generated from the intermediate points by Py(a%) (orthogonal) projection ofz* onto the
- _y clos_ed convex saf;.
a* T = R({a"H L) (1.3) Eachw® = (wF) € R™ is aweight vectowhose components
] o _are the weights used at tlih iterative step and they are non-
whereR is another algorithmic operator, for example, the tak'nﬁegative and sum up to one, for edctBIP allows the weights

m

H : k41,0 i . . . .
of a convex combination of the forpn,;_, w;z" %, withw; > {4 vary from one iteration to another and, by allowing some of

. m
0,i=1,2,...,m,and} ;7 w; = 1. the weights to take zero values, lets the iterations proceed along

A significant property of simultaneous schemes is that thgyocks which vary with iteration index in both size and compo-
are inherently parallel since the projections onto the&gfghe  gjtion.

hyperplanes in the linear case) are independent of each othgf\ye choose in (14" = ¢i® forallk > 0, whereet € R”

and can, therefore, be done in parallel. A prototype of the §&thetth standard basis vector (having one irettscoordinate
multaneous paradigm is the Cimmino (CIM) algorithm [19], inynq zeros elsewhere), afié(k)}i>o is acontrol sequencef
which the current iterate is projected onto all the hyperplangge algorithm all of whose indexes ate< i(k) < m, then

and the next iterate is the weighted average of all the projgfa BIp scheme (1.4) becomes the well-known purely sequen-
tions (see, also, Auslender [3] for the extension to convex setg) projections onto convex sets (POCS) method. At the other
Itis well-known that the initial convergence of this algorithm igyyireme. ifw* £0,forallk >0andalli =1, 2, ..., m, then

so slow as to render it impractical, even if it is executed in pagip pecomes a fully simultaneous algorithm in which all sets
allel—see, for example, our computational results in [17]. {C;} are being acted upon in every iterative step.

In our recent paper [17], we developed a fully simultaneous ajthough the weights in BIP depend on the iteration index,
projection algorithm calledcomponent averagingCAV),  {hey are notomponent-related.e., they cannot vary with the
which uses diagonal weighting matrices with component-resmponent indey. To the best of our knowledge, earlier pro-
lated weights. We also showed how to choose a specifition algorithms for the convex feasibility problem, except
weighting strategy, based on tBparsityof the system matrix, for the recent method of Byrne and Censor [12], [13] did not
which strongly accelerates the initial convergence of th@ow the weights to be component-related (igrelated or
algorithm when applied to image reconstruction problemsiye|-related). Both CAV [17] and the new BICAV algorithms
Being simultaneous, CAV is inherently parallel (see Butnariyse component-related weights for solving sparse systems of
et al. [9]) but its initial convergence is far superior to that Ofinear equations. More specific toimage reconstruction, Mueller
the original simultaneous CIM method. Initial iterates of AR al.[26] have recently incorporated pixel-dependent weighting

were better than CAV, but eventually CAV produced slightlyyto ART reconstructions from enhanced modeling considera-
better results. tions.

In this paper, we present a block-iterative version of CAV' The paper is laid out as follows. In Section II, we briefly re-
(which we call BICAV) and report on experiments with this alyje\y the motivation and construction of the fully simultaneous
gorithm. We show that when BICAV is optimized with respecg ay algorithm presented in [17]. In Section IlI, we present
to block size and relaxation parameters, its initial convergenggc AV, the block-iterative derivation of CAV, which is the ob-
is significantly superior to that of CAV, and it is somewhat on fect of the present study. Section V contains a report of our ex-
par with ART. BICAV retains the quality of inherent parallelisn’berimema| computational work with BICAV and comparisons

of CAV, although it naturally requires somewhat more commug;iih other relevant iterative reconstruction methods.
nications between processors in order to broadcast the interme-

diate results of the block calculations to all the processors.
While a formal convergence analysis of the fully simulta-

neous CAV method is available (in [17]), a mathematical val- Consider the case of linear equations in which the Sgtare

idation of the new BICAV algorithm has only recently beefyperplanes

achieved and will be published elsewhere (see comments in Sec-

II. MOTIVATION AND DEFINITIONS

A n 7
tion 111). Thus, the encouraging experimental results, presented H; ={z e R"[{a", z) = b;} (2.1)
here, will be complemented by a mathematical study of BICAV. . . ‘
A good starting point for our presentation is the general protff ¢ = 1, 2, ..., m, where(, -} is the inner product and’ =

typical block-iterative projections (BIP) method, developed bi;)7=1 € R™, a’ # 0, andb; € R are given vectors and given
Aharoni and Censor [1], which uses the following iterative foreal numbers, respectively. Then, for ang R™, the orthogonal

mula: projection ofz onto H; is
=k (D bR, - b Py =z B (2.2)
T = A 2w (R e 'l
i=1,2....n (1.4) where|| - ||2 is the Euclidean norm.
In Cimmino’s algorithm for the convex feasibility problem
where (Auslender [3]), with relaxation parameters and with equal
z¥ = (z¥) € R™ current iterate; weights, the next iterate*+! is the average of the projections

