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BICENTENNIAL

OF THE GREAT PONCELET THEOREM (1813–2013):

CURRENT ADVANCES

VLADIMIR DRAGOVIĆ AND MILENA RADNOVIĆ

Abstract. We present very recent results related to the Poncelet Theorem
on the occasion of its bicentennial. We are telling the story of one of the
most beautiful theorems of geometry, recalling for general mathematical audi-
ences the dramatic historic circumstances which led to its discovery, a glimpse
of its intrinsic appeal, and the importance of its relationship to dynamics of
billiards within confocal conics. We focus on the three main issues: A) The
case of pseudo-Euclidean spaces, for which we present a recent notion of rel-
ativistic quadrics and apply it to the description of periodic trajectories of
billiards within quadrics. B) The relationship between so-called billiard alge-
bra and the foundations of modern discrete differential geometry which leads
to double-reflection nets. C) We present a new class of dynamical systems—
pseudo-integrable billiards generated by a boundary composed of several arcs
of confocal conics having nonconvex angles. The dynamics of such billiards
have several extraordinary properties, which are related to interval exchange
transformations and which generate families of flows that are minimal but not
uniquely ergodic. This type of dynamics provides a novel type of Poncelet
porisms—the local ones.
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1. Introduction and history

On November 18th, 1812, near Smolensk, Russia, a young French officer serving
as a battery commander was wounded and his horse was killed under him. This
was the last day of the battle of Krasnoi, when the French III Corps of Marshal
Ney clashed with three corps commanded by general Count Miloradovich of the
Russian Army. Napoleon’s army was heavily defeated and many thousands of his
men were left during the withdrawal and imprisoned. A day after the battle, the
officer was found by Russian soldiers.

During his subsequent imprisonment in Saratov, which lasted from April 1813
until June 1814, while recovering from an illness, he recalled the fundamental prin-
ciples of geometry to which he had been introduced during his studies at the École
Polytechnique. Without literature, he not only recollected what he had learned
from his professors Monge, Carnot, and Brianchon, but also went on to develop
projective geometry, in particular the properties of conics. The young officer’s
name was Jean-Victor Poncelet. The notes he made in the prison, called Cahiers
de Saratov1 contained one of deepest, most beautiful, and most important theorems
of projective geometry—the Great Poncelet Theorem; see [1869].

The first published proof of the Great Poncelet Theorem appeared in Pon-
celet’s famous work, Traité des propriétés projectives des figures, in 1822 [Pon1822].
The complete Cahiers de Saratov were published many decades later, in 1862, as
[Pon1862]. Meanwhile, Poncelet became a professor of Mechanics at the Sorbonne

and at the Collège de France, the general of a brigade, the governor of the École
Polytechnique, the commander of the National Guard of the Department of the
Seine, an elected member of the Constitutional Assembly, and the President of the
Scientific Commission for the English exhibition of 1851. Poncelet was also a Grand
Officer of the Legion of Honour, a Chevalier of the Prussian order, a corresponding
member of the academies of Sankt Petersburg, Turin, Berlin, and a foreign member
of the Royal Society of London.

It is interesting to mention that, in Chebyshev’s report on his business trip
to France [Tch1852], Poncelet is described “as a well-known scientist in practical
mechanics”.

1Saratov notebooks
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BICENTENNIAL OF THE GREAT PONCELET THEOREM 375

Figure 1. Two heptagons inscribed in a conic and circumscribed
about another one

Let us present now one of the formulations of the Poncelet Theorem, with an
example shown on Figure 1.

Theorem 1.1 (The Poncelet Theorem). Let C and D be two conics in the plane.
Suppose that there is a polygon inscribed in C and circumscribed about D. Then
there are infinitely many such polygons, and all of them have the same number of
sides. Moreover, each point of C is a vertex of such a polygonal line.

Later on, in 1828, Jacobi gave another proof of the theorem using the addition
theorem for elliptic functions (see [Jac1884]). Essentially, the Poncelet Theorem is
equivalent to the addition theorems for the elliptic curves and the Poncelet proof
represents a synthetic way of deriving group structure on an elliptic curve.

An important question is how do we find an analytical condition that determines,
for two given conics, if an n-polygon, inscribed in one conic and circumscribed about
the second, exists. In 1853 such a condition was derived by Cayley, who used the
theory of Abelian integrals [Cay1854]. He was dealing with the Poncelet porism in a
number of other papers [Cay1853,Cay1855,Cay1857,Cay1858,Cay1861]. Cayley’s
work served as an inspiration for another great mathematician, Lebesgue, who
translated Cayley’s proof into geometric language. He derived his proof of Cayley’s
condition using methods of projective geometry and algebra; see the remarkable
book Les coniques [Leb1942]. In modern settings, Griffiths and Harris derived
Cayley’s theorem by finding an analytical condition for points of finite order on an
elliptic curve [GH1978].

We have to emphasize that Poncelet originally proved a statement that is
much more general than the theorem formulated above (see [Ber1987a,Ber1987b,
Pon1822]); he derived the latter as a corollary. Namely, he considered n+ 1 conics
of a pencil in the projective plane. If there exists an n-polygon with vertices lying
on the first of these conics and each side touching one of the other n conics, then
infinitely many such polygons exist. We shall refer to this statement as the Full
Poncelet Theorem and call such polygons the Poncelet polygons.

A nice historical overview of the Poncelet Theorem, together with modern proofs
and remarks is given in [BKOR1987]. Various classical theorems of Poncelet type
with short modern proofs are reviewed in [BB1996], while the algebro-geometrical
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Figure 2. Billiard reflection

approach to families of the Poncelet polygons via modular curves is given in
[BM1993, Jak1993]. There are also two recent books on the subject [Fla2009,
DR2011].

The Poncelet Theorem has an important mechanical interpretation. The ellip-
tical billiard [KT1991,Koz2003,Tab2005] is a dynamical system where a material
point of the unit mass is moving under inertia, or in other words, with a constant
velocity inside an ellipse and obeying the reflection law at the boundary, i.e. having
congruent impact and reflection angles with a tangent line to the ellipse at any
bouncing point (see Figure 2). It is also assumed that the reflection is absolutely
elastic and that friction is neglected.

It is well known that any segment of a given elliptical billiard trajectory is
tangent to the same conic, confocal with the boundary [CCS1993] (see Figure 3). If
a trajectory becomes closed after n reflections, then the Poncelet Theorem implies
that any trajectory of the billiard system, which shares the same caustic curve, is
also periodic with period n.

Moreover, for any given pair of conics, there is a projective transformation of
coordinates, such that the conics become confocal in the new coordinates. Then,
polygonal lines inscribed in one of the conics and circumscribed about the other
conic will become billiard trajectories.

Figure 3. Caustic of the billiard trajectory
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The Full Poncelet Theorem also has a mechanical meaning. The configuration
dual to a pencil of conics in the plane is a family of confocal second order curves
[Arn1978]. Let us consider the following, slightly unusual billiard. Suppose n con-
focal conics are given. A particle is bouncing on each of these n conics respectively.
All segments of such a trajectory are tangent to one conic confocal with the given n
curves. If the motion becomes closed after n reflections, then, by the Full Poncelet
Theorem, any such trajectory with the same caustic is also closed.

The statement dual to the Full Poncelet Theorem can be generalized to the
d-dimensional space [CCS1993] (see also [Pre1999, Pre2002]). Suppose vertices of
the polygon x1x2 · · ·xn are placed on confocal quadric hypersurfaces Q1, Q2, . . . ,
Qn, respectively, in the d-dimensional Euclidean space, with the consecutive sides
obeying the reflection law at the corresponding hypersurface. Then all sides are
tangent to some quadrics Q1, . . . , Qd−1 confocal with {Qi}; for the hypersurfaces
{Qi,Qj}, an infinite family of polygons with the same properties exist. Systematic
exposition of this higher-dimensional theory has been presented in a survey paper
[DR2010] and in the book [DR2011].

But more than a century before these quite recent results, in 1870, Darboux
proved the generalization of the Poncelet Theorem for a billiard within an ellipsoid
in three-dimensional space [Dar1870]. It seems that his work on this topic was
completely forgotten until very recently; see [DR2011].

An interesting generalization of the Poncelet Theorem concerning polyhedra that
are simultaneously inscribed and circumscribed about two given quadrics in the
three-dimensional space was obtained in [GH1977]. Further generalizations in that
direction can be found in [DR2008,DR2011].

It is natural to search for Cayley-type conditions related to generalizations of the
Poncelet Theorem. Such conditions for the billiard system inside an ellipsoid in Eu-
clidean space of arbitrary finite dimension were derived in [DR1998a,DR1998b] us-
ing an algebro-geometric approach from [Ves1988,MV1991], where billiards within
quadrics are also considered as discrete time systems. In recent papers [DR2004,
DR2005,DR2006b,DR2006a], algebro-geometric conditions for existence of periodic
billiard trajectories within k quadrics in the d-dimensional Euclidean space were
derived.

Most of the results on the subject obtained by 2008 have been presented in the
book [DR2011]. An important part of the book has been devoted to the Griffiths-
Harris program of development of a synthetic approach to higher genera addi-
tion theorems. The book also offered an historical overview of the subject, and
it included a detailed analysis of the results of Darboux and the contributions of
Lebesgue.

About the same time, an extremely interesting book [Dui2010] appeared, which
was devoted to discrete integrable systems from the point of view of the QRT
maps,2 elliptic surfaces, and elliptic fibrations. That book approaches the Poncelet
Theorem as an important example of symmetric QRT maps; see [Dui2010, Chapter
10]. Connections to elliptic billiards are presented in [Dui2010, Chapter 11.2].

The present paper is devoted to the bicentennial jubilee of the celebrated Pon-
celet Theorem and it mostly exposes current advances of the subject—results which

2The QRT maps are named after Quispel, Roberts, and Thompson [QRT1988].
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have been obtained in the last four years. The interrelation between geometry of
pencils of quadrics and related billiard dynamics is continuing to play a crucial role.

The projective geometry nucleus of billiard dynamics is the double reflection
theorem; see Theorem 2.11 below. The meaning of that theorem is that reflections
off two confocal quadrics commute. Namely, there are four lines that belong to a
certain linear space and which form a double reflection configuration: these four
lines reflect to each other according to the billiard law at two confocal quadrics; see
Figure 13 in Section 2.3.

The double reflection configuration is a cornerstone of a new type of integrable
line congruence, so-called double reflection nets. In these discrete integrable systems
of geometric origin, double reflection configurations play the role of quad-equations.
The integrability condition is a consequence of an operational consistency of billiard
algebra from [DR2008]; see the six-pointed star theorem, Theorem 4.1. These results
are presented in Section 4.

Section 3 is devoted to pencils of quadrics in pseudo-Euclidean spaces and to
related billiard dynamics and Poncelet configurations. A novelty of our approach
is based on the notion of relativistic quadrics ; see [DR2012a]. The general theory
of relativistic quadrics is exposed in Section 3.2. Section 3.1 is devoted to the case
of the Minkowski plane, and it serves as an introduction to the higher-dimensional
cases. It also contains a detailed and quite elementary description of periodic
trajectories of elliptic billiards. Generalized Cayley-type conditions for pseudo-
Euclidean spaces of arbitrary dimension are derived in Section 3.3.

The last section is devoted to the billiards in the Euclidean plane with a more
complex boundary, formed by arcs of conics from a confocal family; see [DR2012c].

For the case of billiard systems within confocal conics without nonconvex angles
on the boundary, it is well known that the famous Poncelet porism holds:

(A) If there is a periodic billiard trajectory with one initial point of the boun-
dary, then there are infinitely many such periodic trajectories with the same
period, sharing the same caustic.

(B) Even more is true—if there is one periodic trajectory, then all trajectories
sharing the same caustic are periodic with the same period.

See [DR2006a, DR2006b, DR2011] where the corresponding conditions of Cayley
type were derived.

However, when nonconvex angles exist on the boundary, which is the case studied
in Section 5, one sees that item (A) above is still generally true. However, item
(B) is not true any more. The Poncelet porism is true locally, but not globally.
Algebro-geometric conditions of Cayley’s type in such a case provide only sufficient
but not necessary conditions for periodicity. A deeper analysis of the dynamics in
this case is related to a class of interval exchange transformations and to the use of
a modified Keane condition.

Let us note that via the interval exchange transformations, the billiard flow in
a domain bounded by arcs of confocal conics becomes equivalent to a flow on a
certain translation surface. In this way, we made an analogy to the situation with
billiards in polygons with rational angles, which has been one of most vivid research
topics for a few decades; see [Zor2006,Via2008,MT2002,Smi] for some insight.
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Section 5.5 is concluded by an explicit example of the billiard system that satisfies
the Cayley type condition, but it is still not periodic since it satisfies the Keane
condition as well. In Section 5.6, we show that there are infinitely many billiard
tables bounded by arcs of confocal conics such that the corresponding flow will not
be uniquely ergodic. In particular, Theorem 5.16 shows that the interval exchange
transformation corresponding to certain tables is equivalent to the Veech example
of minimal and not uniquely ergodic systems; see [Vee1969,MT2002].

2. Billiards and quadrics

As a starting point, we collect some basic notions and facts, which are going to be
used in the sequel. A reader interested in a more detailed presentation of basic and
not so basic geometrical notions may find the following useful: [Ber1987a,Sam1988,
Har1967,DR2011,Ber1987b].

2.1. Elliptical billiards and confocal conics in the Euclidean plane. Bil-
liard systems within confocal conics represent a natural mechanical setting for the
Poncelet porism.

A general family of confocal conics in the plane can be represented as

(2.1) Cλ :
x2

a− λ
+

y2

b− λ
= 1, λ ∈ R,

with a > b > 0 being constants; see Figure 4.

By the famous Chasles theorem [Cha1827], each segment of a given billiard
trajectory is tangent to a fixed conic that is confocal to the boundary (see also
[KT1991, DR2011]). This conic is called the caustic of the given trajectory; see
Figure 3.

Now, fix a constant α0 < b. By the Full Poncelet Theorem, if there is a billiard
trajectory with the caustic Cα0

which becomes closed after successive reflections on
ellipses Cλ1

, . . . , Cλn
, then each point of Cλ1

is a vertex of such a closed trajectory.

The following generalization was proved by Darboux in [Dar1914, Volume 3,
Book VI, Chapter I].

Figure 4. Family of confocal conics in the Euclidean plane
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Figure 5. Poncelet heptagons and the Darboux grid

Theorem 2.1 (Darboux theorem on grids). Suppose that billiard trajectories with
the caustic Cα0

become closed after successive reflections on ellipses Cλ1
, . . . , Cλn

.
Then, the intersection points of i-th and j-th sides of all such trajectories belong to
an ellipse Cλij .

Example 2.2. Consider the case when n = 7 and λ1 = · · · = λ6 �= λ7. By the
Darboux theorem of grids the intersection points of the first and the fourth side, the
second and the fifth, the third and the sixth, as well as the third and the seventh
side of each corresponding heptagon will belong to the same ellipse. In Figure 5
two such heptagons are shown, and the ellipse containing the above-mentioned
intersection points is gray.

Let us note that the Darboux theorem on grids from [Dar1914] was even more
general, since it related to geodesic polygons on Liouville surfaces. For discus-
sion and the generalization of the Darboux theorem to pairs of nonclosed bil-
liard trajectories and to the arbitrary dimension, see [DR2006b,DR2008,DR2011].
The Darboux theorem on grids has also recently been a subject of interest in
[Sch2007,LT2007].

2.1.1. The measure on a caustic of the elliptic billiard.

Proposition 2.3. There exist a measure μ on the conic Cα0
and a function

ρ : (−∞, α0) → R

satisfying the following:

• the measure μ is nonatomic, i.e., μ({X}) = 0 for each point X on Cα0
;

• μ(ℓ) �= 0 for each open arc ℓ of Cα0
;

• for any λ < α0, and each triplet of points X ∈ Cλ, A ∈ Cα0
, B ∈ Cα0

such
that XA, XB are tangent to Cα0

, the following equality holds

μ(AB) = ρ(λ);

• μ(Cα0
) = 1.

Notice that the third property means that the length with respect to the measure
μ of all arcs whose endpoints are on two tangents issued from a point on Cλ have
the same length with respect to the measure μ; see Figure 6.
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A

B

C

D

E

Figure 6. μ(AB) = μ(BC) = μ(DE)

Proof. The space of oriented lines in the plane has a canonical area form dϕ ∧ dp,
where the angle ϕ is the direction of the line, and p is the oriented distance from the
origin [Tab2005]; see also [Arn1978]. This is the only area form which is preserved
by the motions of the plane. This space is in our case foliated to families of lines
tangent to confocal ellipses. The area form induces a measure on each of the leaves.
Since the billiard map preserves the area form and the foliation, it will preserve the
measure on the corresponding caustic as well. For another construction of such a
measure, see [Kin1994].

Take λ0 such that there is a closed billiard trajectory in Cλ0
with the caustic

Cα0
. There is a measure μ satisfying the first three requested properties for λ = λ0;

moreover, such a measure is unique up to the multiplication by constant. Thus,
there is unique measure satisfying the last property as well.

Suppose the closed trajectory has n vertices. Then by Theorem 2.1 there is λ1

such that the billiard trajectories within Cλ1
with the caustic Cα0

become closed
after 2n reflections and Cλ0

contains intersections of i-th and (i + 2)-nd sides of
those trajectories. Moreover, the measure μ will satisfy the requested properties
for Cλ1

.

By induction, we get the sequence Cλk
of ellipses, such that billiard trajectories

within Cλk
with caustic Cα0

are 2kn-periodic and μ satisfies the listed properties for
these ellipses as well. Because of the Darboux theorem, the measure will satisfy the
properties for each Cλ that has closed billiard trajectories whose period is multiples
of n and the caustic Cα0

.

For a periodic trajectory which becomes closed after n bounces on Cλ and m
windings about Cλ0

, ρ(λ) = m
n . Since rational numbers are dense in the reals, μ

will have the required properties for all λ < α0. �

Remark 2.4. The function ρ from Proposition 2.3 is called the rotation function and
its values the rotation numbers. Note that ρ is a continuously strictly decreasing
function with

(

0, 1
2

)

as the image,

lim
λ→−∞

ρ(λ) =
1

2
, lim

λ→α0

ρ(λ) = 0.
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2.1.2. Elliptical billiard as a Hamiltonian system. The standard Poisson bracket
for the billiard system is defined as

{f, g} =
∂f

∂x

∂g

∂ẋ
− ∂f

∂ẋ

∂g

∂x
+

∂f

∂y

∂g

∂ẏ
− ∂f

∂ẏ

∂g

∂y
.

Define the following functions:

Kλ(x, y, ẋ, ẏ) =
ẋ2

a− λ
+

ẏ2

b− λ
− (ẋy − ẏx)2

(a− λ)(b− λ)
.

These functions represent well known first integrals of billiard systems; see
[KT1991].

Proposition 2.5. Each two functions Kλ commute,

{Kλ1
,Kλ2

} = 0,

and for λ1 �= λ2, they are functionally independent.

It is straightforward to prove the following

Proposition 2.6. Along a billiard trajectory within any conic Cλ0
, with the caustic

Cα0
and the speed of the billiard particle being equal to s, the value of each function

Kλ is constant and equal to

Kλ =
α0 − λ

(a− λ)(b− λ)
· s2.

Corollary 2.7. Each Kλ is an integral for the billiard motion in any domain with
the border composed of a few arcs of confocal conics.

Let us recall that a Hamiltonian system on a 2n-dimensional symplectic manifold
is completely integrable if it possesses n functionally independent first integrals
such that the Poisson bracket of any two of them is zero. It is well known that
the Liouville–Arnold theorem (see [Arn1978]) describes regular compact leaves of
a completely integrable Hamiltonian system, which are common level sets of the
first integrals, as tori, with the dynamics being quasi-periodic and uniform on these
invariant tori.

Although having one-sided constraints, the billiards can be seen as Hamiltonian
systems. Previous considerations show that the billiard system within an ellipse
can be considered as a completely integrable system, since it has n = 2 functionally
independent and commuting first integrals. The symplectic manifold is the four-
dimensional cotangent bundle of the plane. This system can be reduced to the
two-dimensional symplectic manifold of lines in the plane, with the standard area
form in the role of the symplectic form. The measure from Proposition 2.3 can be
related to the flat structure on a one-dimensional invariant torus, represented by
the caustic conic.
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Figure 7. Four possible directions of motion from a given point
with the fixed caustic

The invariant tori can also be viewed geometrically: the domain between the
billiard border and the caustic, which is filled with corresponding trajectories, is
the projection of such tori. With the fixed caustic, each point within the domain
is the projection of four points from the corresponding level set of the phase space;
see Figure 7.

When the caustic is an ellipse, then the ring where the trajectories are placed
is the projection of two Liouville tori—each one corresponding to one direction of
winding around the caustic; see Figure 8. If the caustic is a hyperbola, then the
curvilinear quadrangle bounded by the branches of the hyperbola and the ellipse is
the projection of a single torus; see Figure 9.

In Section 5 we will introduce a more general class of systems, the pseudo-
integrable systems, and formulate a generalization of the Liouville–Arnold theorem,
see Theorem 5.5.

Figure 8. Gluing of rings along their borders that gives two tori
in the phase space
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Figure 9. Gluing of curvilinear quadrangles rings along their bor-
ders that gives a torus in the phase space

2.2. Confocal quadrics in the Euclidean space and billiards. A general fam-
ily of confocal quadrics in the d-dimensional Euclidean space is given by

(2.2)
x2
1

b1 − λ
+ · · ·+ x2

d

bd − λ
= 1, λ ∈ R,

with b1 > b2 > · · · > bd > 0; see Figure 10.

Such a family has the following properties.

E1 Each point of the space Ed is the intersection of exactly d quadrics from
(2.2); moreover, all these quadrics are of different geometrical types.

Figure 10. Confocal quadrics in three-dimensional Euclidean space
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E2 The family (2.2) contains exactly d geometrical types of nondegenerate
quadrics. Each type corresponds to one of the disjoint intervals of the
parameter λ: (−∞, bd), (bd, bd−1), . . . , (b2, b1).

The parameters (λ1, . . . , λd) corresponding to the quadrics of (2.2) that contain
a given point in Ed are called Jacobi coordinates. We order them λ1 > · · · > λd.

Now, let us consider the motion of a billiard ball within the ellipsoid E . Without
losing generality, take the parameter corresponding to this ellipsoid to be λ = 0.
Recall that, by the Chasles theorem, each line in Ed is touching some d−1 quadrics
from (2.2). Moreover, for a line and its billiard reflection on a quadric from (2.2),
the d−1 quadrics are the same. This means that each segment of a given trajectory
within E has the same d − 1 caustics. Denote their parameters by β1, . . . , βd−1,
and introduce

{b̄1, . . . , b̄2d} = {b1, . . . , bd, 0, β1, . . . , βd−1},
such that b̄1 ≥ b̄2 ≥ · · · ≥ b̄2d. In this way, we will have 0 = b̄2d < b̄2d−1,
b1 = b̄1 > b̄2. Moreover, it is always βi ∈ {b̄2i, b̄2i+1}, for each i ∈ {1, . . . , d}; see
[Aud1994].

Now, we can summarize the main properties of the flow of the Jacobi coordinates
along the billiard trajectories.

E3 Along a fixed billiard trajectory, the Jacobi coordinate λi (1 ≤ i ≤ d) takes
values in the segment [b̄2i−1, b̄2i].

E4 Along a trajectory, each λi achieves local minima and maxima exactly at
the touching points with the corresponding caustics, the intersection points
with the corresponding coordinate hyper-planes, and, for i = d, at the
reflection points.

E5 The values of λi at those points are b̄2i−1, b̄2i; between the critical points,
λi is changed monotonously.

These properties represent the key to the algebro-geometrical analysis of the
billiard flow.

2.3. Double reflection configurations. The billiards within pencils of quadrics
induce fruitful dynamical systems in arbitrary dimension. They are meaningful in
spaces with non-Euclidean metric as well and even in spaces without any metric at
all.

In this section, we review a fundamental projective geometry configuration of
the double reflection in the d-dimensional projective space Pd over an arbitrary
field of characteristic not equal to 2. A detailed discussion on this matter can be
found in [DR2008,DR2011] (see also [CCS1993]).

The section concludes with Proposition 2.16, where we show that the double
reflection configuration can take the role of the quad-equation; that is, every line in
such a configuration is determined by the remaining three. This simple observation
is going to play a key role in Section 4, in particular in Section 4.2.

Let us start with recalling the notions of quadrics and confocal families in the
projective space.

A quadric in Pd is the set given by an equation of the form

(Qξ, ξ) = 0,
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where Q is a symmetric (d + 1) × (d + 1) matrix, and ξ = [ξ0 : ξ1 : · · · : ξd] are
homogeneous coordinates of a point in space.

Assume two quadrics are given:

Q1 : (Q1ξ, ξ) = 0, Q2 : (Q2ξ, ξ) = 0.

A pencil of quadrics is the family of quadrics given by equations

((Q1 + λQ2)ξ, ξ) = 0, λ ∈ P1.

A confocal system of quadrics is a family of quadrics such that its projective dual
is a pencil of quadrics. For a detailed account on geometry of quadrics and their
pencils, we refer the reader to [DR2011,Ber1987b].

Now, let us recall the definition of reflection off a quadric in the projective space,
where metric is not defined. This definition, together with its crucial properties
(the One reflection theorem and the Double reflection theorem) can be found in
[CCS1993].

Denote by u the tangent plane to Q1 at the point x and by z the pole of u with
respect to Q2. Suppose lines ℓ1 and ℓ2 intersect at x, and the plane containing
these two lines meets u along ℓ; see Figure 11.

Definition 2.8. If the lines ℓ1, ℓ2, xz, ℓ are coplanar and harmonically conjugated,
we say that ℓ1 is reflected to ℓ2 off the quadric Q1.

It can be proved that this definition does not depend on the choice of the quadric
Q2 from a given confocal system [CCS1993].

Figure 11. The reflection in the projective space
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Figure 12. One reflection theorem

If we introduce a coordinate system in which the quadricsQ1 and Q2 are confocal
in the usual sense, the reflection introduced by Definition 2.8 is the same as the
standard metric one.

Theorem 2.9 (One reflection theorem). Suppose a line ℓ1 is reflected to ℓ2 off Q1

at a point x, with respect to the confocal system determined by the quadrics Q1 and
Q2. Let ℓ1 intersect Q2 at y′1 and y1, let u be the tangent plane to Q1 at x, and
let z be the pole of u with respect to Q2. Then the lines y′1z and y1z contain the
intersecting points y′2 and y2, respectively, of the line ℓ2 with Q2. The converse is
also true; see Figure 12.

Theorem 2.9 enables us to prove that the caustics are preserved by the reflection:

Corollary 2.10. Let lines ℓ1 and ℓ2 reflect to each other off Q1 with respect to the
confocal system determined by the quadrics Q1 and Q2. Then ℓ1 is tangent to Q2

if and only if ℓ2 is tangent to Q2; ℓ1 intersects Q2 at two points if and only if ℓ2
intersects Q2 at two points.

The next theorem is crucial for our further considerations; its meaning is that
billiard reflections off confocal quadrics commute.

Theorem 2.11 (Double reflection theorem). Suppose that Q1, Q2 are given quad-
rics and x1 ∈ Q1, y1 ∈ Q2. Let u1 be the tangent plane of Q1 at x1; z1 the pole of
u1 with respect to Q2; v1 the tangent plane of Q2 at y1; and w1 the pole of v1 with
respect to Q1. Denote by x2 the intersecting point of line w1x1 with Q1, x2 �= x1; by
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Figure 13. Double reflection theorem

y2 the intersection of y1z1 with Q2, y2 �= y1; and ℓ1 = x1y1, ℓ2 = x1y2, ℓ
′
1 = y1x2,

ℓ′2 = x2y2.

Then the pair ℓ1, ℓ2 obeys the reflection law off Q1 at x1; ℓ1, ℓ′1 obeys the
reflection law off Q2 at y1; ℓ2, ℓ

′
2 obeys the reflection law off Q2 at y2; and ℓ′1, ℓ

′
2

obeys the reflection law off Q1 at point x2; see Figure 13.

Let us remark that in Theorem 2.11 the four tangent planes at the reflection
points belong to a pencil; see Figure 14.

Corollary 2.12. If the line ℓ1 is tangent to a quadric Q′ confocal with Q1 and Q2,
then ℓ2, ℓ

′
1, ℓ

′
2 also touch Q′.

The following definition of virtual reflection configuration and double reflection
configuration is from [DR2008], where these configurations played the central role.
In Theorem 2.14, which is also proved in [DR2008], some important properties of
these configurations are given.

Let points x1, x2 belong to Q1 and y1, y2 to Q2.

y1

x1

x2
y2

Figure 14. Double reflection configuration

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BICENTENNIAL OF THE GREAT PONCELET THEOREM 389

Definition 2.13. We will say that the quadruple of points x1, x2, y1, y2 constitutes
a virtual reflection configuration if the pairs of lines x1y1, x1y2; x2y1, x2y2; x1y1,
x2y1; x1y2, x2y2 satisfy the reflection law at the points x1, x2 off Q1 and y1, y2 off
Q2, respectively, with respect to the confocal system determined by Q1 and Q2.

If, additionally, the tangent planes to Q1,Q2 at x1, x2; y1, y2 belong to a pencil,
we say that these points constitute a double reflection configuration (see Figure 14).

Now we list some of the basic facts about the double reflection configurations.

Theorem 2.14. Let Q1, Q2 be two quadrics in the projective space Pd, x1, x2

points on Q1 and y1, y2 on Q2. If the tangent hyperplanes at these points to
the quadrics belong to a pencil, then x1, x2, y1, y2 constitute a virtual reflection
configuration.

Furthermore, suppose that the projective space is defined over the field of reals.
Introduce a coordinate system, such that Q1, Q2 become confocal ellipsoids in the
Euclidean space. If Q2 is placed inside Q1, then the sides of the quadrilateral
x1y1x2y2 obey the real reflection from Q1 and the virtual reflection from Q2.

The statement converse to Theorem 2.14 is the following:

Proposition 2.15. In the Euclidean space Ed, two confocal ellipsoids E1 and E2
are given. Let points X1, X2 belong to E1, Y1, Y2 to E2, and let α1, α2, β1, β2 be the
corresponding tangent planes. If a quadruple X1, X2, Y1, Y2 is a virtual reflection
configuration, then planes α1, α2, β1, β2 belong to a pencil.

The next proposition shows that three lines of a double reflection configuration
uniquely determine the fourth one.

Proposition 2.16. Let ℓ, ℓ1, ℓ2 be lines, and let Q1, Q2 be quadrics in the pro-
jective space. Suppose that ℓ, ℓ1 reflect to each other off Q1, and ℓ, ℓ2 off Q2, with
respect to the confocal system determined by these two quadrics. Then there is a
unique line ℓ12 such that four lines ℓ, ℓ1, ℓ2, ℓ12 form a double reflection configura-
tion.

Remark 2.17. Proposition 2.16 shows that the double reflection configuration is
playing the role of the quad-equation for lines in the projective space; see Section
4.

2.4. Pseudo-Euclidean spaces and confocal families of quadrics. In this
section, we first give a necessary account of the basic notions connected with the
pseudo-Euclidean spaces and their confocal families of quadrics.

2.4.1. Pseudo-Euclidean spaces. The pseudo-Euclidean space Ek,l is a d-dimen-
sional space Rd with the pseudo-Euclidean scalar product

(2.3) 〈x, y〉k,l = x1y1 + · · ·+ xkyk − xk+1yk+1 − · · · − xdyd.

Here, k, l ∈ {1, . . . , d − 1}, k + l = d. The pair (k, l) is called the signature of the
space. Denote Ek,l = diag(1, 1, . . . , 1,−1, . . . ,−1), with k 1’s and l −1’s. Then the
pseudo-Euclidean scalar product is

〈x, y〉k,l = Ek,lx ◦ y,
where ◦ is the standard Euclidean product.
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The pseudo-Euclidean distance between points x, y is

distk,l(x, y) =
√

〈x− y, x− y〉k,l.

Since the scalar product can be negative, notice that the pseudo-Euclidean distance
can have imaginary values as well—between the two roots, we choose the one with
the positive imaginary part.

Let ℓ be a line in the pseudo-Euclidean space, and let v be its vector. ℓ is called

• space-like if 〈v, v〉k,l > 0;
• time-like if 〈v, v〉k,l < 0;
• and light-like if 〈v, v〉k,l = 0.

Two vectors x, y are orthogonal in the pseudo-Euclidean space if 〈x, y〉k,l = 0. Note
that a light-like line is orthogonal to itself.

For a given vector v �= 0, consider a hyperplane v ◦ x = 0. Vector Ek,lv is
orthogonal to the hyperplane; moreover, all other orthogonal vectors are collinear
with Ek,lv. If v is light-like, then so is Ek,lv, and Ek,lv belongs to the hyperplane.

2.4.2. Billiard reflection in the pseudo-Euclidean space. Let v be a vector, and let
α be a hyperplane in the pseudo-Euclidean space. Decompose the vector v into the
sum v = a+ nα of a vector nα orthogonal to α and a belonging to α. Then vector
v′ = a− nα is the billiard reflection of v on α. It is easy to see that then v is also
the billiard reflection of v′ with respect to α.

Moreover, let us note that the lines containing the vectors v, v′, a, nα are
harmonically conjugated [KT2009].

Note that v = v′ if v is contained in α and v′ = −v if it is orthogonal to α. If nα

is light-like, which means that it belongs to α, then the reflection is not defined.

A line ℓ′ is the billiard reflection of ℓ off a smooth surface S if their intersection
point ℓ ∩ ℓ′ belongs to S and the vectors of ℓ, ℓ′ are reflections of each other with
respect to the tangent plane of S at this point.

Remark 2.18. It can be seen directly from the definition of reflection that the type
of line is preserved by the billiard reflection. Thus, the lines containing segments
of a given billiard trajectory within S are all of the same type: they are all either
space-like, time-like, or light-like.

If S is an ellipsoid, then it is possible to extend the reflection mapping to those
points where the tangent planes contain the orthogonal vectors. At such points, a
vector reflects into the opposite one, i.e., v′ = −v and ℓ′ = ℓ. For the explanation,
see [KT2009]. As follows from the explanation given there, it is natural to consider
each such a reflection as two reflections.

2.4.3. Families of confocal quadrics. For a given set of positive constants a1, a2,
. . . , ad, an ellipsoid is given by

(2.4) E :
x2
1

a1
+

x2
2

a2
+ · · ·+ x2

d

ad
= 1.

Let us remark that an equation of any ellipsoid in the pseudo-Euclidean space can
be brought into the canonical form (2.4) using transformations that preserve the
scalar product (2.3).
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The family of quadrics confocal with E is

(2.5) Qλ :
x2
1

a1 − λ
+ · · ·+ x2

k

ak − λ
+

x2
k+1

ak+1 + λ
+ · · ·+ x2

d

ad + λ
= 1, λ ∈ R.

Unless stated differently, we are going to consider the nondegenerate case, when
the set {a1, . . . , ak,−ak+1, . . . ,−ad} consists of d different values,

a1 > a2 > · · · > ak > 0 > −ak+1 > · · · > −ad.

For λ ∈ {a1, . . . , ak,−ak+1, . . . ,−ad}, the quadric Qλ is degenerate, and it coin-
cides with the corresponding coordinate hyperplane.

It is natural to join one more degenerate quadric to the family (2.5): the one
corresponding to the value λ = ∞, that is, the hyperplane at the infinity.

For each point x in the space, there are exactly d values of λ, such that the
relation (2.5) is satisfied. However, not all the values are necessarily real: either
all d of them are real or there are d − 2 real and two conjugate complex values.
Thus, through every point in the space, there are either d or d − 2 quadrics from
the family (2.5) [KT2009].

