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Bichromatic emission and multimode dynamics in bidirectional ring lasers
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The multimode dynamics of a two-level ring laser is explored numerically using a bidirectional traveling wave

model retaining the spatial effects due to the presence of counter-propagating electric fields in the population

inversion. Dynamical regimes where the emission in each direction occurs at different wavelengths are studied.

Mode-locked unidirectional emission for large gain bandwidth and relatively small detuning is reported.
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I. INTRODUCTION

Since their inception, ring lasers (RLs) have attracted the

interest of both theoretical and experimental research. The

design of the RL cavity has a high degree of rotational

symmetry with very low—ideally vanishing—backscattering

of waves propagating in one direction and the opposite.

Moreover, it opens the possibility of tailoring the reversibility

of the optical paths and impose unidirectional lasing by

introducing extra losses to one of the propagation directions.

This allows to more efficiently extract power from these

devices, hence the unidirectional RL design is at the heart

of many high-power solid state and fiber lasers [1–3], which

are commonplace in many applications.

From the theoretical point of view, the reversibility of the

optical path and the absence of reflectivity allow for two

degenerate counter-propagating electric fields in the same gain

medium. This property—which is not exclusive of RLs [4],

but common to all systems possessing rotational symmetry as,

for example, micro-disk lasers [5,6]—has important potential

applications. A possible state of bidirectional emission has

immediate potential applications for the development of laser

gyroscopes [7], but the strong competition for the gain

among these counter-propagating states should lead to bistable

unidirectional operation [8], which can also be exploited for

all-optical signal processing and storage [9]. However, the

first systematic formulation of the theory of RLs by Lamb

et al. [10–12] already evidenced that symmetry issues and

even minute intra-cavity reflections have a major impact

on the modal structure in RLs: pure counter-propagating

traveling waves are ideal states only allowed in closed-loop

optical cavities without any localized reflection; localized

reflections destroy the rotational invariance of the RL, and

the cavity modes become nondegenerate standing waves.

These effects, together with the nonlinear interaction of the

counter-propagating waves mediated by the active medium,

lead to a large variety of operating regimes and dynamics

that are profoundly different from those of Fabry-Pérot lasers
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[13–17] and that have posed problems for the development

of practical devices (specially semiconductor-based) for the

above applications in spite of the tremendous advances

achieved in the processing and technology [18–25].

The above phenomena have pointed out the necessity of

proper models for RLs that are able to describe the different

regimes of operation of these devices. RLs of different types

are often modeled by rate equations (REs) [14,26–28]. These

models, based on a χ3 description of the polarization induced

in the active medium, usually describe the temporal evolution

of the amplitude (or power) of the modes of the electric field

and the material gain without taking into account the spatial

effects explicitly. Instead—since the spatially varying field

profiles induce inhomogeneities in the carrier density that

couple the field modes—phenomenological mode-coupling

coefficients are used to describe different processes of modal

competition. The main advantage of such models is that they

provide an intuitive picture of the mechanisms underlying

mode dynamics, and they have allowed one to successfully

fit the emission spectra under different operation conditions,

hereby permitting one to determine several important device

parameters. Nevertheless, one of the main difficulties encoun-

tered in this type of model is the large number of parameters

required to describe the different nonlinear mechanisms of

modal coupling—such as carrier density pulsations, spatial

and spectral hole burning, and carrier heating. In addition, one

has to determine a priori which modes have to be accounted

for in the modeling: increasing the number of modes allows

one in principle to improve the dynamical description of the

system, but at the same time more mode-coupling parameters

have to be determined.

A natural way to take into account the spatial effects

and describe multimode dynamics is to use a traveling wave

model (TWM). A TWM is a semiclassical description of the

system that allows one to describe any kind of resonator

by including the appropriate boundary conditions, and it

has already been used for Fabry-Pérot lasers [29,30], for

unidirectional RLs [31], and even for bidirectional RLs [32].

The TWM offers a comprehensive model of the RL, but adds

a bigger computational cost, because RE models are based in

systems of ordinary differential equations (ODEs) and a TWM
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PÉREZ-SERRANO, JAVALOYES, AND BALLE PHYSICAL REVIEW A 81, 043817 (2010)

description is based in systems of partial differential equations

(PDEs). In this work, we study the multimode dynamics of RLs

by means of a bidirectional TWM that preserves the spatial

variations of the field amplitudes and that explicitly considers

the dominant contribution of the spatial grating in the gain,

which are often disregarded. Since our goal is to formulate

a description of the RL allowing for bidirectional emission

and mode competition that retains the essential features of the

dynamics, we consider a simple two-level active medium. In

this case, the interaction of the active medium and the optical

field is well known and its description in time domain poses

no additional problems as would be the case, for example,

for semiconductor systems. In addition, although a complete

description of the system requires the full three-dimensional

wave equation to describe the cavity field exactly, our approach

only takes into account the axial direction of propagation

by assuming a single-transverse mode be supported by

the cavity.