P next iterate; of z* on the closed and convex sets, as follows.
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Algorithm 2.1 (CIM): whereG—! is the inverse of7. For G = I, the unit matrix,
Initialization: z° € R™ is arbitrary. (2.10) yields the orthogonal projection sbnto H, as given by
lterative StepGivenz* compute (2.2); see, e.g., Ben-Israel and Greville [5, Section 2.6].

In order to consider oblique projections orffiowith respect
TR K K to a diagonal matrixs = diag(g1, g2, - .., g») for which some
e =gt m z_: (Fi(z") = %) (2:3) diagonal elements might be( zero, we intro)duced the following
= definition.
where{ A }1>0 are relaxation parameters. Definition 2.1 [17]: Let G = diag(g1, g2, ..., gn) With
Expanding the iterative step (2.3) according to (2.2) produceg, > 0, forall j = 1, 2, ..., n, let H = {z € R"|{a, ) = b}
for every componenf = 1, 2, ..., n, be a hyperplane with = (a,;) € R* andb € R, and assume
m P thatg; = 0 if and only ifa; = 0. Thegeneralized oblique pro-
2 = F 4 Ak Z M at (2.4) Jectionofa pointz € R™ onto H with respect ta is defined,
! oom o~ efll forall j = 1,2, ..., n, by

which is a special case of
b—{a, z) aj

‘ ‘ b= {d', ah) 2+ ey, (g £ 0
2 =2k 4\, Z w; # a’ (2.5) R Zit z": a? 9 9 7
=t ’ (P (2); = s g, (211)
where the fixed weight$w; }72; must be positive for all and 9170
> w; = 1. In matrix notation, (2.4) can be written as Zjs if g; = 0.
a* = a* + N ATD(b - Ax) (2.6)  This P§(z) reduces to (2.10) ifforalf = 1,2, ..., n, g;

is nonzero. It is not difficult to verify that thi$*5 (=) belongs

_ i m T % in ite 4
whereb = (b;) € R™, A™ (the transpose o) hasa” in its ith to H, that it solves (2.9) if we just replade: — z||¢ there by

column, and (x— =z, G(z—=)), and that it is uniquely defined, although other
1. 1 1 1 solutions of (2.9) may exist due to the possibly zero-valyed
D= gdlag a2’ Ta22” " Jam|2 ) (2.7) Consider now a se{G;}™, of real diagonal x n ma-
) S _ tricesG,; = diag(gi1, gi2, - .-, gin) With g;; > Oforall ¢ =
Our CAV algorithm [17] is similar in form to (2.6), butwitha 1 o s andj = 1,2, ..., n, such thaty 7", G; = 1.
totally different diagonal matr). . Referring to the sparsity pattern af we made the following
Consider now the system (2.1). When it is sparse, onlygfinition.
relatively small number of the elemenis, a7, ..., a]* are  pefinition 2.2 [17]: A family (G}, of real diagonah x

by the relatively largen. This observation led us to consider ™ G; = I will be calledsparsity pattgrn oriented (SPO,

only on thenonzercelements in the s€fa}, a7, ..., ai*}. For | o m, gi; = 0if and only if ai = 0
. ) Tt ? k¥ 7 .
eachj =1, 2, ..., n, we denoted by, the number of nonzero  The CAv algorithm that we presented in [17] combined three
elements of columgi, and we wanted to replace (2.4) by features.
_— e Al b — (2R 1) Each orthogpnal projection o_nfdii.in(2:5) was replaced
T =zt > T (2.8) by a generalized oblique projection with respectto
7=l 2 2) The scalar weight$w; } in (2.5) were replaced by the
We then combined this idea of using the with the concepts diagonal weighting matricef; }. _
developed by Byrne and Censor [12], [13], to obtain our CAV al- 3) The actual weights were set inversely proportional to the
gorithm, which usesblique projectionscommonly defined as number of nonzero elements in each column, as motivated
follows. Let H 2 {z € R"|{a, ) = b}, with a = (a;) € R", by the discussion preceding (2.8).

