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BICAV: A Block-Iterative Parallel Algorithm for
Sparse Systems With Pixel-Related Weighting

Yair Censor*, Dan Gordon, and Rachel Gordon

Abstract—Component averaging (CAV) was recently intro-
duced by Censor, Gordon, and Gordon as a new iterative parallel
technique suitable for large and sparse unstructured systems of
linear equations. Based on earlier work of Byrne and Censor,
it uses diagonal weighting matrices, with pixel-related weights
determined by the sparsity of the system matrix. CAV is inherently
parallel (similar to the very slowly converging Cimmino method)
but its practical convergence on problems of image reconstruction
from projections is similar to that of the algebraic reconstruction
technique (ART). Parallel techniques are becoming more impor-
tant for practical image reconstruction since they are relevant not
only for supercomputers but also for the increasingly prevalent
multiprocessor workstations. This paper reports on experimental
results with a block-iterative version of component averaging
(BICAV). When BICAV is optimized for block size and relaxation
parameters, its very first iterates are far superior to those of CAV,
and more or less on a par with ART. Similar to CAV, BICAV is
also inherently parallel. The fast convergence is demonstrated
on problems of image reconstruction from projections, using the
SNARK93 image reconstruction software package. Detailed plots
of various measures of convergence, and reconstructed images are
presented.

Index Terms—Block-iterative, component averaging, image re-
construction, parallel processing, pixel-related weighting, sparse
systems.

I. INTRODUCTION

PROBLEMS of image reconstruction from projections, after
suitable discretization, can be represented by a system of

linear equations

(1.1)

where
system matrix;

number of equations;
size of the (unknown) image vector;
vector (of size ) of readings.
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In practice, the system (1.1) is often inconsistent, and one usu-
ally seeks a point which minimizes some predeter-
mined optimization criterion. Even then, the problem is fre-
quently ill-posed and there may be more than one optimal so-
lution. The standard approach to dealing with that problem is
via regularization, i.e., by aiming at an optimal solution with a
minimal Euclidean norm.

Equation (1.1) may also be viewed as a special case of the
convex feasibility problem, which is to find a point

, where is the intersection of finitely many closed
convex sets , , in the Euclidean space.
In the inconsistent case, whenis empty, some iterative pro-
jection algorithms (mostly of the simultaneous type) converge
to a point which minimizes a certainproximity function. In
image recovery the task of estimating an image from the mea-
surements of one or more signals, physically related to it, can
often be modeled by a (not necessarily linear) convex feasibility
problem, see, e.g., Combettes [20] or Stark and Yang [29]. Al-
gorithmic schemes for this problem are, in general, eitherse-
quentialorsimultaneousorblock-iterative, see, e.g., Censor and
Zenios [18, Section 1.3] for a classification of projection algo-
rithms into such classes, and the review paper of Bauschke and
Borwein [4] for a variety of specific algorithms of these types.

A typical example of a sequential method for solving (1.1) is
the row-action algebraic reconstruction technique (ART)—see,
e.g., Censor and Zenios [18, Algorithm 5.4.3] and Herman
[21]. Originating with Kaczmarz [24], this algorithm cyclically
projects the current iterate onto the hyperplanes represented
by the rows of the system (1.1). In the inconsistent case, it
converges cyclically (Tanabe [30]), and for a fixed positive re-
laxation parameter, the limits of the cycles lie within a bounded
distance from the geometric least-squares solution—see Censor
et al. [15]. This distance approaches zero as the relaxation
parameter tends to zero, so ART with small relaxation param-
eters can also be used to approach the geometric least squares
solution arbitrarily closely. In practice, ART performs very
well with a small relaxation parameter—see Herman [21] and
Herman and Meyer [22].