The paper is organized as follows. In Sec. II, the TWM

is summarized, with the detailed derivation of the model

and its numerical implementation in the appendices. The

laser threshold and modes are analytically or semianalytically

determined. In Sec. III, we test the correctness and accuracy

of the numerical algorithm used to implement the TWM by

comparing the results obtained in the single-mode limit with

those in [33]. In Sec. IV, the multimode dynamics of the system

are discussed, focusing on two cases: moderate and large gain

bandwidth. We find dynamical regimes where the emission in

each direction is almost single mode, but each direction lases

at a different wavelength. This regime might have practical

relevance in the development of gyroscopes, since the two

directions are not frequency locked. We also find regimes of

mode-locked unidirectional emission for large gain bandwidth

and relatively small detuning. Finally, the conclusions are

presented in Sec. V.

II. THE MODEL

In this section we briefly summarize the traveling wave

model (TWM) considered for the ring laser. The details of its

derivation can be found in Appendix A.

We consider that the electric field is quasimonochromatic

and it is decomposed into forward (+) and backward (−)

waves propagating in opposite directions. The active medium

is assumed to be composed by homogeneously broadened

two-level atoms. We also consider a quasiresonant light matter

interaction in the rotating wave approximation (RWA). The

population inversion density, D, is decomposed in different

spatial harmonics of a fundamental modulation at half the opti-

cal wavelength and, in the resulting hierarchy of contributions,

we retain the first-order term.

With these assumptions, the dimensionless equations that

define the TWM read

±
∂A±

∂s
+

∂A±

∂τ
= B± − αA±, (1)

1

γ

∂B±

∂τ
= −(1 + iδ̃)B± + g(D0A± + D±2A∓)

+
√

βD0ξ±(s,τ ), (2)

FIG. 1. (Color online) Schematic representation of the ring

laser boundary conditions where t± and r± are the reflectivity

and transmissivity for the counter-propagating fields A+ and A−,

respectively.

1

ǫ

∂D0

∂τ
= J − D0 + 


∂2D0

∂s2
− (A+B∗

+ + A−B∗
− + c.c.),

(3)
1

η

∂D±2

∂τ
= −D±2 −

ǫ

η
(A±B∗

∓ + A∗
∓B±), (4)

where A± are the slowly varying components of the counter-

propagating electric fields, B± are their respective polariza-

tions, D0 is the quasihomogeneous inversion density, and D±2

are the spatially dependent contributions to the grating in the

population inversion density, α are the internal losses, δ̃ is

the detuning, ǫ and η are the decay times for D0 and D±2,

respectively, and γ determines the spectral width of the gain

spectrum. For more details see Appendix A.

Equations (1)–(4) must be completed with the boundary

conditions for the electric fields. We consider the most general

case depicted in Fig. 1, hence the boundary conditions read

A+(0) = t+A+(1)eiγ ω̃0 + r−A−(0),
(5)

A−(1)e−iγ ω̃0 = t−A−(0) + r+A+(1)eiγ ω̃0 ,

where r± and t± denote the reflectivity and transmissivity of

the forward and backward waves. These coefficients can in

general be different for the two directions in order to describe

the effect of nonreciprocal elements as an optical isolator. We

note, moreover, that |t±|2 + |r±|2 = 1 − ε±, where ε± are the

losses at the point coupler.

These general boundary conditions reduce to those for an

ideal ring if r± = 0 and t± �= 0, and to those for a Fabry-Pérot

cavity if r± �= 0 and t± = 0. When r+ = r− and t+ = t− the

device is symmetrical for the two propagation directions.

In the following we shall take γ ω̃0 = 2πm where m =

0, ± 1, ± 2 . . . then eiγ ω̃0 = 1 without loss of generality: it

simply means that we take as the carrier frequency ω0 that is

corresponding to one of the modes of the cavity. Moreover, we

shall restrict ourselves to symmetric devices unless explicitly

noted.
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A. Laser threshold

The lasing threshold of the system can be readily deter-

mined by performing the linear stability analysis (LSA) around

the off solution (i.e., Ast
± = 0, Bst

± = 0, Dst
±2 = 0, and Dst

0 = J .