b € Randa # 0, be a hyperplane. L&t be ann x n symmetric The iterative step resulting from the first two features has the

positive definite matrix and lefz||2 £ (z, Gz) be the asso- form
ciatedellipsoidal norm see, e.g., Bertsekas and Tsitsiklis [6,

Proposition A.28]. Given a point € R™, the oblique projection m
of z onto H with respect ta7 is the unique poinP’$(z) € H =gk 4 DTGP (k) — o) (2.12)
for which =1 7
Pi(z) = argmin{||z — z|lc |z € H}. (2.9)  or, equivalently, substituting from (2.11) for eagtj;’, we ob-
Solving this minimizati blem leads t tained
olving this minimization problem leads to Algorithm 2.2 [Diagonal Weighting (DWE) for Linear Equa-
_ tions]:
PS(z) = 24 L% 2 (2.10) ]

lall% . Initialization: z° € R™ is arbitrary.
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lterative StepGivenz*, computex*** by using, forj = the matrix formed by taking all the rows @fwhose indexes be-
1,2,...,n long to the block of indexe#, i.e.,
a
‘ 4 N T LN L S i
k ) ) 7 / a
=1 i :
9:570 Z i it
=1 U a'm
guF#0

m . . . . The iterative step of our proposed BICAV algorithm uses, for
where {G;}iZ, IS a given fa_m|ly of F"'agoﬁ"’?'.spo (with every block index = 1, 2, ..., M, generalized oblique pro-
respect tad) weighting matrices as in Definition 2.2, and. . : NP : .

. jections with respect to a familyG:}, of diagonal matrices
{Ax tr>0 are relaxation parameters. e

which are SPO with respect t#,. The same family is also used

Finally, we specified how we construct the diagonal matricgg perform the diagonal weighting. The resulting iterative step
{G;}7, in order to utilize thes;s appearing in (2.8). Define  has the form

‘ (k)
) ‘ g =2k A, Z G® <P}CI;: (z*) — a:k> (3.2)
=, ifdi#£0 €Buw
gy =9 s (2.14)
0, if aj. =0. where{t(k)}1>0 is acontrol sequencaccording to which the

t(k)th block is chosen by the algorithm to be acted upon at the
With this particular SPO family o€7;s we obtained our CAV kth iteration. Thus, we must hate< ¢(k) < M, forall & > 0.

algorithm. The real numberg$\; }x>0 are user-choserelaxation param-
. . . t(k)
Algorithm 2.3 Component Averaging (CAV): eters Substituting from (2.11) for eacRy;’ , we obtain the
Initialization: z° € R™ is arbitrary. following.
Ilterative StepGivenz*, computer®+* by using, forj = Algorithm 3.1 [Block-Iterative Diagonal Weighting (BIDWE)
1,2, ....n for Linear Equations]:

Initialization: 20 € R™ is arbitrary.
lterative StepGivenz*, computer*** by using, forj =

‘ ‘ N R S 1,2, ....n
A=k > b o) -al (2.15)
=t Z&(%)Q b; — {a*, z%)
k+1 _ _k ? ’ T
=1 & =Ty + A Z ni(z)Q c Gy (33)
iCBiiy Z Y
where{ )\, } x>0 are relaxation parameters afig}}7_, are g0 = gk
as defined earlier. a0
We showed in [17] that Algorithm 2.2, with;, = 1 for all e )
k > 0, generates sequences®} which always converge, re- ~ Where, for eacht = 1,2, ..., M, {G{}i, is a given

family of diagonal SPO (with respect t#) weighting ma-
trices, as in Definition 2.2, the control sequence is cyclic,
e, t(k) = kmod M + 1, forall k > 0, {\x}x>0 are
relaxation parameters, agf = diag(g?;, g, -- -, gL,)-
Finally, in order to achieve the acceleration, the diagonal ma-
trices {G%}™, are constructed as in the original CAV algo-
lll. THE Block-lterative Component Averaging (BICAV)  rithm [17], but with respect to each,. Let s be the number

gardless of the initial point® and independently from the con-
sistency or inconsistency of the underlying systdm = b.
Moreover, it always converges to a minimizer of a certain prox-
imity function.

ALGORITHM of nonzero elementsj # 0 in the jth column of A, and define
We now develop our block-iterative derivation of the CAV 1
algorithm. The basic idea is to break up the systém = b N R if a; # 0
into “blocks” of equations and treat each block according to 9ij = J (3.4)

=}

the CAV method, passing cyclically over all the blocks. This , ifal=0.

calls for the slight notational complication of having to deal _

with block indexes. Throughout the following/ will be the Itis easy toverify thatforeach=1, 2, ..., M,¥"" G} =1
number of blocks. Fot = 1,2, ..., M, let the block of in- holds for these matrices. With these particular SPO families of
dexesB; C {1, 2, ..., m}, be an ordered subset of the forn{7;s we obtain our block-iterative algorithm:

By = {it, i, ..., i:n(t)}’ wherem(t) is the number of ele-  Algorithm 3.2 [Block-Iterative Component Averaging
ments inB;, such that every element ¢f, 2, ..., m} appears (BICAV)[:

inatleastoneofthese.Fort =1, 2, ..., M, letA, denote Initialization: z° € R™ is arbitrary.
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Iterative StepGivenz*, computex*+* by using, forj =

1,2,...,n
b, — (ai .’L’k> : discretized image
k41 _ kK v ’ .
gjj = {]jj —+ )\k Z " CLZ» (35) domain
1CBy(r) Zsl( )(a;)Q source
1123
where {\; }1>o are relaxation parametergst}y , are <

as defined above, and the control sequence is cyclic, i.
t(k) = kmod M + 1, forall & > 0.
For the caseV/ = 1 andB; = {1, 2, ..., m}, Algorithm reu i’th ray
3.2 becomes fully simultaneous, i.e., it is the CAV algorithm ¢ > _
[17]. ForM = m andB, = {t},t = 1, 2, ..., m, BICAV \ o al
simply becomes ART—see, e.g., Herman [21]). L L
After the first version of this paper was ready, progress h % j'th pixel
been made in the mathematical study of the convergence
BICAV by Byrne [11], [10] and by Censor and Elfving [16].
These results, which will be published elsewhere, validate t detector
convergence with relaxation parameters of CAV in the incol
sistent case, and of BICAV in the consistent case. In [16], \
algorithmic framework of BICAV is generalized to handle sys-
tems of linear inequalities and to include as a special case #ig 1. The fully discretized model for transmission tomography image
well-known image reconstruction algorithm called SART, inteconstruction.
vented by Andersen and Kak [2]. The following result describes
the behavior of BICAV on a system of linear equations in throach see, e.g., Censor [14], is formulated as follows. A Carte-
consistent case. sian grid of square picture-elements, calpecels is introduced

Theorem 3.1 (BICAV for Linear Equalities [16, Theorenito the region of interest so that it covers the whole picture that
7.1]): Let0 < e < A\ < 2—¢, forallk > 0, wheree is an hasto be reconstructed. The pixels are numbered in some agreed
arbitrarily small but fixed constant, and assume consistency®anner, say from one (top left corner pixel)tdbottom right
the systemdz = b. Then any sequende:* },>o, generated by corner pixel); see Fig. 1. The X-ray attenuation function is as-
Algorithm 3.2 (BICAV), converges to a solution of the systerumed to take a constant uniform valugethroughout thejth
Ar = b. pixel, forj = 1, 2, ..., n. Sources of X-rays and detectors

The next theorem shows that any sequehe);~o, gener- are assumed to be pomts and the rays between them—Iines.
ated by the fully simultaneous Algorithm 2.3 (CAV), convergel is further assumed that the length of intersection of die
to a weighted least squares solution of the system of equatiéA With thejth pixel, denoted by, foralli = 1, 2, ..., m,
Az = b, regardless of its consistency, for relaxation parametets= 1, 2, ..., n, represents the contribution of tbfh plxel to
in the intervalfe, 2 — ¢]. Only the case of unity relaxation, i.e.,the total attenuation along thth ray.The physical measurement
A =1, forall k > 0, was shown in [17], where CAV was first Of the total attenuation along thih ray, denoted by;, repre-
proposed:; the proof in [17] was adapted from [12] and [13, Agents the line integral of the unknown attenuation function along
gorithm 4.2]. the path of the ray. Therefore, in this fully discretized model,

Theorem (CAV for Linear Equalities in the Inconsistent Cagach line integral is approximated by a finite sum and the model
[16, Theorem 7.3]):Let0 < e < A\, < 2 — ¢, forallk > 0, is described by a system of linear equations
wheree is an arbitrarily small but fixed constant, Then any se-

quence{z*}1>0, generated by Algorithm 2.3 (CAV), for linear Z wi = i=1,2 ..., m. (4.6)
equations, converges to a weighted least-squares solution with j=1

weight matrixMc.ay = diag{1/||‘||%]i =1, 2, ..., m} and .

with S = diag{s;| 5 = 1, 2, ..., n}, wheres; is the number Here,b = (b;) € R™ is themeasurements vectar = (z;) €