In the simultaneous paradigm, the current iterateis oper-
ated upon simultaneously with respect to all sets (or with respect
to all sets in the current “block,” in the case of a block-iterative
method), generating “intermediate points”

(1.2)

Here, are the algorithmic operators applied to with re-
spect to the sets . For example, could be —the
least-Euclidean-distance projection of onto the set , also
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called the orthogonal projection. The next iterate is then
generated from the intermediate points by

(1.3)

where is another algorithmic operator, for example, the taking
of a convex combination of the form , with
, , and .
A significant property of simultaneous schemes is that they

are inherently parallel since the projections onto the sets(the
hyperplanes in the linear case) are independent of each other
and can, therefore, be done in parallel. A prototype of the si-
multaneous paradigm is the Cimmino (CIM) algorithm [19], in
which the current iterate is projected onto all the hyperplanes,
and the next iterate is the weighted average of all the projec-
tions (see, also, Auslender [3] for the extension to convex sets).
It is well-known that the initial convergence of this algorithm is
so slow as to render it impractical, even if it is executed in par-
allel—see, for example, our computational results in [17].

In our recent paper [17], we developed a fully simultaneous
projection algorithm calledcomponent averaging(CAV),
which uses diagonal weighting matrices with component-re-
lated weights. We also showed how to choose a specific
weighting strategy, based on thesparsityof the system matrix,
which strongly accelerates the initial convergence of the
algorithm when applied to image reconstruction problems.
Being simultaneous, CAV is inherently parallel (see Butnariu
et al. [9]) but its initial convergence is far superior to that of
the original simultaneous CIM method. Initial iterates of ART
were better than CAV, but eventually CAV produced slightly
better results.

In this paper, we present a block-iterative version of CAV
(which we call BICAV) and report on experiments with this al-
gorithm. We show that when BICAV is optimized with respect
to block size and relaxation parameters, its initial convergence
is significantly superior to that of CAV, and it is somewhat on a
par with ART. BICAV retains the quality of inherent parallelism
of CAV, although it naturally requires somewhat more commu-
nications between processors in order to broadcast the interme-
diate results of the block calculations to all the processors.

While a formal convergence analysis of the fully simulta-
neous CAV method is available (in [17]), a mathematical val-
idation of the new BICAV algorithm has only recently been
achieved and will be published elsewhere (see comments in Sec-
tion III). Thus, the encouraging experimental results, presented
here, will be complemented by a mathematical study of BICAV.

A good starting point for our presentation is the general proto-
typical block-iterative projections (BIP) method, developed by
Aharoni and Censor [1], which uses the following iterative for-
mula:

(1.4)

where
current iterate;
next iterate;

relaxation parameters;
(orthogonal) projection of onto the
closed convex set .

Each is aweight vectorwhose components
are the weights used at theth iterative step and they are non-
negative and sum up to one, for each. BIP allows the weights
to vary from one iteration to another and, by allowing some of
the weights to take zero values, lets the iterations proceed along
blocks which vary with iteration index in both size and compo-
sition.

If we choose in (1.4) , for all , where
is the th standard basis vector (having one in itsth coordinate
and zeros elsewhere), and is a control sequenceof
the algorithm all of whose indexes are , then
the BIP scheme (1.4) becomes the well-known purely sequen-
tial projections onto convex sets (POCS) method. At the other
extreme, if , for all and all , then
BIP becomes a fully simultaneous algorithm in which all sets

are being acted upon in every iterative step.
Although the weights in BIP depend on the iteration index,

they are notcomponent-related, i.e., they cannot vary with the
component index. To the best of our knowledge, earlier pro-
jection algorithms for the convex feasibility problem, except
for the recent method of Byrne and Censor [12], [13] did not
allow the weights to be component-related (i.e.,-related or
pixel-related). Both CAV [17] and the new BICAV algorithms
use component-related weights for solving sparse systems of
linear equations. More specific to image reconstruction, Mueller
et al.[26] have recently incorporated pixel-dependent weighting
into ART reconstructions from enhanced modeling considera-
tions.

The paper is laid out as follows. In Section II, we briefly re-
view the motivation and construction of the fully simultaneous
CAV algorithm presented in [17]. In Section III, we present
BICAV, the block-iterative derivation of CAV, which is the ob-
ject of the present study. Section V contains a report of our ex-
perimental computational work with BICAV and comparisons
with other relevant iterative reconstruction methods.