We linearize (1)–(4) around this solution by introducing the

small perturbations,

A± = εa±(s,τ ), B± = εb±(s,τ ),
(6)

D0 = J + ε2d0(s,τ ), D±2 = ε2d±2(s,τ ).

Where ε is infinitesimally small, then retaining the terms to

first order in ε and assuming that the perturbations evolve in

time as

a±(s,τ ) = ã±(s)eλτ , b±(s,τ ) = b̃±(s)eλτ , (7)

we can obtain the eigenvalues λm (m = 0, ± 1, ± 2, . . .)

whose real part determines whether or not the mode m is stable

and whose imaginary part determines the modal frequency.

The modal threshold is thus given by the current value J th
m

such that Re(λm) = 0. In our case, we obtain two different

branches of solutions (σ = ±1) whose modal thresholds read

J th
m (σ ) =

(γ δ̃ − 2πm)2
(
α + ln 1

t+σr

)

g
(
α + γ + ln 1

t+σr

)2
+

1

g
ln

1

t + σr
, (8)

and which have modal frequencies,

�m(σ ) =
2πm + δ̃

(
α + ln 1

t+σr

)

1 + 1
γ

(
α + ln 1

t+σr

) . (9)

The thresholds for the two branches of solutions are shown

in Fig. 2 for typical ring laser parameters. For the small modal

index, the Lorentzian can be approximated by a parabola,

which explains the shape of Fig. 2, and the minimum threshold

corresponds to the gain peak. The two branches of solutions

arise from the nonvanishing reflectivity r: when r = 0, the

modes are pure forward and backward waves which are

degenerate; however, for r �= 0 the rotational invariance of

the system is broken and the modes are given by combinations

of the forward and backward waves that lift this degeneracy
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FIG. 2. (Color online) J th
m versus m. δ̃ = 0.1, g = 1, t = 0.5,

r = 0.05, α = 0, and γ = 100. In this case, the lowest threshold

corresponds to mode m = 2 with J th
2 = 0.5981 for σ = +1.

in both frequency and threshold gain. For r → 0, Eqs. (8) and

(9) read

J th
m (σ ) =

(γ δ̃ − 2πm)2(α − ln t)

g(α + γ − ln t)2
−

1

g
ln t

+
σ (γ δ̃ − 2πm)2(α − γ − ln t)

gt(α + γ − ln t)3
r + O(r)2, (10)

and

�m(σ ) =
γ [2πm + δ̃(α − ln t)]

α + γ − ln t

+
γ σ (2πm − γ δ)

t(α + γ − ln t)2
r + O(r)2. (11)

Such an effect has been experimentally observed in semi-

conductor ring lasers [34] where the residual reflectivities in

the laser cavity induced modal doublets that correspond to the

mode-pulling formula (9). The threshold difference for these

doublets is roughly proportional to r for small reflectivities

hence the gain difference can be hardly noticeable specially

for appreciable internal losses α.

B. Monochromatic solutions

The nontrivial monochromatic solutions read

A± = Ast
±e−iω̃τ , B± = Bst

±e−iω̃τ ,
(12)

D0 = Dst
0 , D±2 = Dst

±2,

where ω̃ is the lasing frequency. We use (12) in (1)–(4) finding

±
∂Ast

±

∂s
+ (α − iω̃)Ast

± = Bst
±, (13)

Bst
± =

g =
(
Dst

0 Ast
± + Dst

±2A
st
∓

)

1 + i (̃δ − ω̃/γ )
, (14)

Dst
0 = J − (Ast

+Bst∗
+ + Ast

−Bst∗
− + c.c.), (15)

Dst
±2 = −

ǫ

η
(Ast

±Bst∗
∓ + Ast∗

∓ Bst
±). (16)

Analytical solutions for these equations can be found only

in the simplest situation r = 0 and α = 0. In this limit, the two

counter-propagating waves are degenerate and a bidirectional

solution also exists. However, the bidirectional solution is

unstable [8,35]. We thus focus on the unidirectional solutions

Ast
+ �= 0 and Ast

− = 0 without loss of generality (the counter-

propagating solution can be directly obtained by replacing +

with − in the final results). Using (14) in (13) and solving the

resulting differential equation, we find

Ast
+(s) = Ast

+(0)e
iω̃s+

g

1+i (̃δ−ω̃/γ )
G(s)

, (17)

where

G(s) =

∫ s

0

Dst
0 (s ′)ds ′. (18)

We note that Dst
0 =

dG(s)

ds
, hence using (14) and (17) in (15)

yields

dG

ds
=

J

1 +
2g

1+(̃δ−ω̃/γ )2 |A+(0)|2e
2g

1+(̃δ−ω̃/γ )2
G(s)

. (19)
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FIG. 3. (Color online) Re[Ast
+m(s)] in the unidirectional solution.

δ̃ = 0.1, g = 1, t = 0.5, γ = 100, and J = 1.5.

Clearly, G(s = 0) = 0, and the boundary condition for the

field Ast
+(0) = tAst

+(1) imposes that

G(1) =
− ln t

g
[1 + (̃δ − ω̃/γ )2], (20)

ω̃ =
2πm − δ̃ ln t

1 − ln t
γ

. (21)

We note that (21) is equivalent to (9) in this simplified case.

Integrating (19) from one end to the other of the laser cavity and

using the boundary conditions for G(s) allows us to determine

|Ast
+(0)|2 =

J + ln t
g

[1 + (̃δ − ω̃/γ )2]

e−2 ln t − 1
. (22)

We can therefore solve for G(s) and determine the field profile

along the laser cavity as shown in Fig. 3.

The physical insight gained in the analysis of the simplest

case suggests that, in general, Eqs. (13)–(16) can be very

efficiently solved by means of a numerical shooting method

[36] which is useful since no analytical solution is possible in

this case. In Fig. 4 a bidirectional monochromatic solution

calculated in this way is shown. This shooting method

can be used to quickly find the steady-state solutions for

different current values, hence limited bifurcation diagrams as

a function of the pump can be readily obtained. For instance,
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FIG. 4. (Color online) Bidirectional monochromatic solutions in

the general case. Intensity of the fields inside the cavity versus space

s. Mesh points N = 100, J = 0.5, δ̃ = 0.1, g = 1, ǫ = η = 10−2,

β = 0, t = 0.5, r = 210−2, α = 0, and γ = 100.
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FIG. 5. (Color online) Bifurcation diagram of the monochromatic

solutions: for decreasing pump J showing a pitchfork bifurcation

(dashed and dotted lines) and for increasing J showing a bidirectional

solution (solid lines). For values below J = 2.15 all the lines coincide

in the bidirectional regime. Mesh points N = 100, δ̃ = 0, g = 5,

ǫ = 10−2, η = 5, β = 0, t = 0.5, r = 510−3, α = 0, and γ = 100.

Fig. 5 depicts the pitchfork bifurcation from a bidirectional

solution into two degenerate, almost unidirectional solutions

that have been observed in different ring laser systems [14].

It should be noted that, in order to obtain a bifurcation

diagram like that in Fig. 5, it is necessary to perform a

double scan, one upward and one downward, since the

shooting method follows the resulting branches even if they are

unstable.

III. TEST: SINGLE-MODE DYNAMICS

The numerical implementation of partial-differential equa-

tions always represents a challenge from a technical point

of view. In particular, the usual numerical diffusion present

in most algorithms has to be carefully taken care off.

While numerical dissipation can be helpful in contexts like,

for example, fluid mechanics to prevent spurious solutions

to rise, multimode laser dynamics is mainly governed by

extremely weak gain difference between consecutive modes

that correspond to increasing spatial frequencies. Any weak

numerical dissipation would therefore profoundly affect

the dynamical scenario and has to be avoided. To this purpose

we employ a numerical algorithm that is based on the one

presented in [29], which takes advantage of the fact that the

equations for the electric fields can be formally solved by

integration along the characteristics.

In this section we discuss the tests performed in order

to check the correctness and accuracy of the numerical

algorithm used to implement the TWM, which is required

for controlling potential implementation mistakes. The details

of the numerical implementation are described in Appendix B,

where we also discuss in detail how the boundary conditions

are imposed.

Clearly, the results in Secs. II A and II B provide a first

test of the accuracy of the numerical implementation. We have

verified that our numerical scheme accurately recovers the

lasing threshold yielding monochromatic solutions that match

those obtained by the shooting method.
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A further test, presented below, is provided by comparing

our numerical results in the single longitudinal mode limit

with the dynamical results previously obtained by Zeghlache

et al. [33] with a rate equation model for a CO2 ring laser.

In such a model, obtained in the good cavity limit for a pure

single-longitudinal ring laser (r = 0), the only term that mixes

the counter-propagating fields is the carrier grating, hence

the bidirectional regime is unstable [8,35]. Moreover, the

analysis performed in [33] demonstrates that the unidirectional

solution can also become unstable in some pump and detuning

regimes. For certain values of these parameters, square-wave

oscillations between the counter-propagating fields appear

followed by regular or even chaotic oscillations. Scanning

the pump J for fixed detuning, the system, which is initially

stable or bistable, becomes unstable at a certain value, and

it eventually recovers stability at high pump values; for fixed

pump, instead, stable behavior is not recovered upon increasing

detuning although it must be recalled that the single-mode

approximation will eventually break down and the model

in [33] be no longer valid.

A meaningful comparison of our results from those in [33]

requires one to establish the equivalence among the parameters

in both models. In order to do so, we reduce our model

to that in [33] by neglecting any spatial dependence while

redefining the losses in (1) as αT = α − ln t (i.e., the total

loss). Then, comparison with Eq. (3.11) in [33] yields the

parameter correspondence rules,

d‖ = ǫ
αT

, A =
gJ

αT
, 
 = −δ̃. (23)

Our numerical simulations reproduce accurately the be-

haviors described in [33]. We perform simulations fixing the

pump and increasing the detuning (see Fig. 6); in this case,

we go from the unidirectional steady emission to a region

of instability where the counter-propagating fields develop

a square-wave oscillation with one intensity in antiphase

with the other [Fig. 6(a)]. Increasing the detuning the square

waves become distorted and a secondary oscillation appears

[Figs. 6(b) and 6(c)], progressing until a chaotic oscillation is

obtained for high detunings as shown in Fig. 6(d).

5 6 7 8 9 10

x 10
4

0

1

2

3

Time (Round trips)

In
te

n
s
it
y
 (

a
rb

.u
n
it
s
)

5 6 7 8 9 10

x 10
4

0

1

2

3

Time (Round trips)

In
te

n
s
it
y
 (

a
rb

.u
n
it
s
)

5 6 7 8 9 10

x 10
4

0

2

4

Time (Round trips)

In
te

n
s
it
y
 (

a
rb

.u
n
it
s
)

5 6 7 8 9 10

x 10
4

0

2

4

6

Time (Round trips)

In
te

n
s
it
y
 (

a
rb

.u
n
it
s
)

|A
+
|
2

|A
−
|
2

(a) (b)

(c) (d)

FIG. 6. (Color online) Dynamical behaviors observed for fixed

pump J = 0.5 while scanning detuning δ̃. (a) δ̃ = 0.2, (b) δ̃ = 0.5,

(c) δ̃ = 0.7, (d) δ̃ = 0.9. The parameters correspond to those used

in [33] in Figs. 10(a)–10(i) except for the fact that in our case the

two modes have equal losses: Mesh points N = 100, g = 1, ǫ = η =

1.7810−5, β = 10−4, t = 0.9, r = 0, α = 0, and γ = 1.

FIG. 7. (Color online) Dynamical behaviors obtained for fixed

detuning δ̃ = 0.2 while scanning J . (a) J = 0.6, (b) J = 3.6,

(c) J = 8, (d) J = 20 for the same parameters as in Fig. 6.

On the other hand, when we fix the detuning and scan the

pump (see Fig. 7) we pass from a unidirectional steady solution

near threshold into a region of instability where square waves

similar to those in the previous case developed. In contrast

with the previous case, now the system recovers stability upon

increasing J and returns to one of the unidirectional solutions.

The mechanism is a slowing of the square-wave modulation as

we increase the pump [see Fig. 7(c)], a characteristic behavior

of heteroclinic bifurcations.

Finally, we remark that the above behaviors are recovered

even when putting a small direct reflection and spontaneous

emission provided that the good cavity limit still applies

(see Figs. 8 and 9); for example, they are robust against small

imperfections and noise. However, if the reflectivity is too

large, the system emits bidirectionally at threshold and its

dynamical behavior is no longer the same [14,16].

IV. MULTIMODE DYNAMICS

The rate-equation model described in [33] is very successful

at describing the rich variety of dynamics that can be

encountered while in single-mode operation. However, in a

real laser, increasing the detuning will eventually lead to at

least a change in lasing mode which is not accounted for in the

RE model. Indeed, the maximum allowed detuning in a real
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FIG. 8. (Color online) Single-mode chaotic behavior. Mesh

points N = 100, J = 0.4, δ̃ = 0.4, g = 1, ǫ = η = 1.7810−5, β =

10−4, t = 0.9, r = 510−4, α = 0, and γ = 1.
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FIG. 9. (Color online) Single-mode chaotic behavior. