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ABSTRACT

Bicep Array is the newest multi-frequency instrument in the Bicep/Keck Array program. It is comprised of four
550mm aperture refractive telescopes observing the polarization of the cosmic microwave background (CMB) at
30/40, 95, 150 and 220/270GHz with over 30,000 detectors. We present an overview of the receiver, detailing
the optics, thermal, mechanical, and magnetic shielding design. Bicep Array follows Bicep3 ’s modular focal
plane concept, and upgrades to 6” wafer to reduce fabrication with higher detector count per module. The first
receiver at 30/40GHz is expected to start observing at the South Pole during the 2019-20 season. By the end
of the planned Bicep Array program, we project 0.002 . σ(r) . 0.006, assuming current modeling of polarized
Galactic foreground and depending on the level of delensing that can be achieved with higher resolution maps
from the South Pole Telescope.

Keywords: Cosmic Microwave Background, Polarization, Instrumentation

1. INTRODUCTION

Measurements of the polarization of the Cosmic Microwave Background provide key information to further our
understanding of the early universe. The ΛCDM model predicts an E-mode polarization pattern in the CMB at
the level of a few µK as well as an arc-minute B-mode polarization arising from gravitational lensing of E-modes
by the large-scale structure of the universe. Inflationary gravitational waves may be a source of degree-scale B-
mode polarization and a detection of such signal can be used to constrain the tensor-scalar ratio r and place limits
on the energy scale and potential of Inflation.1 While classes of Inflation models could generate undetectably
low levels of gravitational waves, a detection of B-mode polarization generated by primordial gravitational waves
would be direct evidence for the theory of Inflation. However, in order to disentangle a potential CMB signal
from polarized Galactic dust and synchrotron foregrounds, we need to probe the polarization of the CMB at
multiple frequencies with high sensitivity.

The current constraint on tensor-to-scalar ratio is r0.05 < 0.06 at 95% confidence from Bicep/Keck Array data
in conjunction with Planck temperature measurements2 (Figure 1). Over the past 10 years, our experimental
strategy of utilizing small-aperture, cold, refracting telescopes has proven to be successful to probe the degree-
scale polarization of the CMB. Bicep2 observed the sky with 500 antenna-coupled transition-edge sensor (TES)
bolometers at 150GHz from 2010 to 2012, and reported a 5σ excess of B-mode power over the base lensed-
ΛCDM model in the range 30 < l < 150.3 The Keck Array consists of five 25 cm aperture receivers, each similar
to Bicep2, started observations at 150GHz in 2012. A joint analysis with Planck indicated the signal reported
from Bicep2 is consistent with polarized emission from Galactic dust.4 The interchangeable Keck Array receivers
allowed us to diversify the frequency coverage by rapidly switching each receiver to 95, 220, and 270GHz. The
latest instrument in our program, Bicep3, replaced Bicep2 on its mount in 2015. Bicep3 uses a 0.52m telescope
and 2500 detectors operating at 95GHz to realize an on-sky instantaneous sensitivity of 6.7µKcmb

√
s.5 Figure 2

shows the progression of the Bicep/Keck Array program, to larger apertures, larger focal planes, and wider
frequency coverage.

Bicep Array adopts the same interchangeable concept used in Keck Array and is comprised of four Bicep3-
class receivers, each optimized for a atmospheric window in the frequency range from 30 to 270GHz (Figure 3).
The highest and lowest frequency receivers incorporate two bands within an atmospheric window, operating
at 30/40 GHz and 220/270 GHz, by shifting bandpass in alternating focal plane modules over the focal plane
(Figure 2). The splitting of the band provides more information on polarized Galactic synchrotron and dust
emission to test the parameters of the foreground model.

The Keck Array telescope mount will be replaced by the new Bicep Array mount6 at the end of 2019. Bicep

Array receivers will be installed in the new mount in a staged approach over the next few years, with the first
30/40GHz receiver to be deployed at the end of 2019, followed by the 150, 95 and 220/270GHz receivers. We
are currently planning on continuing observations with a subset of the Keck Array receivers installed in open
slots until they are filled by available Bicep Array receivers. The parameters of the Keck Array , Bicep3 and
Bicep Array receivers are given in Table 1.

Further author information send correspondence to H. Hui
H. Hui: E-mail: hhui@caltech.edu, Telephone: 1 626 395 2023
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Figure 1. Published B-mode polarization measurement by different experiments. B-mode polarization from gravitational
lensing has been detected by the Bicep/Keck Array , SPT, Polarbear, and ACT collaborations.

2. BICEP ARRAY INSTRUMENT OVERVIEW

2.1 Receiver overview

Bicep Array is largely based on the successful design of Bicep3.7 Each receiver is housed in a custom-designed
vacuum cryostat 2.1m tall and 0.9m in diameter (excluding the additional envelopes of the multi-channel readout
electronics and the pulse-tube cooler). Figure 4 shows a cross-section of the receiver. The vacuum jacket and
the 50K stages are constructed with a short base stage, and long cylinders for the main section. This allows us
to lift off the outer cylinders from the base plate without removing the cabling, thermal joints and focal plane
structure. The top of the vacuum jacket is capped by a vacuum window (made out of HDPE for the 30/40GHz
receiver; solutions for the higher frequencies are discussed in a companion paper8), and a stack of Zotefoam R©

infrared filters behind it. An IR-absorptive alumina filter9 is installed at the top of the 50K stage.

The 4K stage is sectioned into two lengthwise segments for ease of access during integration; the top optics
section houses the optical elements, including the two alumina lenses, and potentially a nylon filter, to absorb
long-wavelength infrared emission before reaching the sub-K focal plane. The lower camera section houses the
sub-kelvin cryogenic system, time-domain multiplexed SQUID readouts, and the sub-kelvin focal plane with a
thermo-mechanical truss structure.

The 50K volume is supported by G-10 trusses, providing robust structural support while maintaining low
thermal conductivity between temperature stages. The 4K and sub-Kelvin structures are supported by carbon
fiber trusses because of its high ratio of stiffness to thermal conductivity at low temperature.10

2.2 Thermal Architecture

The radiative loading from the window and warmer stages in Bicep Array dominates over conducted loading
inside the receiver, thus the receiver’s thermal architecture is focused on minimizing the instrument internal
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Figure 2. The progression of the Bicep/Keck Array program leading to the Bicep Array. Bottom row: the beam patterns
of the focal planes on the sky shown on a common scale. Each square represents a single receiver, and the colors indicate
different observing frequencies in pink (30/40GHz), red (95GHz), green (150GHz), and blue (220/270GHz).
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Figure 3. Left: Comparison of atmospheric transmission at the South Pole with the bandpasses of Bicep/Keck Array

and Bicep Array. Median atmospheric transmission during the observing season is shown in black, bracketed by the
10th and 90th percentiles. Transmission drops only slightly across 200–300GHz, making dust observations in the upper
part of this window effective, with similar dust sensitivity to the 220 GHz band. Right: Minimally processed timestream
pair-sum and pair-difference noise spectra from Keck Array . The stable Antarctic atmosphere enables observations at all
of these frequencies that are low-noise across the indicated science band from 0.1–1Hz, corresponding to 25 . ℓ . 250.
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Alumina IR filter

Nylon IR filter

Alumina Field Lens
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Receiver Nominal Nominal Single Beam Survey Weight
Observing Band Number of Detector NET FWHM Per Year
(GHz) Detectors (µKcmb

√
s) (arcmin) (µKcmb)

−2 yr−1

Keck Array

95 288 288 43 24,000

150 512 313 30 30,000

220 512 837 21 2,000

270 512 1310 17 800

Bicep3

95 2560 288 24 213,000

Bicep Array
〈 30
40

192
300

221
301

76
57

19, 500
20, 500

95 3456 288 24 287, 000
150 7776 313 15 453, 000

〈 220
270

8112
13068

837
1310

11
9

37, 000
15, 000

Table 1. Receiver parameters as used in sensitivity projections. Boldface numbers are actual/achieved quantities for
existing receivers. The remaining values in the survey weight column are scaled from the achieved survey weights using
only the ratio of the number of detectors, plus, if necessary to change frequency, the ratio of nominal NET values squared.
In 2017 the 270GHz Keck Array receiver realized single-detector NETs of 1310 µKcmb

√
s from pair differences in the best

channels, but with a large dispersion due to excess detector noise in many detectors. An improved 270GHz focal plane
is fielded in 2018.

Figure 4. Cross-sectional view of the Bicep Array receiver. The alumina lenses, nylon filter, and aperture stop are
precision mounted in the receiver and cooled to 4 K. The focal plane assembly houses the detector modules is cooled to
250 mK by the sub-Kelvin sorption refrigerator and surrounded by a superconducting Nb magnetic shield.
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Conducted load budget for the focal plane assembly

2 K (µW) 340 mK (µW) 230 mK (nW)

16 NbTi cables 110.7 27.7 99.6
4 Manganin cables 3.2 0.9 3.5
Cernox cables 11.0 2.1 3.0
Heater cables 4.6 0.8 2.3
Carbon fiber trusses 44.0 16.9 47.1
Aluminize mylar shield 52.9 23.4 97.8

Total 226.5 71.7 253.2

Table 2. Sub-Kelvin loading from conduction for Bicep Array. This calculation is based on the maximum cable count
for the high-frequency receiver. The loading is expected to be smaller with less readout cables for the lower frequency
receivers.

loading on the detectors. The 50K and 4K stages are heat sunk to the first and second stages of a Cryomech∗

PT-415 cooler, with cooling capacity of 40W and 1.5W, respectively.

The 56 cm aperture window lets > 100W of infrared radiation into the receiver. The current baseline material
for the vacuum window is 1”-thick HDPE at 30/40GHz, where HDPE has negligible in-band emission, but at
higher frequencies thinner windows using polyethylene fiber composites will reduce the in-band optical loading
and thereby significantly improve mapping speed.8 Within the receiver, we use a combination of Zotefoam R©

filters, alumina optics and a nylon filter to reduce infrared loading to an acceptable level for the sub-Kelvin
stages to function. Combining actual measurements from Bicep3 with a thermal model, the total loading on the
50K and 4K stages is estimated to be about 21W and 0.38W, respectively, implying actual base temperatures
of 34K and 3.1K at these stages.

Sub-Kelvin cooling for the detectors is provided by a three-stage helium (4He/3He/3He) sorption fridge from
CEA Grenoble11 (Figure 5) at 2K (4He stage), 340mK (intermediate cold), and 250mK (ultra-cold). With
estimating 20 and 15 µW of optical loading at 340 and 230 mK stages, it has sufficient cooling capacity to have a
3-day uninterrupted observing schedule between thermal cycles. The detector modules and focal plane are heat
sunk to the ultra-cold stage via a flexible high-purity copper-foil heat strap. The strap connects to the focal
plane through a stainless steel block. The temperature of the strap is actively regulated, and the block serves as
a passive low-pass thermal filter to attenuate thermal noise from the control circuit. The estimated conductive
loading on the ultra-cold stage is 0.25µW (not including radiative contributions, see Table 2).

2.3 Housekeeping electronics

Thermal monitoring for the cryostat is done using calibrated diodes and resistance thermometers (cernox R©) at
the radiation shields, critical cryogenic junctions, and some of the optical elements. The focal plane temperature
is regulated by passive and active filtering as described above, similar to the approach used on Keck Array

and Bicep3. Active control is implemented in a feedback loop using Neutron transmutation doped (NTD) Ge
thermometers and a resistive heater. The design uses the same precision NTD Ge thermometry to passively
monitor focal plane temperatures. Figure 6 shows the cold housekeeping layout in Bicep Array.

Warm housekeeping electronics consist of an analog electronics enclosure, which interfaces to the cryostat and
is responsible for biasing thermometers and pre-amplifying their signals, and a commercial electronics crate†,
which digitizes thermometry signals and sets heater voltages. The housekeeping electronics support up 64
thermometry channels and 32 heater channels for each Bicep Array receiver.

∗Cryomech, Inc. (www.cryomech.com)
†United Electronic Industries (www.ueidaq.com)
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Figure 5. Computer-aided design model of the Bicep Array fridge. Each stage is equipped with a removable heat switch
connected to the higher-temperature stage to accelerate the initial cool down. (Credits: CEA Grenoble11)
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Figure 6. Bicep Array cold housekeeping layout12
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Figure 7. Bicep Array optical diagram. All components except the zotefoam filters are anti-reflection coated to provide
minimal reflection. The lenses are cooled to 4 K, and the focal plane is actively temperature controlled to provide low and
stable optical loading. The radially symmetric design allows well-matched beams for two idealized orthogonally polarized
detectors at the focal plane.

2.4 Optics

Following the same concept as in previous telescopes, Bicep Array uses a simple diffraction-limited refractor,
which provides a telecentric and flat focal surface with minimum aberrations over a wide field of view. The
telescope has a mean f -ratio of f/1.6, and the alumina lenses are 650mm in diameter, with a clear aperture
of 550mm and a field of view of 29.6 degree. Figure 7 shows the optical diagram of the 30/40GHz design.
The lenses in Bicep Array are cooled to 4K to minimize loading on the detectors. The 4K space between the
objective and the field lens is covered in epoxy-encapsulated Eccosorb R© HR-10 microwave absorber to suppress
far-sidelobes reflections. The same Eccosorb R© is also used to define the 550 mm optical stop for the system,
located behind the objective lens (in the anti-sky direction). Simulations show the Gaussian beam width is
σ ∼ 76′/57′ at 30/40GHz. Given the similarity to the Bicep3 design, we expect the actual values to compare
well to the design model.

2.5 Focal plane and detector module

The sub-Kelvin structure is located on top of the 4K base plate, above the sorption fridge. It is separated into
three thermal, “wedding-cake” stages at 2K, 350mK, and 260mK. Each stage provides radiative shielding and
room for cable heat-sinking to the respective fridge stages, allowing low loading environment for the focal plane

Proc. of SPIE Vol. 10708  1070807-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 12/20/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Raà:.'J

Figure 8. 4” and 6” detector wafers used in Bicep3 and Bicep Array, respectively. The larger wafers reduce fabrication
with higher detector count per module. Larger optical throughout The 95GHz Bicep Array receiver will house ∼3500
detectors compared to 2560 detectors in Bicep3.

and detectors. The copper focal-plane plate is mounted at the 250 mK stage, separated by a low-pass stainless
steel filter and carbon fiber trusses.

Extensive finite-element simulations were performed on the truss structure to estimate its maximum static
load as well as its vibrational resonances. The minimum resonance frequency for the carbon fiber truss structure
is 55Hz. The maximum displacement of the truss structure when subject to a 90 degree gravity load is less than
70µm at the focal plane. The first buckling mode of the structure, with a 45 degrees gravity load, is found to
be more than 9 times the nominal load in correspondence of the carbon fibers truss elements. In practice the
glued joints are usually weaker than in simulation, so all truss elements will go through warm and cold stress
tests before installation.

Twelve detector modules are tiled onto the focal plane, each containing 32 to 2178 antenna-coupled transition-
edge sensors,13 depending on the observing frequency (Table 1). The module is based on the successful Bicep3

design,14 except the detectors are now fabricated on 6” silicon wafers, instead of the previous 4” wafers to
expedite lithographic fabrication with higher detector count per module (Figure 8). The total number of mod-
ule is also reduced in the focal plane, simplifies the assembly procedure and reduces the non-optically illumi-
nated metal frame area between modules. The first-stage SQUID readout multiplexing chips are housed in a
silicon/aluminum-nitride circuit board inside the module. The housing is constructed with superconducting
niobium and aluminum. Combining with the high-µ A4K sheet inside the module, it is designed to achieve high
magnetic shielding performance (Section 2.7). Figure 9 shows the exploded view of the module design.

Interaction between the edge antennas and the metal frame around the module cause differential ellipticity,
resulting in potential temperature to polarization leakage in the CMB maps. We designed corrugated walls to
minimize this effect. The 30/40GHz module implements a novel double-corrugation wall that mitigates the
differential ellipticity caused by the metal frame over 57% bandwidth, from 25GHz to 45GHz.15

2.6 Detector Readout

Bicep Array uses a time-domain multiplexing (TDM) readout system identical to Bicep3 for the 30/40, 95, and
150GHz receivers.14 Table 3 shows the multiplexing factors and arrangement for each receiver. The first stage
SQUIDs are integrated into the detector module. A circuit board (distribution board) is mounted underneath
the copper focal plane, gathering all the readout cabling and distributing to the corresponding detector module.
The housekeeping electronics and series SQUID array (SSA) amplification stage are placed on the 4K base plate
circuit boards (Figure 10). The amplified detector signals are digitized and read out using the warm Multi-
Channel Electronics (MCE16), which also provide SQUIDs and detector bias, and apply feedback for control.
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Figure 9. Left: An exploded view of the Bicep Array module. The design is based on Bicep3 but scaled to house a
larger detector wafer. Right: The 30/40GHz focal plane layout. The receiver has six 30GHz and six 40GHz modules laid
out in a checker-board pattern.

Frequency 30/40 GHz 95 GHz 150 GHz

# Detector Tiles 12 12 12
# Detectors 192 + 300 3456 7776
# Detectors/Tile 32 + 50 288 648
# SQUID MUX11 chips/Tile 6 28 64
# MCE 1 3 6
# Columns/MCE 24 28 32
# Rows (multiplexing factor) 33 43 42

Table 3. Multiplexing scheme for the 30/40, 95, and 150 GHz receivers in Bicep ArrayṪhe fourth 220/270 GHz receiver
will use RF multiplexing with higher multiplexing factors.

The large number of MCEs needed at 150GHz required a relatively minor mechanical redesign of the MCE boxes
in order to fit within the space constraints imposed by the telescope mount.

The 220/270GHz receiver, with more than 22,000 detector channels, will require a new readout technology.
Thermal kinetic inductance detectors17 (TKID), and microwave SQUID multiplexing18 (µMUX) technologies
provide the higher multiplexing factors to handle such large formats and are being developed for the high
frequency receiver within the collaboration.

2.7 Magnetic shielding

The SQUID readout system is susceptible to external magnetic fields and Bicep Array’s magnetic shielding
architecture is designed to minimize the level of spurious signals generated as the telescope moves along the
Earth’s magnetic field lines. The shielding configuration is optimized using COMSOL Multiphysics‡, which
allowed us to simulate the Meissner behavior of a superconducting material.

The first stage of shielding is achieved by the combination of a 1mm thick high-µ A4K sheet wrapped around
the 50K stage, and a 2mm thick superconducting niobium flared cup on the 350mK stage (Figure 11). Slotted
mounting holes on the 50K shield allow sufficient thermal expansion mismatch between the aluminum and
A4K. The sub-Kelvin niobium shield required a continuous base in addition to the flared cylinder to enhance
the shielding performance. The niobium base is not electrically connected to the copper base plate to avoid
potential superconductor-metal interactions at the contact surface. The receiver-level shielding provides a > 200
suppression factor from external magnetic fields.

‡COMSOL, Inc., Burlington, MA 01803 (www.comsol.com)
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DISTRIBUTION BOARD (250mK)

SSA BOARD (4K)

Figure 10. The distribution board gathers all the detector readout cabling and distributes them to the corresponding
detector module at 250mK. The SSA circuit board is located at 4K, containing the series SQUID arrays. Each MCE
connects to a single SSA board via five 100-way cables. The 30/40GHz receiver contains one SSA circuit board, with one
MCE; the 95GHz receiver contains three identical boards and the 150GHz receiver will have six.

Parts Axial Residual Flux Transverse Residual Flux

50K and 4K shield 0.24% 0.52%
Detector module 0.12% 0.20%
Final shielding 0.0003% 0.001%

Table 4. Simulated magnetic shielding performance in Bicep Array

The detectors and first stage SQUIDs are further protected by the module housing. The combination of the
aluminum detector frame, with a niobium backshort and niobium enclosed-box form a semi-enclosed, supercon-
ducting environment for the readout electronics. Simulation shows the biggest field leakage comes from the slots
for the readout cables. An additional niobium sheet, offsetting the cable slots is mounted on the backside of the
module niobium housing to minimize the leakage. To further increase the shielding, a 0.020” thick high-µ A4K
sheet is placed in between the niobium backshort and the circuit boards, 1 mm away from the SQUID chips
to draw the remaining, unwanted magnetic field away from the SQUIDs. We estimate a final shielding factor
in excess of 500 from the detector module. Table 4 shows the simulated magnetic shielding performance of the
receiver and module.

3. OBSERVATION STRATEGY AND PROJECTED PERFORMANCE

BicepArray focuses its CMB observations on the same sky patch asBicep3, spanning right ascension−60◦ <RA<
60◦ and declination −70◦ <RA< −40◦, with an effective area of ∼ 600deg2 (larger than Keck Array ’s ∼ 400deg2

but colocated). With the full Bicep Array sensitivity, we expect to achieve and surpass the Planck map depths
at all frequencies after only a few months of observations. Figure 12 shows the planned observing strategy, which
is identical to the current Bicep3 schedule.
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Figure 11. First stage Bicep Array magnetic shielding. A 1mm thick, high-µ A4K sheet is wrapped around the 50K
stage. A multi-stage, niobium flared cup shield is mounted onto the 350mK stage.

Figure 12. Left: Observing schedule in ground-based coordinates. Horizontal lines indicate the field scans and the vertical
lines indicate the bracketing elevation nods. The telescope scans at a fixed elevation during each scanset, including one
galactic plane phase. Right: Bicep observation sky patch, with the ∼ 600deg2 CMB field and galactic scan (highlighted
in red at the observing schedule).
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Figure 13. The projections on sensitivity to the tensor-to-scalar ratio that include a full estimation of lensing and Galactic
foregrounds, pinned by end-to-end calculations from Bicep/Keck Array analysis for data obtained through 2015.

The parameters of the Keck Array , Bicep3, and Bicep Array are given in Table 1. The Bicep Array
sensitivity estimate is based on achieved survey weight per year of the Keck Array . This procedure accounts for
all real-world observing imperfections such as detector yield, cryogenic efficiency, data cuts, ground subtraction,
temporal filtering, and other unexpected events that decrease the final sensitivity compared to the ideal case.
Figure 13 shows the projected sensitivity of the ongoing and planned Bicep program. We expected to reach
0.002 . σ(r) . 0.006 at the end of the program, depending on the level of delensing that can be achieved using
higher-resolution data from the South Pole Telescope.
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