R™ is theimage vectoiand them x n matrix A = (a}) is the
projection matrix

All our reconstruction algorithms were implemented within
SNARK®93, a software package for testing and evaluating algo-
rithms for image reconstruction, see Broweieal. [8]. Three

In the medical application of transmission computerized talifferent measures were used for comparisalistance rela-
mography, a planar cross section of the body is considered dive error, andstandard deviationcalculated by SNARK93, and
the tissue’s attenuation of X-rays everywhere in the cross selefined in [8, Section 5.10] as follows.
tion has to be reconstructed. This unknown function of two vari- Let x§ andz; denote the density assigned to tfth pixel
ables has real nonnegative values and is calledviageor pic-  of the reconstruction aftet iterations, and the density of the
ture. The fundamental model in tHmite series-expansion ap- jth pixel in the phantom, respectively. L&tdenote the set of

of nonzero elements in thgh column of A.

IV. PROBLEM DESCRIPTION CONVERGENCEMEASURES AND
TeST CASES
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TABLE | o5
THE FOUR DIFFERENT TEST CASES
Equations | Variables | Image Size | Projections | Rays 04
Case 1 13,137 13,225 115 x 115 151 87 ’
Case 2 26,425 13,225 115 x 115 151 175
Case 3| 126,655 119,025 | 345 x 345 365 347
Case 4 | 232,275 119,025 | 345 x 345 475 489 03

Relative Error

indexes; of pixels which are in the region of interest and le 0-2: ‘
« be the number of elements #. The averagevalue of the

reconstructed image” is given by

Al k
pk:a Z%’ (4.7)

Jjes o L— [T SRR RS SR,

0.1

. - . iteration no.
and thevarianceof z* is given by
Fig. 2. Relative error measures for BICAV (ten blocks) with various relaxation

al k 2 parameters (Case 2).
Uk = ze;q(azj — pr)° (4.8)
J

In all our experiments, the relaxation parameter remained
Thestandard deviatiomf the reconstructed image is then constant throughout the iterations, i.&, = A for all k > 0. In
A [17] we already determined that for such problems, the optimal
o = Uk (4.9) relaxation parameter for CAV i = 2.0. We also used a small
o . - . ~ relaxation parameter = 0.1 for ART, since it was found to pro-
Similarly, we define the average valpgvariancev, and stan-  ,ce good results without impeding the convergence. Although
dard deviatior for the phantom, in terms of the phantom valuegy| the experiments were carried out on the four test cases, we
Ly _ L » present convergence plots only for Cases 1-3 since Case 4 was
Thedistancebetween:” and the phantora is very similar to the others. Furthermore, the results for the dis-
tance measure and standard deviation were very similar to the
relative error, so they are omitted. For the reconstructed images,

we present only Case 2.

Q|

(4.10)
V. EXPERIMENTAL RESULTS

In this section, we outline the general setting of the exper-
iments and present their results. Section V-A explains how
optimal relaxation parameters were chosen for BICAV and
1 _ compares the relative performance of five different algorithms:

p Z |$§ — ], ifr>0 ART, CAV, and BICAV, together with the CIM algorithm
o 2 jes (4.11) (Algorithm 2.1) and the BIP method [see (1.4)]. Section V-B
k . . . . A
Z |“7§ — i), if 7 <0. contains our maln.set of experlmeqts, involving ART, CAV
ics and BICAV. In Section V-C, we examine the behavior of ART,
CAV, and BICAV when noise is introduced into the equations.

The performance of the different algorithms is demonstrat&de also experimented with (2.8) and its block version, and
on the reconstruction of the Herman head phantom [21, Selisplay images obtained after very few (five) iterations.
tion 4.3], which is specified by a set of ellipses, with a specific All the methods were implemented (sequentially) on a Dig-
attenuation value attached to each elliptical region. The valuts Alpha workstation running at 433 MHz. The different al-
ofb;, i = 1, ..., m, are calculated by computing the line in-gorithms are compared on the basis of the measures of conver-
tegrals through the elliptical regions (without reference to thlgence and on image quality. We limit our work here only to the
discretization). Thus, the system (4.6) is basically inconsisteahove-mentionedrojection algorithmsleaving out many other
because the left-hand side is only an approximation to the @erative image reconstruction algorithms, such as the expecta-
tual integrals. This matches the real-life situation wherehtbe tion maximization (EM) algorithm, see, e.g., Lange and Karson
are actual X-ray readings through an object but the region of if25] or Hudson and Larkin [23] for the block-iterative version
terest is discretized as above. of the EM algorithm, called: the “ordered subsets EM” (OSEM)

We examined four test cases characterized by two differeaigorithm.
image resolutions and varying numbers of projections and raysAll our experiments were initiated with® = 0. Note that
per projection. The four cases thus had differing numbers GRV is the same as BICAV with one block and ART is iden-
variables and equations, as shown in Table I. tical to BICAV if every block contains exactly one equation.

With + 2 > jcs |[Z;] therelative errorof z* is defined by

L
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Fig. 3. Relative error comparisons of CIM, BIP, CAV, BICAV, and ART (Case
2).

0.4

We henceforth use the teiiterationto refer to one whole sweep
through all equations of the system, so the time for a single itel
tion is the same for all algorithms. Thus, the number of iteratiol
is a faithful timing basis for comparing the different algorithms
In the implementation of BICAV, we initially compute, for
everyt = 1,2,..., M, all the valuess}, j = 1,2, ..., n.
These are used to compute the denominators of (3.5), which
stored and used in subsequent iterations. We also experimetr
with different values ofA/—the number of blocks. For each
value of M, we experimented with various values of the relax
ation paramete in order to determine an optimal relaxatior
parameter for that number of blocks—see Section V-A.

0.3

relative error
o
o

A. Preliminary Experiments

We first show a typical set of experiments with BICAV, ta
demonstrate its behavior with different relaxation paramete
and to show how we chose their optimal values. We prese
in detail the example of BICAV with ten blocks, executed ol
Case 2. The relative errors are shown in Fig. 2. The relaxati
parameters varied from 0.25 to 2.0, and the figures demonstr _
the typical behavior of BICAV: The optimal results are obtaine g
for some relaxation parameter strictly less than 2.0 (which 302
optimal for CAV). Starting from the low relaxation parameter'%
each successive value dproduces visibly better performance ®
until the optimal value, and larger values bfproduce worse
results. Even so, we can see that there is awide range of value
A which achieve good results: BICAV with ten blocks achieve
good convergence measures for all values of 0.4 within 25
iterations.

0.1

01

04 r
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Case 1

—&— ART 1=0.1
—@— CAV 2=2.0
—A—— BICAV 2=0.6 25 blocks
10 blocks

5 blocks

—p—— BICAV 2=0.8
—w—— BICAV X=16

o 1
10 20 30 40
iteration no.

P IR |
50 60

Case 2

—8&— ART ’=0.1
—&— CAV =20

—A—— BICAV 2=0.6 25 blocks
—p—— BICAV i=1.4 10 blocks
—w— BICAV 3=1.8 5 blocks

oo o oy oy sy by
10 20 30 20 50 80
iteration no.

Case 3

—— ART =0.1
—@— CAV =20
—A—— BICAV 3=0.6 25 blocks
10 blocks
5 blocks

—p»—— BICAV 2=1.0
— v

BICAV i=1.6

0

Note that the optimal relaxation parameter depends on 1
number of blocksV (of BICAV): When M = 1, BICAV coin-
cides with CAV, whose optimal relaxation parameter is 2.0. Ad9- 4
M increases, the optimal relaxation parameter decreases. When

10 20 30 40 50 60
iteration no.

Relative error for Cases 1-3.

M equals the number of equations, BICAV is identical to ARTerently parallel.

and requires a relaxation parameter of 0.1.

The next set of experiments is intended to demonstrate the
relative performance of BICAV with respect to the following
algorithms, of which only the first three (like BICAV) are in-

» The Cimmino algorithm (CIM)—Algorithm 2.1. We used
relaxation parameter 2.0, which was determined experi-
mentally to be the best of all values for which CIM prov-
ably converges.
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Phantom

[ter, ART CAV BICAV (10 blocks)

10100
101010
101010

Fig. 5. Phantom and reconstructed images for Case 2 (resolutiosx 111%).
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» The Block-Iterative Projection algorithm (BIP)—(1.4) 9%
with ten blocks and?; as in (2.2). Here, we also used the I
optimal relaxation parameter of 2.0.

« CAV, with its known optimal relaxation parameter of 2.0 [ o
[17] | ——&—— BICAV 1=0.4 10 blocks

» ART with a relaxation parameter of 0.1—known experi
mentally to achieve excellent results.

We ran BICAV with ten blocks and optimal relaxation param :
eter of 1.4. The results of these comparisons are presentel
Fig. 3, which shows the relative errors. These plots demonstr
that there is a very clear and distinct difference betweenthei o5}
tial convergence behavior of the algorithms. ART and BICA
are almost identical in their fast initial convergence. CAV i
slower, but it achieves the same measures of convergence wi
about 25 iterations. Between CIM and BIP, BIP is clearly muc 02 ===,
better, but neither of them comes close to the performance of uie fteration no.
other three within the number of iterations that were examinegly. 6. Noisy image. Relative error measures for CAV, BICAV, and ART (Case

2).

Case 2 with noise

0.4

Relative Error

B. Main Experiments

Our main experiments demonstrated here were performed(?/é\l'/hefirstsetof experiments comparesthe performance of ART,
ART, CAV, and BICAV. BICAV was executed with three dif- and BICAV onthe data of Case 2, butwith noise added tothe

ferent block sizes, and for each block size we used the optinﬁe?dmgs’ €., tothe rlght—hand-5|de of (1.'1)' The noise consisted

: of multiplyingeaclb;, j =1, 2, ..., m, witharandom number
relaxation parameters. Convergence plots for test Cases 1_?’fraorren a Gaussiandistribution with an average of 1.0 and a standard
show in Fig. 4. BICAV is shown with five, ten, and 30 blocks. 9 '

On the whole, the results indicate that BICAV behaves som%%\gzg(_) nsgfc())lj(r)i;(N(e?:ien:ﬁi V\/‘\’/ﬁﬁ rneo?sxggir]lfn;resngggn\inf: zlg]c'z ted
what similarly to ART. Occasionally, BICAV is better, and occa- ' b P

. L » o practice in emission CT. The relative error results are shown in
sionallyitis sllghtlyworse..Asto CAV, itis alwayS|n|t|aIIywor§e Fig. 6. ART and BICAV now behave differently: Whereas ART
than ART and BICAV, but in most cases, after several iterations . : ; . : .
ART and BICAV begin to deteriorate while CAV continues tc)imréachesns bestoutputinfouriterations, BICAVrequireseight, but

9 . . . -~ itsresultsare slightly better. Furtheriterations of ART and BICAV

prove, eventually overtakingthem. Aninteresting observation, re- : ;
ucew ults, bu inu i Vi u

trr(])d ceworseresults, but CAV continuestoimprove forabout 30

quiring further research, can be noted by comparing Case 1 V\Ee][ations and then very gradually deteriorates. Note that with the

. i I
= blocks and Case 2 with ten blocks: In both cases the numbet %dition of noise, the optimal relaxation parameter for BICAV is

equations per block is approximately 2600, and in both cases e
. X ) - - Smaller than for the regular case.
optimal relaxation parameter is very similar (close to 1.5). Asim-

. L . For the image comparisons, we compared the three methods
ilar situation occurs with Cases 3 and 4 (Case 4 not shown). Wtefour eight 35 and %O iterations. For gach methad, we picked
conjecture thatfor a fixed number of variables, the main factoraﬁ{ ' o : '

. . . : . e bestimage—this is shown in Fig. 7. Note that the number of
fectingthe optimal relaxation parameterin BICAVisthe abSOIU|faerations for the bestimage of each method matches the number

number of equations in a block. . : ; . S :
) . of iterations at which the relative error is minimal (Fig. 6). We
Fig. 5 shows the phantom and reconstructed images for C%%% from this that CAV at its best (30 iterations) is almost iden-
2 for the three methods, after ten, 20, and 60 iterations. BICAV.is

shown for the choice of ten blocks, with its optimal relaxatiotlcal to BICAV at its best (eight iterations), and both are dis-

parameter. These images bear out the fact that on the wh leéctlvely better than the best image obtained with ART (four

o : . ?ter’ations). We conclude from this that in the presence of noise
BICAV behaves very similarly to ART, while CAV produces IM-~ \/ and BICAV are preferable to ART, provided more compu-

ages that are initially “fuzzy,” but after some 60 iterations, the

) ) tion time is available.
Images are on a par with those produced by ART and BICARz}AII three methods continued to deteriorate with further

deteriorate gradually after ten iterations. Cases 1, 3, and 4 |Ye_rations, with ART being the worst and CAV the best. After
eteriorate g y ' T o0 iterations, the following relative errors were obtained:
hibit similarly behavior.

: : o . ART—1.0177, BICAV—0.642, and CAV—0.4391. However,
Inorderto providethe bestV|suaI|zat|onoftherecons:tructlons]1 three methods continued to improve thesidual of the

each image is displayed with its pixel values linearly mapped o

levelsb d255. Thi hod sh if solution, where the residual of theh iteration is defined as
grey levels between zero an - This method shows up artl 1? (%) —b||. The consequence of this is that the residual should

better than mapping all images according to the same scale. - . .
not be used as an indicator of the quality of reconstruction.

The experiments on phantoms provide a guide as to how many
iterations to perform on real data.

In this subsection we take one of our four cases (Case 2) and he second set of experiments is concerned with (2.8) and the
perform on it two more sets of experiments in order to gaintaehavior of the various algorithms at very few (five) iterations.
more detailed view of the capabilities of BICAV. Even though (2.8) is sparsity oriented in its averaging, it is not

C. Other Experiments
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ART (4 iterations) BICAV (10 blocks, 8 iterations) CAV (30 iterations)

000

Fig. 7. Best images for Case 2 with noise.

ART BICAV (10 blocks) Block version of (2.8) {10 blocks)

0010

Fig. 8. Case 2 after five iterations for ART, BICAV, and the block version of (2.8).

the same as CAV because it employs orthogonal projections amith (2.8), this block version of (2.8) produced convergence
not oblique projections like CAV. In matrix form, (2.8) can beplots similar to those of BICAV, but the early iteration images

written as of BICAV were again superior.
-~ . . . Fig. 8 shows the images produced after five iterations by ART,
2" =2 + A SATN(b — Ax") (5.1) BICAV (ten blocks), and the block version of (2.8) (ten blocks),
. . for Case 2. Again, BICAV is very similar to ART, while the
where S = diag(1/s1, 1/sp, ..., 1/sm) and N = diag 1501 version of (2.8) exhibits visible artifacts. These images
(1/]lat |13, 1/]|a2]|3, - .., 1/]|la™||3). The effect of N is iden-

ical lizi I th . bef he i . _demonstrate that convergence plots alone are insufficient for
fuca :10 ,nr? rmalizing a dt' %%qgatl?ns efore the 'terat'gnﬁomparing different algorithms; reconstructed images are essen-
i.e., theith equation is divided byja’|2. (5.1) appears to € tial. The important point here is that the oblique projections used

similar. |n form to thegeneralized _Landweber iteratiensge, by CAV and BICAV produce better results than the orthogonal
e.g., Bjorck [7] and Trussell and Civanlar [31] for further 'nfor'Projections of (2.8).
n

mation. Recent applications of Landweber-type algorithms
image reconstruction from projections appear in Pan and Yagle
[27] and Paret al.[28]. In fact, (5.1) is quite distinct from the
generalized Landweber iteration of [28], because the matrix\We have introduced here a block-iterative version (BICAV) of
N does not appear there, the matrix to the left4df is there our component averaging algorithm (CAV) [17]. After suitable
a certain polynomial matrix (called haping matriy, and the optimization of block sizes and relaxation parameters, BICAV
scalar there is related to the singular valuesiof combines the best features of ART and CAV:

Experiments with iteration formula (2.8) produced some in- ¢ The initial convergence of BICAV is very similar to ART
teresting results. As far as convergence plots were concerned, (and better than CAV).
the differences between CAV and (2.8) were negligible, but in < Similarly to CAV, it is inherently parallel in structure.
some of the cases, and especially in the early iterations, CAV ¢ For noisy images, CAV and BICAV produce betterimages
produced better images. We also experimented with a block ver- than ART, but require more iterations.
sion of (2.8), where in each block we divide by, which is » Oblique projections, as used in CAV and BICAV, produce
the number of nonzero elements of tfth column of A;. As better images than the orthogonal projections of (2.8).

VI. CONCLUSION
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The significance of good parallel iterative methods lies in the [8]
fact that multiprocessor workstations can be expected in the near
future to be widely prevalent alongside state-of-the-art med-
ical equipment. With regard to the parallel implementation of [9]
BICAV, it should be noted that it requires somewhat more com-
munication overhead than CAV, because the results of the prog;
jections within one block need to be combined and redistributed
before they can be used for the next block. In view of this, on 11]
should attempt to minimize the number of blocks. Our resultilz]
indicate that ten blocks provides a reasonable choice.

Our use of the diagonal weighting (DWE) algorithm for linear
equations (Algorithm 2.2) is motivated by a choice of diagonal[
weighting matrices [see (2.14)], with sparsity-related weights,
which strongly and significantly accelerate the fully simulta-[14]
neous Cimmino algorithm. This usage leads to the CAV method; 5;
Algorithm 2.3. BICAV, the block-iterative version of CAV, im-
proves on CAV: Its initial convergence is almost identical to
ART, but in contrast to ART, it is also inherently parallel.

Future research on CAV and BICAV will concentrate on their
behavior on other sparse systems coming from different realt’]
world problems. With regard to convergence analysis, BICAV
is known to converge only in the consistent case. There is still @8]
need for further research in this direction. Another topic for fur-
ther research is an analysis of the initial convergence of BICA\/I,lg]
with emphasis on the relation between the block size and the

13]

[16]

optimal relaxation parameter. (20]
[21]
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