The line x+ tv (t ∈ R) is tangent to quadric Qλ if the quadratic equation

(2.6) Aλ(x+ tv) ◦ (x+ tv) = 1

has a double root. Here we denote

Aλ = diag

(

1

a1 − λ
, . . . ,

1

ak − λ
,

1

ak+1 + λ
, . . . ,

1

ad + λ

)

.

Now, calculating the discriminant of (2.6), we get

(2.7) (Aλx ◦ v)2 − (Aλv ◦ v)(Aλx ◦ x− 1) = 0,

which is equivalent to

(2.8)
d

∑

i=1

εiFi(x, v)

ai − εiλ
= 0,

where

(2.9) Fi(x, v) = εiv
2
i +

∑

j �=i

(xivj − xjvi)
2

εjai − εiaj

with ε’s given by

εi =

{

1, 1 ≤ i ≤ k,

−1, k + 1 ≤ i ≤ d.

The equation (2.8) can be transformed to

(2.10)
P(λ)

∏d
i=1(ai − εiλ)

= 0,

where the coefficient of λd−1 in P(λ) is equal to 〈v, v〉k,l. Thus, the polynomial
P(λ) is of degree d− 1 for space-like and time-like lines, and is of a smaller degree
for light-like lines. However, in the latter case, it turns out to be natural to consider
the polynomial P(λ) also as of degree d − 1, taking the corresponding roots to be
equal to infinity. So, the light-like lines are characterized by being tangent to the
quadric Q∞.
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Having this setting in mind, we note that it is proved in [KT2009] that the
polynomial P(λ) has at least d− 3 roots in R ∪ {∞}.

Thus, we have

Proposition 2.19. Any line in the space is tangent to either d−1 or d−3 quadrics
of the family (2.5). If this number is equal to d − 3, then there are two conjugate
complex values of λ, such that the line is tangent also to these two quadrics in Cd.

This statement with the proof is given in [KT2009]. Let us remark that in
[KT2009], it is claimed that a light-like line has only d−2 or d−4 caustic quadrics.
That is because Q∞ is not considered there as a member of the confocal family.

As noted in [KT2009], a line having nonempty intersection with an ellipsoid from
(2.5) will be tangent to d− 1 quadrics from the confocal family. However, the next
theorem, proved in [DR2012a], will provide some more insight into the distribution
of the parameters of the caustics of a given line, together with a detailed description
of the distribution of the parameters of quadrics containing a given point placed
inside an ellipsoid from (2.5).

Theorem 2.20. In the pseudo-Euclidean space Ek,l consider a line intersecting
ellipsoid E (2.4). Then this line is touching d− 1 quadrics from (2.5). If we denote
their parameters by α1, . . . , αd−1 and take

{b1, . . . , bp, c1, . . . , cq} = {ε1a1, . . . , εdad, α1, . . . , αd−1},
cq ≤ · · · ≤ c2 ≤ c1 < 0 < b1 ≤ b2 ≤ · · · ≤ bp, p+ q = 2d− 1,

we will additionally have

• if the line is space-like, then p = 2k − 1, q = 2l, a1 = bp, αi ∈ {b2i−1, b2i}
for 1 ≤ i ≤ k − 1, and αj+k−1 ∈ {c2j−1, c2j} for 1 ≤ j ≤ l;

• if the line is time-like, then p = 2k, q = 2l − 1, cq = −ad, αi ∈ {b2i−1, b2i}
for 1 ≤ i ≤ k, and αj+k ∈ {c2j−1, c2j} for 1 ≤ j ≤ l − 1;

• if the line is light-like, then p = 2k, q = 2l − 1, bp = ∞ = αk, bp−1 = a1,
αi ∈ {b2i−1, b2i} for 1 ≤ i ≤ k−1, and αj+k ∈ {c2j−1, c2j} for 1 ≤ j ≤ l−1.

Moreover, for each point on ℓ inside E , there are exactly d distinct quadrics from
(2.5) containing it. More precisely, there is exactly one parameter of these quadrics
in each of the intervals

(c2l−1, c2l−2), . . . , (c3, c2), (c1, 0), (0, b1), (b2, b3), . . . , (b2k−2, b2k−1).

The analogue of Theorem 2.20 for the Euclidean space is proved in [Aud1994].

Corollary 2.21. For each point placed inside an ellipsoid in the pseudo-Euclidean
space, there are exactly two other ellipsoids from the confocal family containing this
point.

3. Pseudo-Euclidean spaces and the Poncelet Theorem

3.1. Minkowski plane, confocal conics and billiards.

3.1.1. Confocal conics in the Minkowski plane. Here, we give a review of basic
properties of families of confocal conics in the Minkowski plane; see [DR2012a].
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Figure 15. Family of confocal conics in the Minkowski plane

Denote by

(3.1) E :
x2

a
+

y2

b
= 1

an ellipse in the plane, with a, b being fixed positive numbers.

The associated family of confocal conics is

(3.2) Cλ :
x2

a− λ
+

y2

b+ λ
= 1, λ ∈ R.

The family is shown on Figure 15. We may distinguish the following three
subfamilies in the family (3.2):

• for λ ∈ (−b, a), the conic Cλ is an ellipse;
• for λ < −b, the conic Cλ is a hyperbola with x-axis as the major one;
• for λ > a, it is a hyperbola again, but now its major axis is y-axis.

In addition, there are three degenerated quadrics, Ca, Cb, C∞, corresponding to
y-axis, x-axis, and the line at the infinity, respectively. Note the three pairs of foci
F1(

√
a+ b, 0), F2(−

√
a+ b, 0); G1(0,

√
a+ b), G2(0,−

√
a+ b); and H1(1 : −1 : 0),

H2(1 : 1 : 0) on the line at infinity.

We notice four distinguished lines,

x+ y =
√
a+ b, x+ y = −

√
a+ b,

x− y =
√
a+ b, x− y = −

√
a+ b.

These lines are common tangents to all conics from the confocal family.

Some geometric properties of conics in the Minkowski plane are analogous to the
Euclidean ones. For example, for each point on the conic Cλ, either the sum or the
difference of its Minkowski distances from the foci F1 and F2 is equal to 2

√
a− λ;

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



394 VLADIMIR DRAGOVIĆ AND MILENA RADNOVIĆ

either the sum or the difference of the distances from the other pair of foci G1, G2

is equal to 2
√
−b− λ [DR2012a].

We invite the reader to make further comparisons of the confocal families of
conics in the Minkowski and Euclidean planes (see Figures 4 and 15).

3.1.2. Relativistic conics. Since a family of confocal conics in the Minkowski plane
contains three geometric types of conics, it is natural to introduce relativistic conics,
which are suggested in [BM1962]. In this section, we give a brief account of related
analysis.

Consider the points F1(
√
a+ b, 0) and F2(−

√
a+ b, 0) in the plane.

For a given constant c ∈ R+ ∪ iR+, a relativistic ellipse is the set of points X
satisfying

dist1,1(F1, X) + dist1,1(F2, X) = 2c,

while a relativistic hyperbola is the union of the sets given by the equations:

dist1,1(F1, X)− dist1,1(F2, X) = 2c,

dist1,1(F2, X)− dist1,1(F1, X) = 2c.

The relativistic conics can be described as follows.

0 < c <
√
a+ b: The corresponding relativistic conics lie on ellipse Ca−c2 from

family (3.2). The ellipse Ca−c2 is split into four arcs by touching points with
the four common tangent lines. Thus, the relativistic ellipse is the union of
the two arcs intersecting the y-axis, while the relativistic hyperbola is the
union of the other two arcs.

c >
√
a+ b: The relativistic conics lie on Ca−c2—a hyperbola with x-axis as

the major one. Each branch of the hyperbola is split into three arcs by
touching points with the common tangents. Thus, the relativistic ellipse is
the union of the two finite arcs, while the relativistic hyperbola is the union
of the four infinite ones.

c is imaginary: The relativistic conics lie on hyperbola Ca−c2—a hyperbola
with y-axis as the major one. As in the previous case, the branches are
split into six arcs in total by common points with the four tangents. The
relativistic ellipse is the union of the four infinite arcs, while the relativistic
hyperbola is the union of the two finite ones.

The conics are shown on Figure 16.

Notice that all relativistic ellipses are disjoint with each other, as well as all
relativistic hyperbolas. Moreover, at the intersection point of a relativistic ellipse
which is a part of the geometric conic Cλ1

from the confocal family (3.2) and a
relativistic hyperbola belonging to Cλ2

, it is always λ1 < λ2.

3.1.3. Periodic trajectories of an elliptical billiard. Analytic conditions for the ex-
istence of closed polygonal lines inscribed in one conic and circumscribed about
another one in the projective plane are derived by Cayley [Cay1854, Cay1861].
They can be applied to the billiard trajectories within ellipses in the Minkowski
plane as well, since each such trajectory has a caustic among confocal conics. In
this section, we shall analyze in more detail some particular properties related to
Minkowski geometry.
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Figure 16. Relativistic conics in the Minkowski plane: relativistic
ellipses are represented by full lines, and hyperbolas by dashed ones

Theorem 3.1. In the Minkowski plane, consider a billiard trajectory T within
ellipse E given by equation (3.1). The trajectory is periodic with period n = 2m if
and only if the following condition is satisfied:

(3.3) det

⎛

⎜

⎜

⎝

B3 B4 . . . Bm+1

B4 B5 . . . Bm+2

. . . . . . . . . . . .
Bm+1 Bm+2 . . . B2m−1

⎞

⎟

⎟

⎠

= 0.

The trajectory T is periodic with period n = 2m+ 1 if and only if Cα is an ellipse
and the following condition is satisfied:

(3.4) det

⎛

⎜

⎜

⎝

B3 B4 . . . Bm+2

. . . . . . . . . . . .
Bm+1 Bm+2 . . . B2m

Cm+1 Cm+2 . . . C2m

⎞

⎟

⎟

⎠

= 0.

Here
√

(a− t)(b+ t)(α− t) = B0 +B1t+B2t
2 + · · · ,

√

(a− t)(b+ t)

α− t
= C0 + C1t+ C2t

2 + · · ·

are the Taylor expansions around t = 0.

Proof. Each point inside E is the intersection of exactly two ellipses Cλ1
and Cλ2

from
(3.2). The parameters λ1, λ2 are generalized Jacobi coordinates. Take λ1 < λ2.

Consider first the case when Cα is a hyperbola. Then along T those coordinates
will take values in segments [−b, 0] and [0, a], respectively, with the endpoints of the

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



396 VLADIMIR DRAGOVIĆ AND MILENA RADNOVIĆ

segments as the only local extrema. λ1 achieves the value −b at the intersections
of T with the x-axis, while λ2 achieves a at the intersections with the y-axis. At
each reflection point, one of the coordinates achieves the value 0. They can both be
equal to 0 only at the points where E has a light-like tangent, and there reflection
is counted twice.

This means that on a closed trajectory the number of reflections is equal to
the number of intersection points with the coordinate axes. Notice that a periodic
trajectory crosses each of the coordinate axes an even number of times.

The condition on T to become closed after n reflections on E , n1 crossings over
x-axis, and n2 over y-axis is that the equality

n1Pa + n2P−b = nP0

holds on the elliptic curve

s2 = (a− t)(b+ t)(α− t),

where by Pβ we denote a point on the curve corresponding to t = β, and P∞ is
taken to be the neutral for the elliptic curve group.

From the previous discussion n1+n2 = n, and all three numbers are even. Pa and
P−b are branching points of the curve, thus 2Pa = 2P−b = 2P∞, so the condition
becomes nP0 = nP∞, which is equivalent to (3.3).

Now suppose Cα is an ellipse. The generalized Jacobi coordinates take values in
the segments [−b, 0], [0, α] or in [α, 0], [0, a], depending on the sign of α. Since both
cases proceed in a similar way, we assume α < 0.

The coordinate λ1 has the extrema on T at the touching points with the caustic
and some of the reflection points, while λ2 has the extrema at the crossing points
with y-axis and some of the reflection points.

The condition on T to become closed after n reflections on E , with n1 crossings
over the y-axis, and n2 touching points with the caustic is

n1Pa + n2Pα = nP0,

with n1 + n2 = n and n1 even.

Thus, for n even we get (3.3) in the same manner as for a hyperbola as the
caustic.

For n odd, the condition is equivalent to nP0 = (n − 1)P∞ + Pα. Notice that
one basis of the space L((n− 1)P∞ + Pα) is

1, t, . . . , tm, s, ts, . . . , tm−2s,
s

t− α
.

Using this basis, as it is shown in [DR2006a,DR2011], we obtain (3.4). �

Example 3.2 (3-periodic trajectories). Let us find all 3-periodic trajectories within
the ellipse E given by (3.1) in the Minkowski plane, i.e., all conics Cα from the
confocal family (3.2) corresponding to such trajectories.

The condition is

C2 =
3a2b2 + 2a2bα− 2ab2α− a2α2 − 2abα2 − b2α2

8(ab)3/2α5/2
= 0,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BICENTENNIAL OF THE GREAT PONCELET THEOREM 397

which gives the following solutions for the parameter α of the caustic:

α1 =
ab

(a+ b)2
(a− b− 2

√

a2 + ab+ b2),

α2 =
ab

(a+ b)2
(a− b+ 2

√

a2 + ab+ b2).

Notice that −b < α1 < 0 < α2 < a, so both caustics Cα1
, Cα2

are ellipses.

Example 3.3 (4-periodic trajectories). By Theorem 3.1, the condition is B3 = 0.
Since

B3 =
(−ab− aα+ bα)(−ab+ aα+ bα)(ab+ aα+ bα)

16(abα)5/2
,

we obtain the following solutions:

α1 =
ab

b− a
, α2 =

ab

a+ b
, α3 = − ab

a+ b
.

Since α1 �∈ (−b, a) and α2, α3 ∈ (−b, a), conic Cα1
is a hyperbola, while Cα2

, Cα3

are ellipses.

Example 3.4 (5-periodic trajectories). The condition is

det

(

B3 B4

C3 C4

)

= 0.

Taking a = b = 1, we get that this is equivalent to 64α6−16α4−52α2+5 = 0. This
equation has four solutions in R, all four contained in (−1, 1), and two conjugated
solutions in C.

3.1.4. Light-like trajectories of an elliptical billiard. In this section we consider in
more detail light-like trajectories of the elliptical billiard; see Figure 17 for an
example of such a trajectory. We are going to review results from [DR2012a] and
illustrate them by some examples.

Periodic light-like trajectories. Let us first notice that the successive segments of
light-like billiard trajectories are orthogonal to each other (see Figure 17). Thus a
trajectory can close only after an even number of reflections.

Figure 17. Light-like billiard trajectory
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The analytic condition for n-periodicity of a light-like billiard trajectory within
the ellipse E given by equation (3.1) can be derived as in Theorem 3.1. We get
the condition stated in (3.3), with α = ∞, i.e., (Bi) are coefficients in the Taylor

expansion around t = 0 of
√

(a− t)(b+ t) = B0 +B1t+B2t
2 + · · · .

Now we are going to derive the analytic condition for periodic light-like trajec-
tories in another way, which will lead to a more compact form of (3.3).

By applying affine transformations, one can transform an ellipse into a circle,
and the billiard map on the light-like lines becomes conjugated to a rotation of the
circle. A computation of the angle of rotation gives the following.

Theorem 3.5. A light-like billiard trajectory within ellipse E is periodic with period
n, where n is an even integer if and only if

(3.5) arc tan

√

a

b
∈
{

kπ

n

∣

∣

∣ 1 ≤ k <
n

2
,
(

k,
n

2

)

= 1

}

.

As an immediate consequence, we get

Corollary 3.6. For a given even integer n, the number of different ratios of the
axes of ellipses having n-periodic light-like billiard trajectories is equal to

{

ϕ(n)/2 if n is not divisible by 4,

ϕ(n)/4 if n is divisible by 4,

where ϕ is Euler’s totient function, i.e., the number of positive integers not exceed-
ing n that are relatively prime to n.

Remark 3.7. There are four points on E where the tangents are light-like. Those
points cut four arcs on E . An n-periodic trajectory within E hits each one of a pair
of opposite arcs exactly k times, and n

2 − k times the arcs from the other pair.

Example 3.8 (10-perodic light-like trajectories). For n = 10, condition (3.3) is

det

⎛

⎜

⎜

⎝

B3 B4 B5 B6

B4 B5 B6 B7

B5 B6 B7 B8

B6 B7 B8 B9

⎞

⎟

⎟

⎠

=
(a+ b)20(5a2 − 10ab+ b2)(a2 − 10ab+ 5b2)

(4ab)22
= 0.

From here, we get that light-like billiard trajectories are 10-periodic in ellipses with

the ratio of the axes equal to either
√

1 + 2√
5
or

√

5 + 2
√
5.

From condition (3.5), we get
√

a

b
∈
{

tan
π

10
, tan

2π

10
, tan

3π

10
, tan

4π

10

}

.

Since

tan
π

10
=

√

1− 2√
5
=

1
√

5 + 2
√
5
=

1

tan 4π
10

,

tan
3π

10
=

√

1 +
2√
5
=

1
√

5− 2
√
5
=

1

tan 2π
10

,

both conditions give the same result.

A few of such trajectories are shown in Figures 18 and 19.
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Figure 18. Light-like billiard trajectories with period 10 in the
ellipse satisfying a = (1 + 2/

√
5)b

Figure 19. Light-like billiard trajectories with period 10 in the
ellipse satisfying a = (5 + 2

√
5)b

Light-like trajectories in ellipses and rectangular billiards. The next statement is
akin to the claim that the billiard flow in a rectangle in a given direction is equivalent
to a rotation of a circle.

Proposition 3.9. The flow of the light-like billiard trajectories within ellipse E is
trajectorially equivalent to the flow of those billiard trajectories within a rectangle
whose angle with the sides is π

4 . The ratio of the sides of the rectangle is equal to

π

2 arc tan

√

a

b

− 1.

Remark 3.10. The flow of the light-like billiard trajectories within a given oval in the
Minkowski plane will be trajectorially equivalent to the flow of certain trajectories
within a rectangle whenever an invariant measure m on the oval exists such that
m(AB) = m(CD) and m(BC) = m(AD), where A, B, C, D are the points on the
oval where the tangents are light-like. Some results and discussion regarding this
situation are given in [GKT2007].