II. M OTIVATION AND DEFINITIONS

Consider the case of linear equations in which the setsare
hyperplanes

(2.1)

for , where is the inner product and
, , and are given vectors and given

real numbers, respectively. Then, for any , the orthogonal
projection of onto is

(2.2)

where is the Euclidean norm.
In Cimmino’s algorithm for the convex feasibility problem

(Auslender [3]), with relaxation parameters and with equal
weights, the next iterate is the average of the projections
of on the closed and convex sets, as follows.
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Algorithm 2.1 (CIM):

Initialization: is arbitrary.
Iterative Step: Given compute

(2.3)

where are relaxation parameters.
Expanding the iterative step (2.3) according to (2.2) produces,

for every component ,

(2.4)

which is a special case of

(2.5)

where the fixed weights must be positive for all and
. In matrix notation, (2.4) can be written as

(2.6)

where , (the transpose of ) has in its th
column, and

(2.7)

Our CAV algorithm [17] is similar in form to (2.6), but with a
totally different diagonal matrix .

Consider now the system (2.1). When it is sparse, only a
relatively small number of the elements are
nonzero, but in (2.4) the sum of their contributions is divided
by the relatively large . This observation led us to consider a
replacement of the factor in (2.4) by a factor that depends
only on thenonzeroelements in the set . For
each , we denoted by the number of nonzero
elements of column, and we wanted to replace (2.4) by

(2.8)

We then combined this idea of using thes with the concepts
developed by Byrne and Censor [12], [13], to obtain our CAV al-
gorithm, which usesoblique projections, commonly defined as
follows. Let , with ,

and , be a hyperplane. Let be an symmetric
positive definite matrix and let be the asso-
ciatedellipsoidal norm, see, e.g., Bertsekas and Tsitsiklis [6,
Proposition A.28]. Given a point , the oblique projection
of onto with respect to is the unique point
for which

(2.9)

Solving this minimization problem leads to

(2.10)

where is the inverse of . For , the unit matrix,
(2.10) yields the orthogonal projection ofonto , as given by
(2.2); see, e.g., Ben-Israel and Greville [5, Section 2.6].

In order to consider oblique projections ontowith respect
to a diagonal matrix for which some
diagonal elements might be zero, we introduced the following
definition.

Definition 2.1 [17]: Let with
, for all , let

be a hyperplane with and , and assume
that 0 if and only if 0. Thegeneralized oblique pro-
jectionof a point onto with respect to is defined,
for all , by

if

if .

(2.11)

This reduces to (2.10) if for all ,
is nonzero. It is not difficult to verify that this belongs
to , that it solves (2.9) if we just replace there by

, and that it is uniquely defined, although other
solutions of (2.9) may exist due to the possibly zero-valueds.

Consider now a set of real diagonal ma-
trices with for all

and , such that .
Referring to the sparsity pattern of we made the following
definition.

Definition 2.2 [17]: A family of real diagonal
matrices with all diagonal elements and such that

will be calledsparsity pattern oriented (SPO,
for short) with respect to an matrix if, for every

if and only if .
The CAV algorithm that we presented in [17] combined three

features.

1) Each orthogonal projection onto in (2.5) was replaced
by a generalized oblique projection with respect to.

2) The scalar weights in (2.5) were replaced by the
diagonal weighting matrices .

3) The actual weights were set inversely proportional to the
number of nonzero elements in each column, as motivated
by the discussion preceding (2.8).

The iterative step resulting from the first two features has the
form

(2.12)

or, equivalently, substituting from (2.11) for each , we ob-
tained

Algorithm 2.2 [Diagonal Weighting (DWE) for Linear Equa-
tions]:

Initialization: is arbitrary.
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Iterative Step: Given , compute by using, for

(2.13)

where is a given family of diagonal SPO (with
respect to ) weighting matrices as in Definition 2.2, and

are relaxation parameters.

Finally, we specified how we construct the diagonal matrices
in order to utilize the s appearing in (2.8). Define

if

if .
(2.14)

With this particular SPO family of s we obtained our CAV
algorithm.

Algorithm 2.3 Component Averaging (CAV):

Initialization: is arbitrary.
Iterative Step: Given , compute by using, for

(2.15)

where are relaxation parameters and are
as defined earlier.

We showed in [17] that Algorithm 2.2, with for all
, generates sequences which always converge, re-

gardless of the initial point and independently from the con-
sistency or inconsistency of the underlying system .
Moreover, it always converges to a minimizer of a certain prox-
imity function.

III. T HE Block-Iterative Component Averaging (BICAV)
ALGORITHM

We now develop our block-iterative derivation of the CAV
algorithm. The basic idea is to break up the system
into “blocks” of equations and treat each block according to
the CAV method, passing cyclically over all the blocks. This
calls for the slight notational complication of having to deal
with block indexes. Throughout the following, will be the
number of blocks. For , let the block of in-
dexes , be an ordered subset of the form

, where is the number of ele-
ments in , such that every element of appears
in at least one of the sets . For , let denote

the matrix formed by taking all the rows ofwhose indexes be-
long to the block of indexes , i.e.,

...
(3.1)

The iterative step of our proposed BICAV algorithm uses, for
every block index , generalized oblique pro-
jections with respect to a family of diagonal matrices
which are SPO with respect to . The same family is also used
to perform the diagonal weighting. The resulting iterative step
has the form

(3.2)

where is acontrol sequenceaccording to which the
th block is chosen by the algorithm to be acted upon at the

th iteration. Thus, we must have , for all .
The real numbers are user-chosenrelaxation param-

eters. Substituting from (2.11) for each , we obtain the
following.

Algorithm 3.1 [Block-Iterative Diagonal Weighting (BIDWE)
for Linear Equations]:

Initialization: is arbitrary.
Iterative Step: Given , compute by using, for

(3.3)

where, for each , is a given
family of diagonal SPO (with respect to ) weighting ma-
trices, as in Definition 2.2, the control sequence is cyclic,
i.e., , for all , are
relaxation parameters, and .

Finally, in order to achieve the acceleration, the diagonal ma-
trices are constructed as in the original CAV algo-
rithm [17], but with respect to each . Let be the number
of nonzero elements in the th column of and define

if

if .

(3.4)

It is easy to verify that for each ,
holds for these matrices. With these particular SPO families of

s we obtain our block-iterative algorithm:
Algorithm 3.2 [Block-Iterative Component Averaging

(BICAV)]:

Initialization: is arbitrary.



1054 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 10, OCTOBER 2001

Iterative Step: Given , compute by using, for

(3.5)

where are relaxation parameters, are
as defined above, and the control sequence is cyclic, i.e.,

, for all .
For the case and , Algorithm

3.2 becomes fully simultaneous, i.e., it is the CAV algorithm of
[17]. For and , , BICAV
simply becomes ART—see, e.g., Herman [21]).

After the first version of this paper was ready, progress has
been made in the mathematical study of the convergence of
BICAV by Byrne [11], [10] and by Censor and Elfving [16].
These results, which will be published elsewhere, validate the
convergence with relaxation parameters of CAV in the incon-
sistent case, and of BICAV in the consistent case. In [16], the
algorithmic framework of BICAV is generalized to handle sys-
tems of linear inequalities and to include as a special case the
well-known image reconstruction algorithm called SART, in-
vented by Andersen and Kak [2]. The following result describes
the behavior of BICAV on a system of linear equations in the
consistent case.

Theorem 3.1 (BICAV for Linear Equalities [16, Theorem
7.1]): Let , for all , where is an
arbitrarily small but fixed constant, and assume consistency of
the system . Then any sequence , generated by
Algorithm 3.2 (BICAV), converges to a solution of the system

.
The next theorem shows that any sequence , gener-

ated by the fully simultaneous Algorithm 2.3 (CAV), converges
to a weighted least squares solution of the system of equations

, regardless of its consistency, for relaxation parameters
in the interval . Only the case of unity relaxation, i.e.,

, for all , was shown in [17], where CAV was first
proposed; the proof in [17] was adapted from [12] and [13, Al-
gorithm 4.2].

Theorem (CAV for Linear Equalities in the Inconsistent Case
[16, Theorem 7.3]): Let , for all ,
where is an arbitrarily small but fixed constant, Then any se-
quence , generated by Algorithm 2.3 (CAV), for linear
equations, converges to a weighted least-squares solution with
weight matrix and
with , where is the number
of nonzero elements in theth column of .

IV. PROBLEM DESCRIPTION, CONVERGENCEMEASURES AND

TEST CASES

In the medical application of transmission computerized to-
mography, a planar cross section of the body is considered and
the tissue’s attenuation of X-rays everywhere in the cross sec-
tion has to be reconstructed. This unknown function of two vari-
ables has real nonnegative values and is called theimageor pic-
ture. The fundamental model in thefinite series-expansion ap-

Fig. 1. The fully discretized model for transmission tomography image
reconstruction.

proach, see, e.g., Censor [14], is formulated as follows. A Carte-
sian grid of square picture-elements, calledpixels, is introduced
into the region of interest so that it covers the whole picture that
has to be reconstructed. The pixels are numbered in some agreed
manner, say from one (top left corner pixel) to(bottom right
corner pixel); see Fig. 1. The X-ray attenuation function is as-
sumed to take a constant uniform valuethroughout the th
pixel, for . Sources of X-rays and detectors
are assumed to be points, and the rays between them—lines.
It is further assumed that the length of intersection of theth
ray with the th pixel, denoted by , for all ,

, represents the contribution of theth pixel to
the total attenuation along theth ray.The physical measurement
of the total attenuation along theth ray, denoted by , repre-
sents the line integral of the unknown attenuation function along
the path of the ray. Therefore, in this fully discretized model,
each line integral is approximated by a finite sum and the model
is described by a system of linear equations

(4.6)

Here, is themeasurements vector,
is theimage vectorand the matrix is the

projection matrix.
All our reconstruction algorithms were implemented within

SNARK93, a software package for testing and evaluating algo-
rithms for image reconstruction, see Browneet al. [8]. Three
different measures were used for comparisons:distance, rela-
tive error, andstandard deviation, calculated by SNARK93, and
defined in [8, Section 5.10] as follows.

Let and denote the density assigned to theth pixel
of the reconstruction after iterations, and the density of the
th pixel in the phantom, respectively. Letdenote the set of
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TABLE I
THE FOUR DIFFERENTTEST CASES

indexes of pixels which are in the region of interest and let
be the number of elements in. The averagevalue of the

reconstructed image is given by

(4.7)

and thevarianceof is given by

(4.8)

Thestandard deviationof the reconstructed image is then

(4.9)

Similarly, we define the average value, variance , and stan-
dard deviation for the phantom, in terms of the phantom values

.
Thedistancebetween and the phantom is

if

if .
(4.10)

With therelative errorof is defined by

if

if .
(4.11)

The performance of the different algorithms is demonstrated
on the reconstruction of the Herman head phantom [21, Sec-
tion 4.3], which is specified by a set of ellipses, with a specific
attenuation value attached to each elliptical region. The values
of , , are calculated by computing the line in-
tegrals through the elliptical regions (without reference to the
discretization). Thus, the system (4.6) is basically inconsistent,
because the left-hand side is only an approximation to the ac-
tual integrals. This matches the real-life situation where thes
are actual X-ray readings through an object but the region of in-
terest is discretized as above.

We examined four test cases characterized by two different
image resolutions and varying numbers of projections and rays
per projection. The four cases thus had differing numbers of
variables and equations, as shown in Table I.

Fig. 2. Relative error measures for BICAV (ten blocks) with various relaxation
parameters (Case 2).

In all our experiments, the relaxation parameter remained
constant throughout the iterations, i.e., for all . In
[17] we already determined that for such problems, the optimal
relaxation parameter for CAV is 2.0. We also used a small
relaxation parameter 0.1 for ART, since it was found to pro-
duce good results without impeding the convergence. Although
all the experiments were carried out on the four test cases, we
present convergence plots only for Cases 1–3 since Case 4 was
very similar to the others. Furthermore, the results for the dis-
tance measure and standard deviation were very similar to the
relative error, so they are omitted. For the reconstructed images,
we present only Case 2.

V. EXPERIMENTAL RESULTS

In this section, we outline the general setting of the exper-
iments and present their results. Section V-A explains how
optimal relaxation parameters were chosen for BICAV and
compares the relative performance of five different algorithms:
ART, CAV, and BICAV, together with the CIM algorithm
(Algorithm 2.1) and the BIP method [see (1.4)]. Section V-B
contains our main set of experiments, involving ART, CAV
and BICAV. In Section V-C, we examine the behavior of ART,
CAV, and BICAV when noise is introduced into the equations.
We also experimented with (2.8) and its block version, and
display images obtained after very few (five) iterations.

All the methods were implemented (sequentially) on a Dig-
ital Alpha workstation running at 433 MHz. The different al-
gorithms are compared on the basis of the measures of conver-
gence and on image quality. We limit our work here only to the
above-mentionedprojection algorithms, leaving out many other
iterative image reconstruction algorithms, such as the expecta-
tion maximization (EM) algorithm, see, e.g., Lange and Karson
[25] or Hudson and Larkin [23] for the block-iterative version
of the EM algorithm, called: the “ordered subsets EM” (OSEM)
algorithm.

All our experiments were initiated with 0. Note that
CAV is the same as BICAV with one block and ART is iden-
tical to BICAV if every block contains exactly one equation.
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Fig. 3. Relative error comparisons of CIM, BIP, CAV, BICAV, and ART (Case
2).

We henceforth use the termiterationto refer to one whole sweep
through all equations of the system, so the time for a single itera-
tion is the same for all algorithms. Thus, the number of iterations
is a faithful timing basis for comparing the different algorithms.

In the implementation of BICAV, we initially compute, for
every , all the values , .
These are used to compute the denominators of (3.5), which are
stored and used in subsequent iterations. We also experimented
with different values of —the number of blocks. For each
value of , we experimented with various values of the relax-
ation parameter in order to determine an optimal relaxation
parameter for that number of blocks—see Section V-A.

A. Preliminary Experiments

We first show a typical set of experiments with BICAV, to
demonstrate its behavior with different relaxation parameters
and to show how we chose their optimal values. We present
in detail the example of BICAV with ten blocks, executed on
Case 2. The relative errors are shown in Fig. 2. The relaxation
parameters varied from 0.25 to 2.0, and the figures demonstrate
the typical behavior of BICAV: The optimal results are obtained
for some relaxation parameter strictly less than 2.0 (which is
optimal for CAV). Starting from the low relaxation parameter,
each successive value ofproduces visibly better performance,
until the optimal value, and larger values ofproduce worse
results. Even so, we can see that there is a wide range of values of

which achieve good results: BICAV with ten blocks achieves
good convergence measures for all values of within 25
iterations.

Note that the optimal relaxation parameter depends on the
number of blocks (of BICAV): When , BICAV coin-
cides with CAV, whose optimal relaxation parameter is 2.0. As

increases, the optimal relaxation parameter decreases. When
equals the number of equations, BICAV is identical to ART,

and requires a relaxation parameter of 0.1.
The next set of experiments is intended to demonstrate the

relative performance of BICAV with respect to the following
algorithms, of which only the first three (like BICAV) are in-

Fig. 4. Relative error for Cases 1–3.

herently parallel.

• The Cimmino algorithm (CIM)—Algorithm 2.1. We used
relaxation parameter 2.0, which was determined experi-
mentally to be the best of all values for which CIM prov-
ably converges.
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Fig. 5. Phantom and reconstructed images for Case 2 (resolution 115� 115).
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• The Block-Iterative Projection algorithm (BIP)—(1.4)
with ten blocks and as in (2.2). Here, we also used the
optimal relaxation parameter of 2.0.

• CAV, with its known optimal relaxation parameter of 2.0
[17].

• ART with a relaxation parameter of 0.1—known experi-
mentally to achieve excellent results.

We ran BICAV with ten blocks and optimal relaxation param-
eter of 1.4. The results of these comparisons are presented in
Fig. 3, which shows the relative errors. These plots demonstrate
that there is a very clear and distinct difference between the ini-
tial convergence behavior of the algorithms. ART and BICAV
are almost identical in their fast initial convergence. CAV is
slower, but it achieves the same measures of convergence within
about 25 iterations. Between CIM and BIP, BIP is clearly much
better, but neither of them comes close to the performance of the
other three within the number of iterations that were examined.

B. Main Experiments

Our main experiments demonstrated here were performed on
ART, CAV, and BICAV. BICAV was executed with three dif-
ferent block sizes, and for each block size we used the optimal
relaxation parameters. Convergence plots for test Cases 1–3 are
show in Fig. 4. BICAV is shown with five, ten, and 30 blocks.

On the whole, the results indicate that BICAV behaves some-
what similarly to ART. Occasionally, BICAV is better, and occa-
sionally it is slightly worse. As to CAV, it is always initially worse
than ART and BICAV, but in most cases, after several iterations,
ARTand BICAV begin to deterioratewhile CAVcontinues to im-
prove,eventuallyovertakingthem.Aninterestingobservation,re-
quiring further research, can be noted by comparing Case 1 with
5 blocks and Case 2 with ten blocks: In both cases the number of
equations per block is approximately 2600, and in both cases the
optimal relaxation parameter is very similar (close to 1.5). A sim-
ilar situation occurs with Cases 3 and 4 (Case 4 not shown). We
conjecture that for a fixed numberof variables, the main factoraf-
fecting theoptimal relaxationparameter inBICAV is theabsolute
number of equations in a block.

Fig. 5 shows the phantom and reconstructed images for Case
2 for the three methods, after ten, 20, and 60 iterations. BICAV is
shown for the choice of ten blocks, with its optimal relaxation
parameter. These images bear out the fact that on the whole,
BICAV behaves very similarly to ART, while CAV produces im-
ages that are initially “fuzzy,” but after some 60 iterations, the
images are on a par with those produced by ART and BICAV
after some ten iterations. Note also that both ART and BICAV
deteriorate gradually after ten iterations. Cases 1, 3, and 4 ex-
hibit similarly behavior.

Inorder toprovide thebestvisualizationof thereconstructions,
each image is displayed with its pixel values linearly mapped to
grey levelsbetween zero and 255. This method shows up artifacts
better than mapping all images according to the same scale.

C. Other Experiments

In this subsection we take one of our four cases (Case 2) and
perform on it two more sets of experiments in order to gain a
more detailed view of the capabilities of BICAV.

Fig. 6. Noisy image. Relative error measures for CAV, BICAV, and ART (Case
2).

The first setofexperimentscompares theperformanceofART,
CAVandBICAVon thedataofCase2,butwithnoiseadded to the
readings, i.e., to the right-hand-side of (1.1). The noise consisted
ofmultiplyingeach , witha randomnumber
fromaGaussiandistributionwithanaverageof1.0andastandard
deviation of 0.05. Note that we are experimenting withtransmis-
sionCT, so our experiment with noise differs from the accepted
practice in emission CT. The relative error results are shown in
Fig. 6. ART and BICAV now behave differently: Whereas ART
reachesitsbestoutput infour iterations,BICAVrequireseight,but
itsresultsareslightlybetter.Further iterationsofARTandBICAV
produceworseresults,butCAVcontinues to improveforabout30
iterations and then very gradually deteriorates. Note that with the
addition of noise, the optimal relaxation parameter for BICAV is
smaller than for the regular case.

For the image comparisons, we compared the three methods
at four, eight, 15, and 30 iterations. For each method, we picked
the best image—this is shown in Fig. 7. Note that the number of
iterations for the best image of each method matches the number
of iterations at which the relative error is minimal (Fig. 6). We
see from this that CAV at its best (30 iterations) is almost iden-
tical to BICAV at its best (eight iterations), and both are dis-
tinctively better than the best image obtained with ART (four
iterations). We conclude from this that in the presence of noise,
CAV and BICAV are preferable to ART, provided more compu-
tation time is available.

All three methods continued to deteriorate with further
iterations, with ART being the worst and CAV the best. After
1000 iterations, the following relative errors were obtained:
ART—1.0177, BICAV—0.642, and CAV—0.4391. However,
all three methods continued to improve theresidual of the
solution, where the residual of theth iteration is defined as

. The consequence of this is that the residual should
not be used as an indicator of the quality of reconstruction.
The experiments on phantoms provide a guide as to how many
iterations to perform on real data.

The second set of experiments is concerned with (2.8) and the
behavior of the various algorithms at very few (five) iterations.
Even though (2.8) is sparsity oriented in its averaging, it is not
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Fig. 7. Best images for Case 2 with noise.

Fig. 8. Case 2 after five iterations for ART, BICAV, and the block version of (2.8).

the same as CAV because it employs orthogonal projections and
not oblique projections like CAV. In matrix form, (2.8) can be
written as

(5.1)

where and
. The effect of is iden-

tical to normalizing all the equations before the iterations,
i.e., the th equation is divided by . (5.1) appears to be
similar in form to thegeneralized Landweber iteration—see,
e.g., Björck [7] and Trussell and Civanlar [31] for further infor-
mation. Recent applications of Landweber-type algorithms in
image reconstruction from projections appear in Pan and Yagle
[27] and Panet al. [28]. In fact, (5.1) is quite distinct from the
generalized Landweber iteration of [28], because the matrix

does not appear there, the matrix to the left of is there
a certain polynomial matrix (called ashaping matrix), and the
scalar there is related to the singular values of.

Experiments with iteration formula (2.8) produced some in-
teresting results. As far as convergence plots were concerned,
the differences between CAV and (2.8) were negligible, but in
some of the cases, and especially in the early iterations, CAV
produced better images. We also experimented with a block ver-
sion of (2.8), where in each block we divide by, which is
the number of nonzero elements of theth column of . As

with (2.8), this block version of (2.8) produced convergence
plots similar to those of BICAV, but the early iteration images
of BICAV were again superior.

Fig. 8 shows the images produced after five iterations by ART,
BICAV (ten blocks), and the block version of (2.8) (ten blocks),
for Case 2. Again, BICAV is very similar to ART, while the
block version of (2.8) exhibits visible artifacts. These images
demonstrate that convergence plots alone are insufficient for
comparing different algorithms; reconstructed images are essen-
tial. The important point here is that the oblique projections used
by CAV and BICAV produce better results than the orthogonal
projections of (2.8).

VI. CONCLUSION

We have introduced here a block-iterative version (BICAV) of
our component averaging algorithm (CAV) [17]. After suitable
optimization of block sizes and relaxation parameters, BICAV
combines the best features of ART and CAV:

• The initial convergence of BICAV is very similar to ART
(and better than CAV).

• Similarly to CAV, it is inherently parallel in structure.
• For noisy images, CAV and BICAV produce better images

than ART, but require more iterations.
• Oblique projections, as used in CAV and BICAV, produce

better images than the orthogonal projections of (2.8).
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The significance of good parallel iterative methods lies in the
fact that multiprocessor workstations can be expected in the near
future to be widely prevalent alongside state-of-the-art med-
ical equipment. With regard to the parallel implementation of
BICAV, it should be noted that it requires somewhat more com-
munication overhead than CAV, because the results of the pro-
jections within one block need to be combined and redistributed
before they can be used for the next block. In view of this, one
should attempt to minimize the number of blocks. Our results
indicate that ten blocks provides a reasonable choice.

Our use of the diagonal weighting (DWE) algorithm for linear
equations (Algorithm 2.2) is motivated by a choice of diagonal
weighting matrices [see (2.14)], with sparsity-related weights,
which strongly and significantly accelerate the fully simulta-
neous Cimmino algorithm. This usage leads to the CAV method,
Algorithm 2.3. BICAV, the block-iterative version of CAV, im-
proves on CAV: Its initial convergence is almost identical to
ART, but in contrast to ART, it is also inherently parallel.

Future research on CAV and BICAV will concentrate on their
behavior on other sparse systems coming from different real-
world problems. With regard to convergence analysis, BICAV
is known to converge only in the consistent case. There is still a
need for further research in this direction. Another topic for fur-
ther research is an analysis of the initial convergence of BICAV,
with emphasis on the relation between the block size and the
optimal relaxation parameter.
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