3.2. Relativistic quadrics. The aim of this section is to present the relativistic
quadrics—a very recent object, which has been a main tool in our study of bil-
liard dynamics (see [DR2012a]). First, we study geometrical types of quadrics in a
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confocal family in three-dimensional Minkowski space. Then we analyze the tropic
curves on quadrics in the three-dimensional case, and we introduce the important
notion of discriminant sets Σ± corresponding to a confocal family. We present the
main facts about discriminant sets in Propositions 3.11, 3.13, 3.15, 3.17. We study
curved tetrahedra T ±, which represent singularity sets of Σ±, and we collect related
results in Proposition 3.12. As the next important step, we introduce decorated
Jacobi coordinates for three-dimensional Minkowski space, and we give a detailed
description of the colouring into three colours. Each colour corresponds to a rela-
tivistic type, and we describe decomposition of a geometric quadric of each of the
four geometric types into relativistic quadrics. This appears to be a rather involved
combinatorial-geometric problem, and we solve it by using the previous analysis of
the discriminant surfaces. We give a complete description of all three relativistic
types of quadrics. At the end, we generalize the definition of the decorated Jacobi
coordinates to an arbitrary dimension. And finally in Proposition 3.27 we prove
properties PE1 and PE2.

3.2.1. Confocal quadrics in three-dimensional Minkowski space and their geometri-
cal types. Let us start with the three-dimensional Minkowski space E2,1. A general
confocal family of quadrics in this space is given by

(3.6) Qλ :
x2

a− λ
+

y2

b− λ
+

z2

c+ λ
= 1, λ ∈ R,

with a > b > 0, c > 0, see Figure 20.

Figure 20. Confocal quadrics in three-dimensional Minkowski space
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The family (3.6) contains four geometrical types of quadrics:

• 1-sheeted hyperboloids oriented along the z-axis, for λ ∈ (−∞,−c);
• ellipsoids, corresponding to λ ∈ (−c, b);
• 1-sheeted hyperboloids oriented along the y-axis, for λ ∈ (b, a);
• 2-sheeted hyperboloids, for λ ∈ (a,+∞)—these hyperboloids are oriented
along the z-axis.

In addition, there are four degenerated quadrics, Qa, Qb, Q−c, Q∞, that is, the
planes x = 0, y = 0, z = 0, and the plane at infinity, respectively. In the coordinate
planes, we single out the following conics:

• the hyperbola Cyz
a : − y2

a−b +
z2

c+a = 1 in the plane x = 0,

• the ellipse Cxz
b : x2

a−b +
z2

c+b = 1 in the plane y = 0,

• the ellipse Cxy
−c : x2

a+c +
y2

b+c = 1 in the plane z = 0.

Notice that a confocal family of quadrics in three-dimensional Euclidean space
contains only three types of quadrics; see Figure 10.

3.2.2. Tropic curves on quadrics in three-dimensional Minkowski space and discrim-
inant sets Σ±. On each quadric, notice the tropic curves—the set of points where
the induced metrics on the tangent plane is degenerate.

Since the tangent plane at the point (x0, y0, z0) of Qλ is given by the equation

xx0

a− λ
+

yy0
b− λ

+
zz0
c+ λ

= 1,

and the induced metric is degenerate if and only if the parallel plane that contains
the origin is tangent to the light-like cone x2 + y2 − z2 = 0, i.e.,

x2
0

(a− λ)2
+

y20
(b− λ)2

− z20
(c+ λ)2

= 0,

we get that the tropic curves on Qλ are the intersection of the quadric with the
cone

x2

(a− λ)2
+

y2

(b− λ)2
− z2

(c+ λ)2
= 0;

see [KT2009].

Now, consider the set of the tropic curves on all quadrics of the family (3.6).

Proposition 3.11. The union of the tropic curves on all quadrics of (3.6) is the
union of two ruled surfaces Σ+ and Σ− which can be parametrically represented as

Σ+ : x =
a− λ√
a+ c

cos t, y =
b− λ√
b+ c

sin t, z = (c+ λ)

√

cos2 t

a+ c
+

sin2 t

b+ c
,

Σ− : x =
a− λ√
a+ c

cos t, y =
b− λ√
b+ c

sin t, z = −(c+ λ)

√

cos2 t

a+ c
+

sin2 t

b+ c
,

with λ ∈ R, t ∈ [0, 2π).

The intersection of these two surfaces is an ellipse in the xy-plane

Σ+ ∩ Σ− :
x2

a+ c
+

y2

b+ c
= 1, z = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



402 VLADIMIR DRAGOVIĆ AND MILENA RADNOVIĆ

Figure 21. The union of all tropic curves of a confocal family

The two surfaces Σ+, Σ− are developable as embedded into Euclidean space. More-
over, their generatrices are all light-like.

Surfaces Σ+ and Σ− from Proposition 3.11 are represented on Figure 21.

In [Pei1999], a generalization of the Gauss map to the surfaces in three-dimen-
sional Minkowski space is introduced. Namely, the pseudo vector product is intro-
duced as

x∧y =

∣

∣

∣

∣

∣

∣

x1 x2 x3

y1 y2 y3
e1 e2 −e3

∣

∣

∣

∣

∣

∣

= (x2y3−x3y2, x3y1−x1y3, −(x1y2−x2y1)) = E2,1(x×y).

It is easy to check that 〈x ∧ y,x〉2,1 = 〈x ∧ y,y〉2,1 = 0.

Then, for the surface S : U → E2,1, with U ⊂ R2, the Minkowski Gauss map is
defined as

G : U → RP2, G(x1, x2) = P

(

∂S

∂x1
∧ ∂S

∂x2

)

,

where P : R3 \ {(0, 0, 0)} → RP2 is the usual projectivization.

Since rλ∧rt is light-like for all λ and t, the Minkowski Gauss map of the surfaces
Σ± is singular at all points.

The pseudo-normal vectors to Σ± are all light-like, thus these surfaces are light-
like developable, as defined in [CI2010]. There, a classification of such surfaces is
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Figure 22. Curved tetrahedron T +: the union of all tropic curves
on Σ+ corresponding to λ ∈ (b, a)

given—each one is contained part-by-part in the following:

• a light-like plane,
• a light-like cone,
• a tangent surface of a light-like curve.

Since Σ+ and Σ− are contained neither in a plane nor in a cone, we expect that
they will be tangent surfaces of some light-like curve, which is going to be shown
in the sequel; see Corollary 3.16 later in this section.

On each of the surfaces Σ+, Σ−, we can notice that tropic lines corresponding
to 1-sheeted hyperboloids oriented along y-axis form one curved tetrahedron; see
Figure 21. Denote the tetrahedra by T + and T −, respectively; they are symmetric
with respect to the xy-plane. In Figure 22, the tetrahedron T + ⊂ Σ+ is shown.

Let us summarize the properties of these tetrahedra.

Proposition 3.12. Consider the subset T + of Σ+ determined by the condition
λ ∈ [b, a]. This set is a curved tetrahedron with the following properties:

• its vertices are

V1

(

a− b√
a+ c

, 0,
b+ c√
a+ c

)

, V2

(

− a− b√
a+ c

, 0,
b+ c√
a+ c

)

,

V3

(

0,
a− b√
b+ c

,
a+ c√
b+ c

)

, V4

(

0, − a− b√
b+ c

,
a+ c√
b+ c

)

;

• the shorter arcs of the conics Cxz
b and Cyz

a determined by V1, V2 and V3, V4,
respectively, are two edges of the tetrahedron;

• those two edges represent a self-intersection of Σ+;
• other four edges are determined by the relation −a−b+2λ+(a−b) cos 2t = 0;
• those four edges are cuspidal edges of Σ+;
• thus, at each vertex of the tetrahedron, a swallowtail singularity of Σ+ oc-
curs.
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Figure 23. The tropic curves and its light-like tangents on a hyperboloid

It can be proved that the tropic curves of the quadric Qλ0
represent exactly the

locus of points (x, y, z), where equation

(3.7)
x2

a− λ
+

y2

b− λ
+

z2

c+ λ
= 1

has λ0 as a multiple root.

Proposition 3.13. A tangent line to a tropic curve of a nondegenerate quadric
of the family (3.6) is always space-like, except on a 1-sheeted hyperboloid oriented
along the y-axis.

The tangent lines of a tropic on 1-sheeted hyperboloids oriented along the y-axis
are light-like at exactly four points, while at other points of the tropic curve the
tangents are space-like.

Moreover, a tangent line to the tropic of a quadric from (3.6) belongs to the
quadric if and only if it is light-like.

Remark 3.14. In other words, the only quadrics of the family (3.6) that may contain
a tangent to its tropic curve are 1-sheeted hyperboloids oriented along the y-axis,
and those tangents are always light-like. The tropic curves and their light-like
tangents on such a hyperboloid are shown on Figure 23.

Further considerations lead to

Proposition 3.15. Each generatrix of Σ+ and Σ− is contained in a 1-sheeted
hyperboloid oriented along the y-axis from (3.6). Moreover, such a generatrix is
touching at the same point one of the tropic curves of the hyperboloid and one of
the cusp-like edges of the corresponding curved tetrahedron.
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Corollary 3.16. The surfaces Σ+ and Σ− are tangent surfaces of the cuspidal
edges of the tetrahedra T + and T −, respectively.

In the next propositions, we give a further analysis of the light-like tangents to
the tropic curves on a 1-sheeted hyperboloid oriented along the y-axis.

Proposition 3.17. For a fixed λ0 ∈ (b, a), consider a hyperboloid Qλ0
from (3.6)

and an arbitrary point (x, y, z) on Qλ0
. Equation (3.7) has, along with λ0, two

other roots in C; denote them by λ1 and λ2. Then λ1=λ2 if and only if (x, y, z) is
placed on a light-like tangent to a tropic curve of Qλ0

.

Proof. This follows from the fact that the light-like tangents are contained in
Σ+ ∪ Σ−; see Propositions 3.11 and 3.15. �

Proposition 3.18. Two light-like lines on a 1-sheeted hyperboloid oriented along
the y-axis from (3.6) are either skew or intersect each other on a degenerate quadric
from (3.6).

Proof. This follows from the fact that the hyperboloid is symmetric with respect
to the coordinate planes. �

Lemma 3.19. Consider a nondegenerate quadric Qλ0
, which is not a hyperboloid

oriented along the y-axis, i.e., λ0 �∈ [b, a] ∪ {−c}. Then each point of Qλ0
which

is not on one of the tropic curves is contained in two additional distinct quadrics
from the family (3.6).

Consider two points A, B of Qλ0
, which are placed in the same connected compo-

nent bounded by the tropic curves, and denote by λ′
A, λ

′′
A and λ′

B, λ
′′
B the solutions,

different than λ0, of equation (3.7) corresponding to A and B, respectively. Then,
if λ0 is smaller than (resp. bigger than, between) λ′

A, λ
′′
A, it is also smaller than

(resp. bigger than, between) λ′
B, λ

′′
B.

Lemma 3.20. Let Qλ0
be a hyperboloid oriented along the y-axis, let λ0 ∈ (b, a),

and let A, B be two points of Qλ0
, which are placed in the same connected compo-

nent bounded by the tropic curves and light-like tangents. Then, if A is contained
in two more quadrics from the family (3.6), the same is true for B.

In this case, denote by λ′
A, λ

′′
A and λ′

B, λ
′′
B the real solutions, different than λ0,

of equation (3.7) corresponding to A and B, respectively. Then, if λ0 is smaller
than (resp. bigger than, between) λ′

A, λ
′′
A, it is also smaller than (resp. bigger than,

between) λ′
B, λ

′′
B.

On the other hand, if A is not contained in any other quadric from (3.6), then
the same is true for all points of its connected component.

Proof. The proof of both Lemmae 3.19 and 3.20 follows from the fact that the
solutions of (3.7) are continuously changed through the space and that two of the
solutions coincide exactly on the tropic curves and their light-like tangents. �

3.2.3. Generalized Jacobi coordinates and relativistic quadrics in three-dimensional
Minkowski space.

Definition 3.21. The generalized Jacobi coordinates of point (x, y, z) in the three-
dimensional Minkowski space E2,1 is the unordered triplet of solutions of equation
(3.7).
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Note that any of the following cases may occur:

• the generalized Jacobi coordinates are real and different;
• only one generalized Jacobi coordinate is real;
• the generalized Jacobi coordinates are real, but two of them coincide;
• all three generalized Jacobi coordinates are equal.

Lemmae 3.19 and 3.20 will help us define the relativistic types of quadrics in
three-dimensional Minkowski space. For the quadrics from (3.6), consider their
connected components bounded by the tropic curves and, for the 1-sheeted hyper-
boloids oriented along the y-axis, by their light-like tangent lines as well. Each
connected component will represent a relativistic quadric.

Definition 3.22. A component of the quadric Qλ0
is of relativistic type E if, at

each of its points, λ0 is smaller than the other two generalized Jacobi coordinates.

A component of quadric Qλ0
is of relativistic type H1 if, at each of its points, λ0

is between the other two generalized Jacobi coordinates.

A component of quadric Qλ0
is of relativistic type H2 if, at each of its points, λ0

is bigger than the other two generalized Jacobi coordinates.

A component of quadric Qλ0
is of relativistic type 0 if, at each of its points, λ0

is the only real generalized Jacobi coordinate.

Lemmae 3.19 and 3.20 guarantee that the relativistic types are well defined, i.e.,
that to each such quadric a unique type E, H1, H2, or 0 can be assigned.

Definition 3.23. Suppose (x, y, z) is a point of the three-dimensional Minkowski
space E2,1 where equation (3.7) has real and different solutions. The decorated
Jacobi coordinates of that point is the ordered triplet of pairs

(E, λ1), (H1, λ2), (H2, λ3)

of the generalized Jacobi coordinates and the corresponding types of relativistic
quadrics.

Now, we are going to analyze the arrangement of the relativistic quadrics. Let
us start with their intersections with the coordinate planes.

3.2.4. Intersection with the xy-plane. In the xy-plane, the Minkowski metrics is
reduced to the Euclidean one. The family (3.6) is intersecting that plane by the
following family of confocal conics

(3.8) Cxy
λ :

x2

a− λ
+

y2

b− λ
= 1;

see Figure 24.

We conclude that the xy-plane is divided by the ellipse Cxy
−c into two relativistic

quadrics:

• the region within Cxy
−c is a relativistic quadric of E-type;

• the region outside this ellipse is of H1-type.
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x

y

√
a+ c

√
a− b

√
b+ c

Figure 24. Intersection of relativistic quadrics with the xy-plane

Moreover, the types of relativic quadrics intersecting the xy-plane are

• the components of the ellipsoids are of H1-type;
• the components of the 1-sheeted hyperboloids oriented along the y-axis are
of H2-type;

• the components of the 1-sheeted hyperboloids oriented along the z-axis are
of E-type.

In Figure 24, the types E, H1, H2 quadrics are coloured in dark gray, medium
gray, and light gray, respectively. The same colouring rule is applied in Figures
25–27.

3.2.5. Intersection with the xz-plane. In the xz-plane, the reduced metric is the
Minkowski one. The intersection of family (3.6) with that plane is the family of
confocal conics

(3.9) Cxz
λ :

x2

a− λ
+

z2

c+ λ
= 1;

see Figure 25.

The plane is divided by the ellipse Cxz
b and the four joint tangents of (3.9) into

13 parts:

• the part within Cxz
b is a relativistic quadric of H1-type;

• the four parts placed outside of Cxz
b that have a nonempty intersection with

the x-axis are of H2-type;
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x

z

√
a+ c

√
a− b

√
b+ c

√
a+ c

Figure 25. Intersection of relativistic quadrics with the xz-plane

• the four parts placed outside of Cxz
b that have a nonempty intersection with

the z-axis are of E-type;
• the four remaining parts are of the 0-type, and no quadric from the family
(3.6), except the degenerated Qb, is passing through any of their points.

3.2.6. Intersection with the yz-plane. As in the previous case, in the yz-plane the
reduced metric is the Minkowski one. The intersection of family (3.6) with that
plane is the family of confocal conics

(3.10) Cyz
λ :

y2

b− λ
+

z2

c+ λ
= 1;

see Figure 26.

The plane is divided by the hyperbola Cyz
a and the joint tangents of (3.10) into

15 parts:

• the two convex parts determined by Cyz
a are relativistic quadrics ofH1-type;

• the five parts placed outside of Cyz
a that have a nonempty intersection with

the coordinate axes are of H2-type;
• the four parts, each one placed between Cyz

a , and one of the joint tangents
of (3.10) are of E-type;

• through the points of the four remaining parts no quadric from the family
(3.6), except the degenerated Qa, is passing.

The intersection of relativistic quadrics with the coordinate planes is shown in
Figure 27.
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Figure 26. Intersection of the relativistic quadrics with the yz-plane
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Figure 27. Intersection of the relativistic quadrics with the coor-
dinate planes
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Let us notice that from the above analysis, using Lemmae 3.19 and 3.20, we can
determine the type of each relativistic quadric with a nonempty intersection with
some of the coordinate hyperplanes.

1-sheeted hyperboloids oriented along the z-axis: λ ∈ (−∞,−c). Such a hyperboloid
is divided by its tropic curves into three connected components—two of them are
unbounded and mutually symmetric with respect to the xy-plane, while the third
one is the bounded annulus placed between them. The two symmetric ones are of
H1-type, while the third one is of E-type.

Ellipsoids: λ ∈ (−c, b). An ellipsoid is divided by the tropic curves into three
bounded connected components—two of them are mutually symmetric with respect
to the xy-plane, while the third one is the annulus placed between them. In this
case, the symmetric components represent relativistic quadrics of E-type. The
annulus is of H1-type.

1-sheeted hyperboloids oriented along the y-axis: λ ∈ (b, a). The decomposition
of those hyperboloids into the relativistic quadrics is more complicated and more
interesting interesting than for the other types of quadrics from (3.6). By its two
tropic curves and their eight light-like tangent lines, such a hyperboloid is divided
into 28 connected components:

• the two bounded components placed inside the tropic curves are ofH1-type;
• the four bounded components placed between the tropic curves and the
light-like tangents, such that they have nonempty intersections with the
xz-plane are of H2-type;

• the four bounded components placed between the tropic curves and the
light-like tangents, such that they have nonempty intersections with the
yz-plane are of E-type;

• the two bounded components, each limited by four light-like tangents, are
of H2-type;

• the four unbounded components, each limited by two light-like tangents,
such that they have nonempty intersections with the xy-plane, are of H2-
type;

• four unbounded components, each limited by two light-like tangents, such
that they have nonempty intersections with the yz-plane, are of E-type;

• the eight unbounded components, each limited by four light-like tangents,
are sets of points not contained in any other quadric from (3.6).

2-sheeted hyperboloids: λ ∈ (a,+∞). Such a hyperboloid is divided into four con-
nected components by its tropic curves: two bounded ones are of H2-type, while
the two unbounded are of H1-type.

3.2.7. Decorated Jacobi coordinates and relativistic quadrics in d-dimensional pse-
udo-Euclidean space. Now we are going to introduce the relativistic quadrics and
their types in the confocal family (2.5) in the d-dimensional pseudo-Euclidean space
Ek,l.

Definition 3.24. The generalized Jacobi coordinates of a point x in the d-dimen-
sional pseudo-Euclidean space Ek,l is the unordered d-tuple of solutions λ of the
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equation

(3.11)
x2
1

a1 − λ
+ · · ·+ x2

k

ak − λ
+

x2
k+1

ak+1 + λ
+ · · ·+ x2

d

ad + λ
= 1.

As already mentioned in Section 2.4, this equation has either d or d − 2 real
solutions. Besides, some of the solutions may be multiple.

The set Σd of points x in Rd where equation (3.11) has multiple solutions is an
algebraic hypersurface. Σd divides each quadric from (2.5) into several connected
components. We call these components the relativistic quadrics.

Since the generalized Jacobi coordinates depend continuously on x, the following
definition can be made:

Definition 3.25. We say that a relativistic quadric placed on Qλ0
is of type E if, at

each of its points, λ0 is smaller than the other d−1 generalized Jacobi coordinates.

We say that a relativistic quadric placed on Qλ0
is of type Hi (1 < i < d− 1) if,

at each of its points, λ0 is greater than i other generalized Jacobi coordinates and
smaller than d− i− 1 of them.

We say that a relativistic quadric placed on Qλ0
is of the type 0i (0 < i < d−2) if,

at each of its points, λ0 is greater than other i real generalized Jacobi coordinates,
and smaller than d− i− 2 of them.

It would be interesting to analyze properties of the discriminant manifold Σd, as
well as the combinatorial structure of the arrangement of the relativistic quadrics,
as is done for d = 3. Remark that this description would have [d/2] substantially
different cases in each dimension, depending upon the choice of k and l.

Definition 3.26. Suppose (x1, . . . , xd) is a point of the d-dimensional Minkowski
space Ek,l where equation (3.11) has real and different solutions. The decorated
Jacobi coordinates of that point is the ordered d-tuplet of pairs

(E, λ1), (H1, λ2), . . . , (Hd−1, λd),

of the generalized Jacobi coordinates and the corresponding types of the relativistic
quadrics.

Since we will consider the billiard system within ellipsoids in pseudo-Euclidean
space, it is of interest to analyze the behaviour of the decorated Jacobi coordinates
inside an ellipsoid.

Proposition 3.27. Let E be the ellipsoid in Ek,l given by (2.4). We have:

PE1 each point inside E is the intersection of exactly d quadrics from (2.5);
moreover, all these quadrics are of different relativistic types;

PE2 the types of these quadrics are E, H1, . . . , Hd−1—each type corresponds
to one of the disjoint intervals of the parameter λ,

(−ad,−ad−1), (−ad−1,−ad−2), . . . , (−ak+1, 0), (0, ak), (ak, ak−1), . . . , (a2, a1).

Proof. The function given by the left-hand side of (3.11) is continuous and strictly
monotonous in each interval (−ad,−ad−1), (−ad−1,−ad−2), . . . , (−ak+2,−ak+1),
(ak, ak−1), . . . , (a2, a1) with infinite values at their endpoints. Thus, equation (3.11)
has one solution in each of them. On the other hand, in (−ak+1, ak), the function
is tending to +∞ at the endpoints and has only one extreme value—the minimum.
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Since the value of the function for λ = 0 is less than 1 for a point inside E , it follows
that equation (3.11) will have two solutions in (−ak+1, ak)—one positive and one
negative. �

3.3. Billiards within quadrics and their periodic trajectories. In this sec-
tion, we are first going to derive further properties of ellipsoidal billiards in pseudo-
Euclidean spaces. We find in Theorem 3.28 a simple and effective criterion for
determining the type of a billiard trajectory, knowing its caustics. Then we derive
properties PE3–PE5 in Proposition 3.29. After that, we prove the generalization of
Poncelet Theorem for the ellipsoidal billiards in the pseudo-Euclidean spaces and
derive the corresponding Cayley-type conditions, giving a complete analytical de-
scription of the periodic billiard trajectories in arbitrary dimension. These results
are contained in Theorems 3.30 and 3.31.

3.3.1. Ellipsoidal billiards. The billiard motion within an ellipsoid in pseudo-Euclid-
ean space is a motion which is uniformly straightforward inside the ellipsoid and
which obeys the reflection law on the boundary. Further, we will consider the bil-
liard motion within the ellipsoid E , given by equation (2.4), in Ek,l. The family of
quadrics confocal with E is (2.5).

Since functions Fi given by (2.9) are integrals of billiard motion (see [Mos1980,
Aud1994,KT2009]), we have that for each zero λ of the equation (2.8) the corre-
sponding quadric Qλ is a caustic of the billiard motion, i.e., it is tangent to each
segment of the billiard trajectory passing through point x with velocity vector v.

Note that, according to Theorem 2.20, for a point placed inside E , there are
d real solutions of equation (3.11). In other words, there are d quadrics from the
family (2.5) containing such a point, although some of them may be multiple. Also,
by Proposition 2.19 and Theorem 2.20, a billiard trajectory within an ellipsoid will
always have d− 1 caustics.

According to Remark 2.18, all segments of a billiard trajectory within E will be
of the same type. Now, we can apply the reasoning from Section 2.4 to the billiard
trajectories:

Theorem 3.28. In the d-dimensional pseudo-Euclidean space Ek,l, consider a bil-
liard trajectory within ellipsoid E = Q0, and let quadrics Qα1

, . . . ,Qαd−1
from the

family (2.5) be its caustics. Then all billiard trajectories within E sharing the same
caustics are of the same type: space-like, time-like, or light-like, as the initial tra-
jectory. Moreover, the type is determined as follows:

• if ∞ ∈ {α1, . . . , αd−1}, the trajectories are light-like;
• if (−1)l · α1 · . . . · αd−1 > 0, the trajectories are space-like;
• if (−1)l · α1 · . . . · αd−1 < 0, the trajectories are time-like.

Proof. Since values of the functions Fi given by (2.9) are preserved by the billiard
reflection and

d
∑

i=1

Fi(x, v) = 〈v, v〉k,l,

the type of billiard trajectory depends on the sign of the sum
∑d

i=1 Fi(x, v). From
the equivalence of relations (2.8) and (2.10), it follows that the sum depends only
on the roots of P, i.e., on the parameters α1, . . . , αd−1 of the caustics.
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Notice that the product α1 · . . . · αd−1 is changed continuously on the variety of
lines in Ek,l that intersect E , with the infinite singularities at the light-like lines.
Besides, the subvariety of the light-like lines divides the variety of all lines into
the subsets of space-like and time-like ones. When passing through the light-like
lines, one of the parameters αi will pass through infinity from the positive to the
negative part of the reals or vice versa. Thus, a change of sign of the product occurs
simultaneously with a change of the type of line.

Now, take αj = −ak+j for 1 ≤ j ≤ l, and notice that all lines placed in the
k-dimensional coordinate subspace Ek × 0l will have corresponding degenerate
caustics. The reduced metrics is Euclidean in this subspace, thus such lines are
space-like. Since α1, . . . , αk are positive for those lines of Ek × 0l that intersect E ,
the statement is proved. �

Let us note that, in general, for fixed d − 1 quadrics from the confocal family,
there can be found joint tangents of different types, which makes Theorem 3.28 in
a way unexpected. However, it turns out that, when the caustics are fixed, only
lines having one type may have the intersection with a given ellipsoid—and only
these lines give rise to the billiard trajectories.

Next, we are going to investigate the behaviour of the decorated Jacobi coordi-
nates along ellipsoidal billiard trajectories.

Proposition 3.29. Let T be a trajectory of the billiard within the ellipsoid E in
the pseudo-Euclidean space Ek,l. Denote by α1, . . . , αd−1 the parameters of the
caustics from the confocal family (2.5) of T , and take b1, . . . , bp, c1, . . . , cq as in
Theorem 2.20. Then we have:

PE3 along T , each generalized Jacobi coordinate takes values in exactly one of
the segments,

[c2l−1, c2l−2], . . . , [c2, c1], [c1, 0], [0, b1], [b2, b3], . . . , [b2k−2, b2k−1];

PE4 along T , each generalized Jacobi coordinate can achieve local minima and
maxima only at the touching points with the corresponding caustics, the
intersection points with the corresponding coordinate hyperplanes, and at
the reflection points;

PE5 the values of generalized Jacobi coordinates at the critical points are 0, b1,
. . . , b2k−1, c1, . . . , c2l−1; between the critical points, the coordinates are
changed monotonously.

Proof. Property PE3 follows from Theorem 2.20. Along each line, the generalized
Jacobi coordinates are changed continuously. Moreover, they are monotonous at all
points where the line has a transversal intersection with a nondegenerate quadric.
Thus, the critical points on a line are exactly the touching points with the cor-
responding caustics and the intersection points with the corresponding coordinate
hyperplanes.

Note that the reflection points of T are also points of the transversal intersection
with all quadrics containing those points, except with E . Thus, at such points, 0
will be a critical value of the corresponding generalized Jacobi coordinate, and all
other coordinates are monotonous. This proves PE4 and PE5. �
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The properties we obtained are pseudo-Euclidean analogs of properties E3–E5,
which are true for ellipsoidal billiards in Euclidean spaces.

3.3.2. Analytic conditions for periodic trajectories. Now, we are going to derive the
corresponding analytic conditions of Cayley’s type for periodic trajectories of ellip-
soidal billiards in pseudo-Euclidean space, and therefore to obtain the generalization
of the Poncelet Theorem to pseudo-Euclidean spaces.

Theorem 3.30 (Generalized Cayley-type conditions). In the pseudo-Euclidean
space Ek,l (k+l = d), consider a billiard trajectory T within the ellipsoid E given by
equation (2.4). Let Qα1

, . . . , Qαd−1
from the confocal family (2.5) be the caustics

of T . Then T is periodic with period n if and only if the following conditions are
satisfied:

• for n = 2m:

rank

⎛

⎜

⎜

⎝

Bd+1 Bd+2 . . . Bd+m−1

Bd+2 Bd+3 . . . Bd+m

. . . . . . . . . . . .
Bm+1 Bm+2 . . . B2m−1

⎞

⎟

⎟

⎠

< m− d+ 1 or

rank

⎛

⎜

⎜

⎜

⎜

⎝

Bd+1 Bd+2 . . . Bd+m

. . . . . . . . . . . .
Bm Bm+1 . . . B2m−1

Cm Cm+1 . . . C2m−1

Dm Dm+1 . . . D2m−1

⎞

⎟

⎟

⎟

⎟

⎠

< m− d+ 2;

• for n = 2m+ 1:

rank

⎛

⎜

⎜

⎜

⎜

⎝

Bd+1 Bd+2 . . . Bd+m

Bd+2 Bd+3 . . . Bd+m+1

. . . . . . . . . . . .
Bm+1 Bm+2 . . . B2m

Cm+1 Cm+2 . . . C2m

⎞

⎟

⎟

⎟

⎟

⎠

< m− d+ 2 or

rank

⎛

⎜

⎜

⎜

⎜

⎝

Bd+1 Bd+2 . . . Bd+m

Bd+2 Bd+3 . . . Bd+m+1

. . . . . . . . . . . .
Bm+1 Bm+2 . . . B2m

Dm+1 Dm+2 . . . D2m

⎞

⎟

⎟

⎟

⎟

⎠

< m− d+ 2.

Here, (Bi), (Ci), (Di) are the coefficients in the Taylor expansions around λ = 0

of the functions f(λ) =
√

(α1 − λ) · . . . · (αd−1 − λ) · (a1 − ε1λ) · . . . · (ad − εdλ),
f(λ)
b1−λ ,

f(λ)
c1−λ , respectively.

Proof. Denote

P1(λ) = (α1 − λ) · . . . · (αd−1 − λ) · (a1 − ε1λ) · . . . · (ad − εdλ).

Following Jacobi [Jac1884], along a given billiard trajectory, we consider the inte-
grals

(3.12)

d
∑

s=1

∫

dλs
√

P1(λs)
,

d
∑

s=1

∫

λsdλs
√

P1(λs)
, . . . ,

d
∑

s=1

∫

λd−2
s dλs

√

P1(λs)
.
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By PE3 of Proposition 3.29, we may suppose that

λ1 ∈ [0, b1], λi ∈ [b2i−2, b2i−1] for 2 ≤ i ≤ k;

λk+1 ∈ [c1, 0], λk+j ∈ [c2j−1, c2j−2] for 2 ≤ j ≤ l.

Along a billiard trajectory, by PE4 and PE5 of Proposition 3.29, each λs will pass
through the corresponding interval monotonously from one endpoint to another
and vice versa alternately. Notice also that values b1, . . . , b2k−1, c1, . . . , c2l−1

correspond to the branching points of the hyperelliptic curve

(3.13) μ2 = P1(λ).

Thus, calculating the integrals (3.12), we get that the billiard trajectory is closed
after n reflections if and only if, for some n1, n2 such that n1 + n2 = n,

nA(P0) ≡ n1A(Pb1) + n2A(Pc1),

on the Jacobian of curve (3.13). Here, A is the Abel–Jacobi map and Pt is a point
on the curve corresponding to λ = t. Further, in the same manner as in [DR1998b],
we obtain the conditions as stated in the theorem. �

As an immediate consequence, we get

Theorem 3.31 (Generalized Poncelet Theorem). In the pseudo-Euclidean space
Ek,l (k + l = d), consider a billiard trajectory T within the ellipsoid E .

If T is periodic and becomes closed after n reflections on the ellipsoid, then any
other trajectory within E having the same caustics as T is also periodic with the
period n.

Remark 3.32. The generalization of the Full Poncelet Theorem from [CCS1993]
to pseudo-Euclidean spaces is obtained in [WFS+2009]. However, only space-like
and time-like trajectories were discussed there. A Poncelet-type theorem for the
light-like geodesics on the ellipsoid in three-dimensional Minkowski space is proved
in [GKT2007].

Remark 3.33. Theorems 3.30 and 3.31 will also hold in symmetric and degenerated
cases, that is when some of the parameters εiai, αj coincide, or in the case of the
light-like trajectories, when ∞ ∈ {αj | 1 ≤ j ≤ d − 1}. In such cases, we need
to apply the desingularization of the corresponding curve, as explained in detail in
our works [DR2006b,DR2008].

When we consider light-like trajectories, then the factor containing the infinite
parameter is omitted from the polynomial P1.

4. Integrable line congruences and double reflection nets

As a modern scientific discipline, discrete differential geometry emerged quite
recently (see [BS2008]) within the study of lattice geometry. So-called integrability
conditions for quad-graphs have a fundamental role there. On the other hand,
geodesics on an ellipsoid are one of the most important and exciting examples of
classical differential geometry. Billiard systems within quadrics are known to be
seen as natural discretizations of systems of geodesics on ellipsoids. In the sequel
we are going to present them as a part of the building blocks of the foundations of
discrete differential geometry.
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x1

x4 x3

x2

Q

Figure 28. Quad-equation Q(x1, x2, x3, x4) = 0

x x1

x3 x13

x2 x12

x123x23

Figure 29. 3D-consistency

The main elements of the systems on the quad-graphs are the equations of the
form Q(x, x1, x2, x12) = 0 on quadrilaterals, where Q is a multi-affine polynomial,
that is, a polynomial of degree one in each argument. Such equations are called
quad-equations. The field variables xi are assigned to the vertices of a quadrilateral
as in Figure 28. The quad-equation can be solved for each variable, and the solution
is a rational function of the other three variables. Following [ABS2009], we consider
the idea of integrability as consistency; see Figure 29. We assign six quad-equations
to the faces of a coordinate cube. The system is said to be 3D-consistent if the
three values for x123 obtained from the equations on right, back, and top faces
coincide for arbitrary initial data.

We will be interested here in a geometric version of integrable quad-graphs, with
lines in Pd playing the role of vertex fields. We will denote by Ld the Grassmannian
Gr(2, d+1) of the two-dimensional vector subspaces of the (d+1)-dimensional vector
space, d ≥ 2.

4.1. Billiard algebra and quad-graphs. This section is devoted to a quad-graph
interpretation from [DR2012b] of some results obtained previously using billiard
algebra.

Let us start with a theorem on confocal families of quadrics from [DR2008]:

Theorem 4.1 (Six-pointed star theorem). Let F be a family of confocal quadrics in
P3. There exist configurations consisting of twelve planes in P3 with the following
properties:

• The planes may be organized in eight triplets, such that each plane in a
triplet is tangent to a different quadric from F , and the three touching
points are collinear. Every plane in the configuration is a member of two
triplets.
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x2x12 x2x23 x23x123 x12x123

x3x13x1x13xx1xx3

xx2 x13x123

x1x12

x3x23

Figure 30. A configuration of planes from Theorem 4.1

• The planes may be organized in six quadruplets, such that the planes in
each quadruplet belong to a pencil and are tangent to two different quadrics
from F . Every plane in the configuration is a member of two quadruplets.

Moreover, such a configuration is determined by three planes tangent to three dif-
ferent quadrics from F , with collinear touching points.

Such a configuration of planes in the dual space P3∗ is shown in Figure 30; each
plane corresponds to a vertex of the polygonal line.

To understand the notation used in Figure 30, let us recall the construction
leading to the configurations from Theorem 4.1. Take Q1, Q2, Q3 to be quadrics
from F , and α, β, γ, respectively, their tangent planes such that the touching points
A, B, C are collinear. Denote by x the line containing these three points, and by
x1, x2, x3 the lines obtained from x by the reflections off Q1, Q2, Q3 at A, B, C,
respectively.

Now, as in Proposition 2.16, determine lines x12, x13, x23, x123 such that they
complete the triplets {x, x1, x2}, {x, x1, x3}, {x, x2, x3}, {x3, x13, x23}, respectively,
to the double reflection configurations.3

Notice the following objects in Figure 30:

twelve vertices: to each vertex, a plane tangent to one of the three quadrics
Q1, Q2, Q3 and a pair of lines are assigned—the lines of any pair are re-
flected to each other off the quadric at the touching point with the assigned
plane;

eight triangles: in any triangle, the planes assigned to the vertices are touch-
ing the corresponding quadrics at three collinear points—thus to each tri-
angle, the line containing these points is naturally assigned;

3Let us note that in [DR2008], the lines x, x1, x2, x3, x12, x13, x23, x123 were denoted by
O, p, q, s, −x, p1, q1, x + s, respectively, where the addition is defined in the billiard algebra
introduced in that paper.
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six edges: each edge contains four vertices—four planes assigned to these
vertices are in the same pencil; thus a double reflection configuration cor-
responds to each edge.

Now, we are ready to prove the 3D-consistency of the quad-relation introduced
via double reflection configurations. The meaning of the following theorem is that
reflections on three quadrics commute.

Theorem 4.2. Let x, x1, x2, x3 be lines in the projective space, such that x1, x2,
x3 are obtained from x by reflections off confocal quadrics Q1, Q2, Q3, respectively.
Introduce lines x12, x13, x23, x123 such that the following quadruplets are double
reflection configurations:

{x, x1, x12, x2}, {x, x1, x13, x3}, {x, x2, x23, x3}, {x1, x12, x123, x13}.
Then the following quadruplets are also double reflection configurations:

{x2, x12, x123, x23}, {x3, x13, x123, x23}.

Proof. Let us remark that the configuration described in Theorem 4.1 has obviously
a combinatorial structure of the cube, with the planes corresponding to the edges
of the cube. In this way, lines x, x1, x2, x3, x12, x13, x23, x123 will correspond to
the vertices of the cube as shown in Figure 29. A pair of lines is represented by
endpoints of an edge if they reflect to each other off the plane joined to this edge.
Faces of the cube represent double reflection configurations. Notice also that planes
joined to parallel edges of the cube are tangent to a same quadric. The statement
follows from Theorem 4.1 and the construction given after; see Figure 30. �

4.2. Double reflection nets. Assume a family of confocal quadrics is given in
Pd. Notice that, by the Chasles theorem [Cha1827], every line in Pd touches d− 1
quadrics from the family.

Moreover, by Corollary 2.12, these d − 1 quadrics are preserved by the billiard
reflection. The confocal quadrics touched by a line are called the caustics of that
line, or consequently, the caustics of the billiard trajectory that contains the line.

Now, fix d − 1 quadrics from the pencil, and take A ⊂ Ld to be the set of all
lines touching these d− 1 quadrics.

Definition 4.3. A double reflection net is a map

(4.1) ϕ : Zm → A,

such that there exist m quadrics Q1, . . . , Qm from the confocal pencil, satisfying
the following conditions:

(1) the sequence {ϕ(n0 + iej)}i∈Z represents a billiard trajectory within Qj ,
for each j ∈ {1, . . . ,m} and n0 ∈ Zm;

(2) the lines ϕ(n0), ϕ(n0 + ei), ϕ(n0 + ej), ϕ(n0 + ei + ej) form a double
reflection configuration, for all i, j ∈ {1, . . . ,m}, i �= j and n0 ∈ Zm.

In other words, for each edge in Zm of direction ei, the lines corresponding to
its vertices meet at Qi, while the four tangent planes at the intersection points,
associated to an elementary quadrilateral, belong to a pencil.

The image ϕ(Zm) can be also described as the set of images of a given line
ℓ obtained by all possible sequences of reflections off quadrics Q1, . . . , Qm. All
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images of ℓ lie on a leaf of the Lagrangian foliation A consisting of the lines that
are tangent to the same confocal quadrics as ℓ.

In the following subsections, we describe some examples of double reflection nets.
After that, we construct F -transformations of double reflection nets and conclude
this section by establishing a connection with Grassmannian Darboux nets from
[ABS2009].

4.2.1. Example of a double reflection net in Minkowski space. Consider the three-
dimensional Minkowski space E2,1. In this space, let a general confocal family be
given by (3.6).

Fix λ0 ∈ (b, a), and consider the hyperboloid Qλ0
. Denote by a1, a2, a3, a4, b1,

b2, b3, b4 the light-like generatrices of Qλ0
, in the following way (see Figure 31):

• the lines ai belong to one family, and bi to the other, of the generatrices
of Qλ0

; that is, ai and aj are always skew for i �= j, while ai and bj are
coplanar for all i, j;

• a1, a2, b3, b4 are tangent to the tropic curve contained in the half-space
z > 0, while a3, a4, b1, b2 are touching the other tropic curve;

• ai is parallel to bi for each i;

x

y

z

a1 a2
b3

b4

b2
b1

a4 a3

Figure 31. The tropic curves of Qλ0
and their light-like tangents
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• the pairs (a1, b2), (a2, b1), (a3, b4), (a4, b3) have intersection points in the
xy-plane;

• the pairs (a1, b3), (a2, b4), (a3, b1), (a4, b2) have intersection points in the
xz-plane;

• the pairs (a1, b4), (a2, b3), (a3, b2), (a4, b1) have intersection points in the
yz-plane.

Take A to be the set of all generatrices of the hyperboloid Qλ0
, i.e., the set of

all lines having Qλ0
as a double caustic. In particular, A contains all lines ai, bi.

It is possible to define a map

ϕM : Z4 → A

such that the image of ϕM is the set {a1, a2, a3, a4, b1, b2, b3, b4}, and for each n ∈ Z4

lines ϕM (n+ e1), ϕM (n+ e2), ϕM (n+ e3), ϕM (n+ e4) are obtained from ϕM (n)
by the reflection off Qa, Qb, Q−c, Q∞, respectively.

More precisely, ϕM will be periodic with period 2 in each coordinate and:

ϕM (0, 0, 0, 0) = ϕM (1, 1, 1, 1) = a1, ϕM (1, 1, 0, 0) = ϕM (0, 0, 1, 1) = a2,

ϕM (1, 0, 1, 0) = ϕM (0, 1, 0, 1) = a3, ϕM (0, 1, 1, 0) = ϕM (1, 0, 0, 1) = a4,

ϕM (0, 0, 0, 1) = ϕM (1, 1, 1, 0) = b1, ϕM (1, 1, 0, 1) = ϕM (0, 0, 1, 0) = b2,

ϕM (1, 0, 1, 1) = ϕM (0, 1, 0, 0) = a3, ϕM (0, 1, 1, 1) = ϕM (1, 0, 0, 0) = b4.

It is shown in Figure 32 how vertices of the unit tesseract in Z4 are mapped by
ϕM .

a2

b3

b1 a4

a1
b4

a3
b2

b2

a1

b3
a2

b1
a4

a3

b4

Figure 32. Mapping ϕM on the unit tesseract
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It is straightforward to prove the following

Proposition 4.4. ϕM is a double reflection net.

4.2.2. Poncelet–Darboux grids and double reflection nets. Let E be an ellipse in the
Euclidean plane

E :
x2

a
+

y2

b
= 1, a > b > 0,

and let (ai)i∈Z be a billiard trajectory within E .
As is well known, all lines ai are touching the same conic C confocal with E ; see

Section 2.1. Here, we will additionally suppose that C is an ellipse. Denote by A
the set of tangents of C. Fix m positive integers k1, . . . , km, and define the mapping

ϕD : Zm → A, ϕD(n1, . . . , nm) = an1k1+···+nmkm
.

Proposition 4.5. Map ϕD is a double reflection net.

Proof. Since ϕD(n + iej) = an1k1+···+nmkm+ikj
, (n = (n1, . . . , nm)), it follows by

[DR2011, Theorem 18] that the sequence (ϕD(n + iej))i∈Z represents a billiard
trajectory within some ellipse Ej , confocal with E and C.

Immediately, by Definition 2.13, lines ϕ(n0), ϕ(n0 + ei), ϕ(n0 + ej), ϕ(n0 +
ei + ej) form a virtual reflection configuration for each n0 ∈ Zm, i, j ∈ {1, . . . ,m}.
Moreover, by Proposition 2.15, they also form a double reflection configuration. �

Remark 4.6. It is interesting to consider only those nets where the m ellipses Ej
appearing in the proof of Proposition 4.5 are distinct. If some of them coincide,
then we may consider the corresponding subnet.

Suppose that (ai) is a nonperiodic trajectory. Then, choosing any m and any
set of distinct positive numbers k1, . . . , km, we get substantially different double
reflection nets.

For (ai) being n-periodic, it is enough to consider the case where ki = i, i ∈
{1, . . . , [n/2]}, (m = [n/2]).

Example 4.7. Suppose (ai) is a 5-periodic billiard trajectory within E ; see Fig-
ure 33. The corresponding double reflection net is

ϕD : Z2 → A, ϕD(n1, n2) = an1+2n2
.

4.2.3. s-skew lines and double reflection nets. Now, let us consider a family of
confocal quadrics in Ed (d ≥ 3) and fix its d− 1 quadrics. As usual, A is the set of
all lines tangent to the fixed quadrics.

It is shown in [DR2008] that, from a line in A, we can obtain any other line from
that set in at most d−1 reflections on quadrics from the confocal family. We called
lines a, b from A s-skew if s is the smallest number such that they can be obtained
by s+ 1 such reflections.

Now, suppose lines a, b are s-skew (s ≥ 1), and let Q1, . . . , Qs+1 be the corre-
sponding quadrics from the confocal family.
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E ′

E

C

a1

a2

a3

a4
a5

Figure 33. A Poncelet pentagon

Theorem 4.8. There is a unique double reflection net

ϕs : Zs+1 → A,

which satisfies the following:

• ϕs(0, . . . , 0) = a;
• ϕs(1, . . . , 1) = b;
• {ϕ(n0 + iej)}i∈Z represents a billiard trajectory within Qj, for each j ∈
{1, . . . , s+ 1} and n0 ∈ Zs+1.

Proof. First, we are going to define a mapping ϕs on {0, 1}s+1.

For a permutation p = (p1, . . . , ps+1) of the set {1, . . . , s+1}, we take a sequence
of lines (ℓp0 , . . . , ℓ

p
s+1) such that ℓp0 = a, ℓps = b, and ℓpi−1, ℓ

p
i satisfy the reflection law

off Qpi
for each i ∈ {1, . . . , s+1}. Such a sequence exists and is unique. Moreover, if

k ∈ {1, . . . , s+1} is given and permutations p, p′ coincide in the first k coordinates,

then ℓpi = ℓp
′

i for i ≤ k. Take {i1, . . . , ik} to be a subset of {1, . . . , s + 1}, and p
any permutation of set {1, . . . , s+ 1} with p1 = i1, . . . , pk = ik. We define

ϕs(χ(1), . . . , χ(s+ 1)) = ℓpk ,

where χ = χ{i1,...,ik} is the corresponding characteristic function on {1, . . . , s+ 1}:

χ : {1, . . . , s+ 1} → {0, 1}, χ(j) =

{

1, j ∈ {i1, . . . , ik};
0, j �∈ {i1, . . . , ik}.

In this way, we have constructed ϕs on {0, 1}s+1.

Subsequently, ϕs can be extended to the rest of Zs+1, so that {ϕs(n0 + iej)}i∈Z

will represent billiard trajectories within Qj .

This construction is correct and unique due to Theorem 4.2. �

4.2.4. Construction of double reflection nets. Let Q1, . . . , Qm be distinct quadrics
belonging to a confocal family, and let ℓ be a line in Pd. Let us choose lines ℓi
satisfying with ℓ the reflection law off Qi, 1 ≤ i ≤ m.
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Theorem 4.9. There is a unique double reflection net ϕ : Zm → Aℓ, with the
following properties:

• ϕ(0, . . . , 0) = ℓ;
• ϕ(ei) = ℓi, for each i ∈ {1, . . . ,m}.

By Aℓ, we denote the set of all lines in Pd touching the same d− 1 quadrics from
the confocal family as ℓ.

Proof. First we define ϕ on {0, 1}m from the condition that lines corresponding to
each 2-face of the unit cube need to form a double reflection configuration. This
construction is unique because of Proposition 2.16, and it is correct due to the
3D-consistency property proved in Theorem 4.2.

At all other points of Zm, ϕ is uniquely defined from the request that
{ϕ(n0 + iej)}i∈Z will be the billiard trajectories within Qj .

Consistency of the construction follows again from Theorem 4.2. �

4.2.5. Focal nets and F -transformations of double reflection nets. Let ϕ : Zm → A
be a double reflection net. Its i-th focal net is the map F (i) : Zm → Pd defined by
F (i)(n) = ϕ(n) ∩ ϕ(n+ ei) [BS2008].

For given n0 ∈ Zm and distinct indices i, j, k ∈ {1, . . .m}, consider the following
points of its i-th focal net:

Fi = F (i)(n0) = ϕ(n0) ∩ ϕ(n0 + ei),

Fij = F (i)(n0 + ej) = ϕ(n0 + ej) ∩ ϕ(n0 + ej + ei),

Fik = F (i)(n0 + ek) = ϕ(n0 + ek) ∩ ϕ(n0 + ek + ei),

Fijk = F (i)(n0 + ej + ek) = ϕ(n0 + ej + ek) ∩ ϕ(n0 + ej + ek + ei).

Proposition 4.10. Points Fi, Fij, Fik, Fijk are coplanar.

Proof. This is a consequence of the theorem of focal nets from [BS2008]. However,
we will show the direct proof, from configurations considered in Section 4.1.

The four points belong to quadric Qi. The tangent planes to Qi at these points,
divided into two pairs, determine two pencils of planes. According to Theorem
4.1, the two pencils are coplanar; thus they intersect. As a consequence, the lines
of poles with respect to the quadric Qi, which correspond to these two pencils of
planes, also intersect. It follows that the four points are coplanar. �

Two double reflection nets ϕ, ϕ+ : Zm → A are said to be related by an F -
transformation if for every n ∈ Zm the corresponding lines ϕ(n) and ϕ+(n) intersect
[BS2008].

We are going to construct an F -transformation of the double reflection net.

First, we select a quadric Qδ from the confocal family and introduce a line ℓ′

which satisfies with ϕ(n0) the reflection law off Qδ.

By Theorem 4.9, it is possible to construct a double reflection net ϕ̄ : Zm+1 →
A, such that:

• ϕ̄(n, 0) = ϕ(n);
• ϕ̄(n0, 1) = ℓ′.
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Now, we define

ϕ+ : Zm → A, ϕ+(n) = ϕ̄(n, 1).

Proposition 4.11. Map ϕ+ is an F -transformation of ϕ.

Proof. Lines ϕ+(n) and ϕ(n) meet, since they satisfy the reflection law off Qδ. �

In other words, the double reflection nets ϕ, ϕ+ are obtained from each other
by reflecting the corresponding lines off a single quadric, Qδ.

4.2.6. Double reflection nets and Grassmannian Darboux nets. Let us recall the
definition of a Grassmannian Darboux net from [ABS2009]: a map from the edges of
a regular square lattice Zm to the Grassmannian Gd

r of the r-dimensional projective
subspaces of the d-dimensional projective space is a Grassmannian Darboux net if
the four r-spaces of an elementary quadrilateral belong to a (2r + 1)-space. For
r = 0, the ordinary Darboux nets from [Sch2003] are obtained, where the four
points of intersection associated to a quadrilateral belong to a line.

Now, consider the general double reflection net (4.1).

To each edge (n0,n0+ei) of Z
m, we can associate the plane which is tangent to

Qi at point ϕ(n0) ∩ ϕ(n0 + ei). Since the lines corresponding to the vertices of a
face form a double reflection configuration, the four planes associated to the edges
belong to a pencil.

In this way, we see that a double reflection net induces a map

E(Zm) → Gd
d−1,

where E(Zm) is the set of all edges of the integer lattice Zm. Thus the double
reflection nets induce a subclass of dual Darboux nets.

It was shown in [Sch2003] how to associate discrete integrable hierarchies to the
Darboux nets.

4.3. Yang–Baxter map. A Yang–Baxter map is a map R : X × X → X × X ,
satisfying the Yang–Baxter equation,

R23 ◦R13 ◦R12 = R12 ◦R13 ◦R23,

where Rij : X × X × X → X ×X ×X acts as R on the i-th and j-th factor in the
product and as the identity on the remaining one; see [ABS2004] and references
therein.

Here, we are going to construct an example of the Yang–Baxter map associated
to the confocal families of quadrics. To begin, we fix a family of confocal quadrics
in CPn:

(4.2) Qλ :
z21

a1 − λ
+ · · ·+ z2d

ad − λ
= z2n+1,

where a1, . . . , ad are constants in C, and [z1 : z2 : · · · : zn+1] are the homogeneous
coordinates in CPn.

Take X to be the space CPn∗ dual to the n-dimensional projective space, i.e.,
the variety of all hyperplanes in CPn. Note that a general hyperplane in the space
is tangent to exactly one quadric from family (4.2). Besides, in a general pencil of
hyperplanes, there are exactly two of them tangent to a fixed general quadric.
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y′

x′

xy

Figure 34. R(x, y) = (x′, y′)

Now, consider a pair x, y of hyperplanes. They are touching, respectively, unique
quadrics Qα, Qβ from (4.2). Besides, these two hyperplanes determine a pencil of
hyperplanes. This pencil contains unique hyperplanes x′, y′, other than x, y, that
are tangent to Qα, Qβ , respectively; as shown on Figure 34.

We define R : CPn∗ × CPn∗ → CPn∗ × CPn∗, in such a way that R(x, y) =
(x′, y′) if (x′, y′) are obtained from (x, y) as just described, see Figure 34.

Maps

R12, R13, R23 : CPn∗ ×CPn∗ ×CPn∗ → CPn∗ ×CPn∗ ×CPn∗

are then defined as follows

R12(x, y, z) = (x′, y′, z) for (x′, y′) = R(x, y),

R13(x, y, z) = (x′, y, z′) for (x′, z′) = R(x, z),

R23(x, y, z) = (x, y′, z′) for (y′, z′) = R(y, z).

To prove the Yang–Baxter equation for the map R, we will need

Lemma 4.12. Let Qα, Qβ, Qγ be three nondegenerate quadrics from family (4.2)
and x, y, z, respectively, their tangent hyperplanes. Take

(x2, y1) = R(x, y), (x3, z1) = R(x, z), (y3, z2) = R(y, z).

Let x23, y13, z12 be the joint hyperplanes of pencils determined by the pairs (x3, y3)
and (x2, z2), (x3, y3) and (y1, z1), and (y1, z1) and (x2, z2), respectively. Then x23,
y13, z12 touch the quadrics Qα, Qβ, Qγ , respectively.

Proof. This statement, formulated for the dual space in dimension n = 2, is proved
as [ABS2004, Theorem 5].

Consider the dual situation in an arbitrary dimension n. The dual quadrics Q∗
α,

Q∗
β, Q∗

γ belong to a linear pencil, and points x∗, y∗, z∗, dual to the hyperplanes
x, y, z, are respectively placed on these quadrics. Take the two-dimensional plane
containing these three points. The intersection of the pencil of quadrics with that,
and any other plane as well, represents a pencil of conics. Thus, Theorem 5 from
[ABS2004] will remain true in any dimension.

This lemma is dual to that theorem, thus the proof is complete. �
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Theorem 4.13. The map R satisfies the Yang–Baxter equation.

Proof. Let x, y, z be hyperplanes in CPn. We want to prove that

R23 ◦R13 ◦R12(x, y, z) = R12 ◦R13 ◦R23(x, y, z).

Denote by Qα, Qβ, Qγ the quadrics from (4.2) touching x, y, z, respectively.

Let

(x, y, z)
R12−−→ (x2, y1, z)

R13−−→ (x23, y1, z1)
R23−−→ (x23, y13, z12),

(x, y, z)
R23−−→ (x, y3, z2)

R13−−→ (x3, y3, z
′
12)

R12−−→ (x′
23, y

′
13, z

′
12).

Now, apply Lemma 4.12 to the hyperplanes x, y, z2. Since

(x2, y1) = R(x, y), (x3, z
′
12) = R(x, z2), (y3, z) = R(y, z2),

we have that the joint hyperplane of the pencils (x3, y3) and (x2, z) is touching Qα;
therefore, this plane must coincide with x23 and x′

23, i.e., x23 = x′
23. Also, the

joint hyperplane of the pencils (y1, z
′
12) and (x2, z) is touching Qγ ; therefore, this

is z1 and z12 = z′12. Finally, the joint hyperplane of pencils (x3, y3) and (y1, z
′
12) is

tangent to Qβ. It follows this is y13 = y′13, which completes the proof. �

Remark 4.14. Instead of defining R to act on the whole space CPn∗ ×CPn∗, we
can restrict it to the product of two nondegenerate quadrics from (4.2), namely,

R(α, β) : Q∗
α ×Q∗

β → Q∗
α ×Q∗

β,

where a pair (x, y) of tangent hyperplanes is mapped into a pair (x1, y1) in such a
way that x, y, x1, y1 belong to the same pencil.

The corresponding Yang–Baxter equation is

R23(β, γ) ◦R13(α, γ) ◦R12(α, β) = R12(α, β) ◦R13(α, γ) ◦R23(α, β),

where both sides of the equation represent maps from Q∗
α ×Q∗

β ×Q∗
γ to itself.

In [ABS2004], for irreducible algebraic varieties X1 and X2, a quadrirational
mapping F : X1 × X2 → X1 × X2 is defined. For such a map F and any fixed
pair (x, y) ∈ X1 × X2, except from some closed subvarieties of codimension bigger
or equal to 1, the graph ΓF ⊂ X1 × X2 × X1 × X2 intersects each of the sets
{x}×{y}×X1×X2, X1×X2×{x}×{y}, X1×{y}×{x}×X2, {x}×X2×X1×{y}
at exactly one point (see [ABS2004, Definition 3]). In other words, ΓF is the graph
of four rational maps, F , F−1, F̄ , F̄−1.

The following proposition is a generalization of [ABS2004, Proposition 4].

Proposition 4.15. The map R(α, β) : Q∗
α × Q∗

β → Q∗
α × Q∗

β is quadrirational.

It is an involution, and it coincides with its companion R̄(α, β).

5. Pseudo-integrable billiards and the local Poncelet Theorem

5.1. Billiards in domains bounded by a few confocal conics. In this section
we analyze the billiard dynamics in a domain bounded by arcs of a few confocal
conics, such that there are reflex angles on the boundary. In order to describe some
phenomena appearing in such systems, let us consider the domain D0 bounded by
two confocal ellipses from family (2.1) and two segments placed on the smaller axis
of theirs, as shown in Figure 35.
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Γ1

Γ2

Γ3

Γ4

Figure 35. Domain bounded by two confocal ellipses and two
segments on the y-axis

More precisely, we fix parameters β1, β2 such that β1 < β2 < b, and take the
border of D0 to be

∂D0 = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4,

Γ1 = {(x, y) ∈ Cβ1
| x ≥ 0},

Γ2 = {(x, y) ∈ Cβ2
| x ≤ 0},

Γ3 = {(0, y) |
√

b− β2 ≤ y ≤
√

b− β1},
Γ4 = {(0, y) | −

√

b− β1 ≤ y ≤ −
√

b− β2}.
Notice that segments Γ3, Γ4 are lying on the the degenerate conic Ca of family (2.1).

By the Chasles theorem [Cha1827], as we have already mentioned in Section 2.1,
each line in the plane is touching exactly one conic from a given confocal family;
moreover, this conic remains the same after the reflection off any conic from the
family. Thus, each billiard trajectory in a domain bounded by arcs of several
confocal conics has a caustic from the confocal family.

Consider the billiard trajectories within domain D0 whose caustic is an ellipse,
and denote it by Cα0

. In addition, we assume that Cα0
is completely placed inside

the billiard table, i.e., β2 < α0 < b. An example of such a trajectory is shown in
Figure 36.

Such billiard trajectories fill out the ring R placed between the billiard border
and the caustic, see Figure 37.

Let us examine the leaf of the phase space composed by those trajectories. The
leaf is naturally decomposed into four rings equal to R, which are glued to each
other along the border arcs. We describe the gluing in detail:

R1 This ring contains the points in the phase space that correspond to the
billiard particle moving away from the caustic and the clockwise direction
around the coordinate centre.

R2 Corresponds to the motion away from the caustic in the counterclockwise
direction.

R3 Corresponds to the motion towards the caustic in the counterclockwise
direction.

R4 Corresponds to the motion towards the caustic in the clockwise direction.
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Figure 36. A billiard trajectory in D0 with an ellipse as caustic

Γ1

Γ2

Γ3

Γ4

C

Figure 37. Ring R

Notice that the reflection off the two ellipse arcs contained in the billiard boun-
dary changes the direction of the particle motion with respect to the caustic, but it
preserves the direction of the motion around the centre. The same holds for passing
through the tangency points with the caustic. On the other hand, the reflection
off the axis changes the direction of motion around the centre, but preserves the
direction with respect to the caustic. Thus, the four rings are glued to each other
according to the following scheme.

R2

Γ3Γ4

⑤⑤
⑤⑤
⑤⑤
⑤⑤ Γ1Γ2C

❇❇
❇❇

❇❇
❇❇

R1

Γ1Γ2C ❇❇
❇❇

❇❇
❇❇

R3

R4

Γ3Γ4

⑤⑤⑤⑤⑤⑤⑤⑤

Let us represent all the rings in Figures 38 and 39.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



BICENTENNIAL OF THE GREAT PONCELET THEOREM 429

Γ1 Γ′
1 Γ′

1 Γ1

Γ3 Γ3 Γ′
3 Γ′

3

Γ2 Γ′
2 Γ′

2 Γ2

Γ4 Γ4 Γ′
4 Γ′

4

C C′ C′ C

R1 : R2 : R3 : R4 :

Figure 38. Rings R1, R2, R3, R4

Figure 39. Gluing rings R1, R2, R3, R4

Now, we have

Proposition 5.1. All the billiard trajectories within domain D0 with the fixed
caustic Cα0

form an orientable surface of genus 3.

In contrast, notice that the leaves for the billiard within an ellipse are tori (see
Figures 8 and 9 from Section 2).

5.2. Topological estimates. Now we consider a more general billiard desk shape.
Let D be a bounded domain in the plane such that its boundary Γ = ∂D is the
union of finitely many arcs of confocal conics from the family (2.1). Any trajectory
of that billiard has a caustic, which will be a conic from (2.1) touching all lines
containing the segments of the trajectory. Let us fix Cλ0

as the caustic.

Notice that all tangent lines of a conic fill out an infinite domain in the plane: if
the conic is an ellipse, the domain is its exterior; for a hyperbola, it is the part of
the plane between its branches.

Denote by Dλ0
the intersection of D with the domain containing the tangent

lines of caustic Cλ0
. All billiard trajectories with the caustic Cλ0

are placed within
Dλ0

, which is a bounded set whose boundary Γλ0
= ∂Dλ0

is the union of finitely
many arcs of conics from (2.1). We assume that Dλ0

is connected as well; otherwise,
we consider its connected component.

All billiard trajectories in the domain D with the caustic Cλ0
will correspond to

a certain compact leaf M(λ0) in the phase space. Mλ0
is obtained by gluing four

copies of Dλ0
along the corresponding arcs of the boundary Γλ0

= ∂Dλ0
, similarly

as it is explained in Section 5.1.
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On Mλ0
the singular points of the billiard flow correspond to vertices of reflex

angles on the boundary of Dλ0
. Since confocal conics are orthogonal to each other

at the points of intersection, only two types of such angles may appear: full angles
and angles of 270◦. The vertex of a full angle is the projection of two singular
points from the phase space, each one having four separatrices. On the other
hand, a vertex of 270◦ is the projection of only one singular point, which has six
separatrices.

Using the Euler–Poincaré formula, as in [Via2008], we get the following estimate
for the total number N = N(Mλ0

) of saddle-connections:

Proposition 5.2. The total number N = N(Mλ0
) of saddle-connections is bounded

from above:

N(Mλ0
) ≤ 1

2

k
∑

i=1

si = k − χ(Mλ0
),

where k is the number of singular points of the flow on Mλ0
and s1, . . . , sk are

the numbers of separatrices at each singular point.

As a corollary, we get

Proposition 5.3. Consider the billiard within D with the caustic Cλ0
. If the cor-

responding subdomain Dλ0
has k̃ reflex angles on its boundary Γλ0

, then

• N ≤ 3k̃;
• g(Mλ0

) = k̃ + 1.

Notice that the genus of surface Mλ0
depends only on the number of reflex

angles on the boundary of Dλ0
and not of their types. Also, k̃ ≤ k.

Example 5.4. • If there are no reflex angles on the boundary, i.e., k = 0,
then Mλ0

is a torus: g = 1, N = 0.
• If there is only one reflex angle on the boundary, we have that g = 2.

We finish this subsection by formulating an analogue of the Liouville–Arnold
theorem for pseudo-integrable billiard systems, which is a consequence of the Maier
theorem from the theory of measured foliations (see [Mai1943, Via2008]). In our
case, the measured foliation is defined by the kernel of the closed 1-form

w =
dλ1

√

(a− λ1)(b− λ1)(λ0 − λ1)
+

dλ2
√

(a− λ2)(b− λ2)(λ0 − λ2)
,

where λ1, λ2 are the Jacobian coordinates associated to the confocal family (2.1).

Theorem 5.5. There exist pairwise disjoint open domains D1, . . . , Dn on Mλ0
,

each of them being invariant under the billiard flow, such that their closures cover
Mλ0

and for each j ∈ {1, . . . , n},
• either Dj consists of periodic billiard trajectories and is homeomorphic to
a cylinder

• or Dj consists of nonperiodic trajectories all of which are dense in Dj.

The boundary of each Dj consists of saddle-connections.

In contrast to the completely integrable Hamiltonian systems, compact leaves
of our billiards could be of a genus greater than 1. Moreover, one leaf could con-
tain several regions with periodic trajectories, each region having its own different
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period, along with several regions where the motion is nonperiodic. Because of
that, we call such systems pseudo-integrable, taking into account the fact that they
possess two independent commuting first integrals, as has been shown in Section
2.1.

5.3. The Poncelet Theorem and Cayley-type conditions. As in Section 5.2,
we consider a billiard within a bounded domain D whose boundary Γ = ∂D is the
union of finitely many arcs of confocal conics from the family (2.1). We fix Cλ0

as a caustic and denote by Dλ0
the intersection of D with the domain containing

tangent lines of caustic Cλ0
. Then Γ′

λ0
= Γ ∩ ∂Dλ0

is the union of finitely many
arcs of conics from (2.1).

Theorem 5.6. There exist subsets δ1, . . . , δn of Γ′
λ0
, with the properties:

• δ1, . . . , δn are invariant under the billiard map;
• δ1, . . . , δn are pairwise disjoint;
• each δi is a finite union of di open subarcs of Γ′

λ0

δi =

di
⋃

j=1

ℓij ;

• closure of δ1 ∪ · · · ∪ δN is Γ′
λ0
,

such that they satisfy the following.

• If one billiard trajectory with bouncing points within δi is periodic, then all
such trajectories are periodic with the same period ni. Moreover, ni is a
multiple of di, and every such a trajectory bounces the same number ni

di
of

times off each arc ℓij.
• If the billiard trajectories having vertices in δi are nonperiodic, then the
bouncing points of each trajectory are dense in δi.

The boundary of each δi consists of bouncing points of saddle-connections.

This theorem is a consequence of Theorem 5.5 from the previous section. The
proof follows from the fact that each of the domains Di intersects Γ′

λ0
and forms

δi = Γ′
λ0

∩Di.

In [DR2004], we analyzed billiards within domains bounded by arcs of several
confocal quadrics and the billiard ordered game within a few confocal ellipsoids; see
also [DR2006a] for detailed examples. Unlike in the present article, the domains
considered in [DR2004, DR2006a] did not contain reflex angles at the boundary.
However, the technique used there to describe the periodic trajectories can be
directly transferred to the present problems.

Before stating the Cayley-type conditions, recall that a point is being reflected
off conic Cλ0

from outside if the corresponding Jacobi elliptic coordinate achieves
a local maximum at the reflection point, and from inside if there the coordinate
achieves a local minimum (see [DR2004]).

Theorem 5.7. Consider domain D bounded by arcs of k ellipses Cβ1
, . . . , Cβk

, l
hyperbolas Cγ1

, . . . , Cγl
, and several segments belonging to the degenerate conics

from the confocal family (2.1)

β1, . . . , βk ⊂ (−∞, b), k ≥ 1, γ1, . . . , γl ⊂ (b, a), l ≥ 0.
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Let Cα0
be an ellipse contained within all ellipses Cβ1

, . . . , Cβk
: b > α0 > βi for

all i ∈ {1, . . . , k}. A necessary condition for the existence of a billiard trajectory
within D with the caustic Cα0

, such that the trajectory becomes closed after

• n′
i reflections from inside and n′′

i reflections from outside off Cβi
, 1 ≤ i ≤ k;

• m′
j reflections from inside and m′′

j reflections from outside off Cγj
, 1 ≤ j ≤

l;
• the total number of p intersections with the x-axis and reflections off the
segments contained in the x-axis;

• the total number of q intersections with the y-axis and reflections off the
segments contained in the y-axis;

is
k
∑

i=1

(n′
i − n′′

i )(A(Pβi
)−A(Pα0

)) +

l
∑

j=1

(m′
j −m′′

j )A(Pγj
) + pA(Pa)− qA(Pb) = 0,

m′
j −m′′

j + p− q = 0.

Here A is the Abel–Jacobi map of the elliptic curve,

γ : s2 = P(t) := (a− t)(b− t)(α0 − t),

and Pδ denotes the point (δ,
√

P(δ)) on γ.

Proof. Following Jacobi [Jac1884] and Darboux [Dar1870], similarly as in [DR2004],
we consider the sums

∫

dλ1
√

P(λ1)
+

∫

dλ2
√

P(λ2)
and

∫

λ1dλ1
√

P(λ1)
+

∫

λ2dλ2
√

P(λ2)

over a billiard trajectoryA1 · · ·AN . Here (λ1, λ2) are the Jacobi elliptic coordinates,
λ1 < λ2. The second integral is equal to the length of the trajectory, while the first
one is zero.

Since along any billiard trajectory, λ1 achieves local extrema at the points of
the reflection off the ellipses and the touching points with the caustic, and λ2 at
the points of the reflection off the hyperbolas and the intersection points with the
coordinate axes, we obtain that A1 = AN is equivalent to the condition stated. �

We illustrate this theorem on the example when the billiard table is D0, as
defined in Section 5.1.

Example 5.8. A necessary condition for the existence of a billiard trajectory within
D0 with the caustic Cα0

, such that the trajectory becomes closed after n1 reflections
off Cβ1

and n2 reflections off Cβ2
is

n1A(Pβ1
) + n2A(Pβ2

) = (n1 + n2)A(Pα0
).

Notice that in this case the numbers p and q are always even and equal to each
other. Since 2A(Pa) = 2A(Pb), the corresponding summands are cancelled out.

5.4. Interval exchange transformation. In this section, we are going to estab-
lish a connection of the billiard dynamics within domain D0 defined in Section 5.1
with interval exchange transformations. We start with the definition of such trans-
formations, while more detail on them may be found in [Via2008,Zor2006,Kea1975,
Vee1978].
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5.4.1. Interval exchange maps. Let I ⊂ R be an interval, and let {Iα | α ∈ A} be
its finite partition into subintervals. Here A is a finite set of at least two elements.
We consider all intervals to be closed on the left and open on the right.

An interval exchange map is a bijection of I into itself, such that its restriction
to each Iα is a translation. Such a map f is determined by the following data:

• A pair (π0, π1) of bijections A → {1, . . . , d} describing the order of
subintervals {Iα} in I and {f(Iα)} in f(I) = I. We denote

π =

(

π−1
0 (1) π−1

0 (2) . . . π−1
0 (d)

π−1
1 (1) π−1

1 (2) . . . π−1
1 (d)

)

.

• A vector λ = (λα)α∈A of the lengths of Iα.

5.4.2. Billiard dynamics. To each billiard trajectory, we join the sequence

{(Xn, sn)}, Xn ∈ Cα0
, sn ∈ {+,−},

where Xn are joint points of the trajectory with the caustic, while sn = + if at Xn

the trajectory is winding counterclockwise and sn = − if it is winding clockwise
about the caustic.

Introduce the metric μ on the caustic Cα0
as in Proposition 2.3. Then we pa-

rametrize Cα0
by the parameters

p : Cα0
→ [0, 1), q : Cα0

→ [−1, 0),

which are natural with respect to μ such that p is oriented counterclockwise and q
clockwise along Cα0

, and the values p = 0 and q = −1 correspond to points P0, Q0

respectively, as shown in Figure 40.

Consider one segment of a billiard trajectory, and let X ∈ Cα0
be its touching

point with the caustic. Suppose that the particle is moving counterclockwise on
that segment. From Figure 40, we conclude

• if X is between points P1 and P2, then the particle is going to hit the arc
Cλ2

;
• if X is between P2 and P0, the particle is going to hit the arc Cλ1

;

P0
P1

P2
Q0Q1

Q2

Figure 40. Parametrizations of the caustic
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• for X between P0 and P1, the particle is going to hit Cλ1
and the upper seg-

ment before the next contact with the caustic, and the direction of motion
is changed to clockwise.

Similarly, if the particle is moving in clockwise direction, we have

• if X is between points Q1 and Q2, then the particle is going to hit the arc
Cλ2

;
• if X is between Q2 and Q0, the particle is going to hit the arc Cλ1

;
• for X between Q0 and Q1, the particle is going to hit Cλ1

and the lower seg-
ment before the next contact with the caustic, and the direction of motion
is changed to counterclockwise.

To see the billiard dynamics as an interval exchange transformation, we make
the identification

(X,+) ∼ p(X), (X,−) ∼ q(X).

In other words:

• we identify the joint point X of a given trajectory with the caustic with
p(X) ∈ [0, 1) if the particle is moving in a counterclockwise direction on
the corresponding segment;

• for the motion in a clockwise direction, we identify X with q(X) ∈ [−1, 0).

Denote the rotation numbers r1 = ρ(λ1), r2 = ρ(λ2) (see Proposition 2.3).

The parametrization values for points denoted in Figure 40 are

p(P0) = 0, p(P1) = r1 − r2, p(P2) = r1 − r2 +
1

2
,

q(Q0) = −1, q(Q1) = r1 − r2 − 1, q(Q2) = r1 − r2 −
1

2
.

Now, we distinguish three cases depending on the position of point P0 with
respect to the x-axis (see Figure 40), i.e., on the sign of 1

4 + r2
2 − r1.

P0 is on the x-axis: 1
4 + r2

2 − r1 = 0. The interval exchange map is

ξ �→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ + r1 +
3
2 , ξ ∈ [−1,− 1

2 − r1),

ξ + r2, ξ ∈ [− 1
2 − r1,−r1),

ξ + r1 − 1, ξ ∈ [−r1, 0),

ξ + r1 − 1
2 , ξ ∈ [0, 1

2 − r1),

ξ + r2, ξ ∈ [ 12 − r1, 1− r1),

ξ + r1 − 1, ξ ∈ [1− r1, 1),

as shown in Figure 41.

A B C D E F

C B D F E A

Figure 41. Interval exchange transformation for the case 1
4 + r2

2 − r1 = 0
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A B C D E F G H

D B E C H F A G

Figure 42. Interval exchange transformation for the case 1
4 + r2

2 − r1 > 0

To the map, the pair (π, λ) is joined

π =

(

A B C D E F
C B D F E A

)

,

λ =

(

1

2
− r1,

1

2
, r1,

1

2
− r1,

1

2
, r1

)

.

P0 is above the x-axis: 1
4 + r2

2 − r1 > 0. The interval exchange map in this case is
shown in Figure 42 and given by

ξ �→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ + r1 +
3
2 , ξ ∈ [−1, r1 − r2 − 1),

ξ + r2, ξ ∈ [r1 − r2 − 1, r1 − r2 − 1
2 ),

ξ + r1, ξ ∈ [r1 − r2 − 1
2 ,−r1),

ξ + r1 − 1, ξ ∈ [−r1, 0),

ξ + r1 − 1
2 , ξ ∈ [0, r1 − r2),

ξ + r2, ξ ∈ [r1 − r2, r1 − r2 +
1
2 ),

ξ + r1, ξ ∈ [r1 − r2 +
1
2 , 1− r1),

ξ + r1 − 1, ξ ∈ [1− r1, 1).

The map can be described by the pair (π, λ):

π =

(

A B C D E F G H
D B E C H F A G

)

,

λ =

(

r1 − r2,
1

2
, r2 − 2r1 +

1

2
, r1, r1 − r2,

1

2
, r2 − 2r1 +

1

2
, r1

)

.

P0 is below the x-axis: 1
4 + r2

2 − r1 < 0. The interval exchange map corresponding
to the billiard dynamics is

ξ �→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ + r1 +
3
2 , ξ ∈ [−1,− 1

2 − r1),

ξ + r1 − 1
2 , ξ ∈ [− 1

2 − r1, r1 − r2 − 1),

ξ + r2, ξ ∈ [r1 − r2 − 1, r1 − r2 − 1
2 ),

ξ + r1 − 1, ξ ∈ [r1 − r2 − 1
2 , 0),

ξ + r1 − 1
2 , ξ ∈ [0, 1

2 − r1),

ξ + r1 − 3
2 , ξ ∈ [ 12 − r1, r1 − r2),

ξ + r2, ξ ∈ [r1 − r2, r1 − r2 +
1
2 ),

ξ + r1 − 1, ξ ∈ [r1 − r2 +
1
2 , 1);

see Figure 43.
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A B C D E F G H

F D C E B H G A

Figure 43. Interval exchange transformation for the case 1
4 + r2

2 − r1 < 0

To the map, the pair (π, λ) is joined

π =

(

A B C D E F G H
F D C E B H G A

)

,

λ=

(

1

2
− r1, 2r1 − r2 −

1

2
,
1

2
, r2 +

1

2
− r1,

1

2
− r1, 2r1 − r2 −

1

2
,
1

2
, r2 +

1

2
− r1

)

.

Notice that in all three cases the interval exchange transformations depend only
on the rotation numbers r1, r2. Thus, we have

Theorem 5.9. The billiard dynamics inside the domain D0 with the caustic Cα0

does not depend on the parameters a, b of the confocal family (2.1) but only on the
rotation numbers r1, r2.

5.4.3. Domain bounded by the ellipses with the rotation numbers 5−
√
5

10 and
√
5

10 . By
Theorem 5.9 it is enough to consider the case when the confocal family is degenerate,
i.e., consists of concentric circles.

In this example, there exist six saddle-connections, represented in Figure 44.
Each polygonal line shown on the figure corresponds to two trajectories in the
phase space, depending on the direction of the motion.

Vertices of the saddle-connections divide the billiard border into eleven parts;
see Figure 45.

All trajectories in this billiard domain corresponding to the fixed caustic are
periodic:

• either all bouncing points of a given trajectory are in the gray parts (in
this case the billiard particle hits each gray part twice until the trajectory
becomes closed and the trajectory is 14-periodic (see Figures 46 and 46c)

a) b) c)

Figure 44. Saddle-connections corresponding to the circles with

the rotation numbers 5−
√
5

10 and
√
5

10 .
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Figure 45. Parts of the boundary corresponding to the circles

with the rotation numbers 5−
√
5

10 and
√
5

10

a) b) c)

Figure 46. Periodic trajectories corresponding to the circles with

the rotation numbers 5−
√
5

10 and
√
5

10

and notice that such a trajectory bounces six times on each of the circles
and once on each of the segments);

• or all bouncing points are in the black parts (the particle will hit each part
once until closure and the trajectory is 4-periodic (see Figure 46b), and
such a trajectory reflects twice on each of the circular arcs).

The corresponding level set in the phase space is divided into three parts by the
saddle-connections:

• The part containing all 14-periodic trajectories is bounded by four saddle-
connections whose projections to the configuration space is shown on Fig-
ures 44a and 44c, and the saddle-connections corresponding to Figure 44b
are lying inside this part.

• Two parts containing all 4-periodic trajectories winding about the caus-
tic in the clockwise and counterclockwise direction are bounded by the
saddle-connections winding in the same direction whose projections to the
configuration space is shown in Figures 44a and 44c.

5.5. The Keane condition and minimality. An interval exchange transforma-
tion is called minimal if its every orbit is dense in the whole domain. When consid-
ering pseudo-billiards, minimal interval exchange transformations will correspond
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to the cases when all orbits are dense in the domain between the billiard border
and the caustic.

Following [Via2008,Zor2006], we are going to formulate a sufficient condition for
minimality. Let f be an interval exchange transformation of I, given by pair (π, λ).
Denote by pα the left endpoint of Iα. Then the transformation satisfies the Keane
condition if

fm(pα) �= pβ for all m ≥ 1, α ∈ A, β ∈ A \ {π−1
0 (1)}.

Obviously, none of the transformations from Section 5.4 satisfies the Keane condi-
tion; namely, the midpoint of the interval is the left endpoint of one of Iα, and it
is the image of another endpoint in the corresponding interval exchange map.

The goal of this section is to find an analogue of the Keane condition for interval
exchange transformations appearing in billiard dynamics.

5.5.1. Billiard-like transformations and the modified Keane condition. Analysis of
the examples from Section 5.4 motivates the following definitions.

Definition 5.10. An interval exchange transformation f of I = [−1, 1) is billiard-
like if the partition into subintervals satisfies the following:

• for each α, Iα is contained either in [−1, 0) or [0, 1);
• for each α, f(Iα) is contained either in [−1, 0) or [0, 1);
• both [−1, 0) and [0, 1) contain at least two intervals of the partition.

Definition 5.11. We will say that a billiard-like interval exchange transformation
f satisfies the modified Keane condition if

fm(pα) �= pβ for all m ≥ 1, α ∈ A, and β ∈ B such that pβ �∈ {−1, 0}.
Lemma 5.12. If a billiard-like interval exchange transformation satisfies the mod-
ified Keane condition, then the transformation has no periodic points.

We say that an interval exchange transformation is irreducible if for no k < |A|
the union

Iα
π
−1
0 (1)

∪ · · · ∪ Iα
π
−1
0 (k)

is invariant under the transformation. The usual Keane condition implies irre-
ducibility. However, this is not the case for the modified Keane condition—it may
happen that the transformation falls apart into two irreducible transformations on
[−1, 0) and [0, 1). On the other hand, if for a transformation satisfying the mod-
ified Keane condition there is an interval Iα ⊂ [−1, 0) such that f(Iα) ⊂ [0, 1),
irreducibility will also take place.

Proposition 5.13. If an irreducible billiard-like interval exchange transformation
f satisfies the modified Keane condition, then f is minimal.

An example. Consider billiard trajectories within domain D0 with caustic Cα0
, as

described in Section 5.1. In addition, suppose the rotation numbers corresponding
to the ellipses Cλ1

and Cλ2
are

r1 =
5

11
+

1

22π
, r2 =

5

11
− 1

220π
.

With the given rotation numbers, the Cayley-type conditions from Theorem 3.30
can be rewritten in a simpler form. Namely, a necessary condition for existence
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of a trajectory within D0 which becomes closed after n reflections of Cλ1
and m

reflections off Cλ2
is

nr1 +mr2 ∈ Z.

In this case, this condition is satisfied for n = 1 and m = 10:

(5.1) r1 + 10r2 = 5.

Since 1
4 + r2

2 − r1 > 0, the corresponding interval exchange transformation is
given by

Π =

(

A B C D E F G H
D B E C H F A G

)

,

λ =

(

1

20π
,
1

2
,

1

22
− 21

220π
,

5

11
+

1

22π
,

1

20π
,
1

2
,

1

22
− 21

220π
,

5

11
+

1

22π

)

.

Proposition 5.14. The transformation (Π, λ) satisfies the modified Keane condi-
tion.

Proof. Suppose that p and p′ are two endpoints of the intervals such that p′ �∈
{−1, 0} and fk(p) = p′ for some k ≥ 1. Notice that

p = αr1 + βr2 + γ
1

2
, p′ = α′r1 + β′r2 + γ′ 1

2
,

for some α, α′ ∈ {−1, 0, 1}, β, β′ ∈ {−1, 0}, γ, γ′ ∈ {−2,−1, 0, 1, 2}.
We have

p′ = fk(p) = p+ k1r1 + k2r2 + k3
1

2
,

for some integers k1, k2, k3 such that k1 + k2 = k, k1 ≥ 0, k2 ≥ 0. Thus

(5.2) (k1 + α− α′)r1 + (k2 + β − β′)r2 + (k3 + γ − γ′)
1

2
= 0.

Since r1 and r2 are irrational, equations (5.1) and (5.2) must be dependent:

(5.3) a := k1 + α− α′ =
1

10
(k2 + β − β′) = − 1

10
(k3 + γ − γ′).

For each ξ ∈ B ∪ F , either f(ξ) or f2(ξ) are not in B ∪ F , thus

(5.4) k2 ≤ 2k1 + 2.

Combining (5.4) and (5.3) we get 8a ≤ 7. Since k2 is nonnegative, (5.4) gives that
a = 0, which leads to k = k1 + k2 ≤ 3. By direct calculation we check that none of
the partition interval endpoints is mapped into another one, different from −1 and
0 by at most three iterations. �

In this example, the Cayley-type condition for periodicity is satisfied. However,
closed trajectories do not exist, and, moreover, each of the trajectories densely fills
the ring between the billiard border and the caustic.
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Cβ1

Γ

Figure 47. Domain D1 within an ellipse having a “wall” on the y-axis

5.6. Unique ergodicity. In this section it will be shown that there are infinitely
many billiard tables bounded by arcs of the confocal conics, such that the corre-
sponding flow will not be uniquely ergodic.

Consider the billiard table D1 whose boundary consists of the ellipse Cβ1
from

(2.1) and segment Γ = {(0, y) |
√
b− β2 ≤ y ≤

√
b− β1}, with β1 < β2 < b:

∂D1 = Cβ1
∪ Γ; see Figure 47.

Fix the parameter α0: such that β2 < α0 < b, and take Cα0
to be the caustic. A

corresponding billiard trajectory is shown in Figure 48.

Proposition 5.15. The billiard flow within the domain D1 with the caustic Cα0
is

equivalent to the following exchange transformation of the interval [−1, 1):

(5.5) ξ �→

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ξ + r1, ξ ∈ [−1,−r1),

ξ + r1 − 1, ξ ∈ [−r1, r2 − r1),

ξ + r1, ξ ∈ [r2 − r1, 1− r1),

ξ + r1 − 1, ξ ∈ [1− r1, r2 − r1 + 1),

ξ + r1 − 2, ξ ∈ [r2 − r1 + 1, 1),

with r1 = ρ(β1), r2 = ρ(β2), and ρ is the corresponding rotation function; see
Proposition 2.3.

Figure 48. A billiard trajectory in D1 with an ellipse as the caustic
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A B C D E

B E A D C

Figure 49. Transformation corresponding to the billiard within D1

Proof. The billiard flow is equivalent to the discrete dynamics of touching points
of the trajectory with the caustic, with the direction of motion taken into account.

Introduce the metric μ on the caustic Cα0
, as in Proposition 2.3. Then, we

parametrize Cα0
by the parameters

p : Cα0
→ [0, 1), q : Cα0

→ [−1, 0),

which are natural with respect to μ such that p is oriented counterclockwise and q
clockwise along Cα0

, and the values p = 0 and q = −1 correspond to touching points
contained in the right half-plane and left half-plane, respectively, of tangential lines
from (0,

√
b− β2). Having in mind that reflection on the “wall” Γ changes the

orientation of motion, we obtain (5.5). �

Map (5.5) is represented by the pair (π, λ)

π =

(

A B C D E
B E A D C

)

,

λ = (1− r1, r2, 1− r2, r2, r1 − r2);

see also Figure 49.

Theorem 5.16. There are billiard tables D1 and caustics, such that the corre-
sponding billiard flows are minimal and not uniquely ergodic.

Proof. The transformation (5.5) corresponds to the Veech example of minimal and
not uniquely ergodic systems [Vee1969]; see also [MT2002]. Namely, choose α0 and
β1 such that r1 = ρ(β1) is an irrational number with unbounded partial quotients.
Then there are irrational numbers r, such that for r2 = ρ(β2) = r1−r, the measure
μ on Cα0

is not ergodic, thus not uniquely ergodic. �
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ship scheme of the The Abdus Salam ICTP (Trieste, Italy) for its support and to
Vered Rom-Kedar from The Weizmann Institute of Science (Rehovot, Israel) for
hospitality and support. The authors are grateful to the referees for suggestions
and comments which led to significant improvement of the exposition.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



442 VLADIMIR DRAGOVIĆ AND MILENA RADNOVIĆ
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Milena Radnović received a doctorate in mathematics from the University of
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métriques du calcul infinitesimal, Vol. 2 and 3, Gauthier-Villars, Paris, 1914.
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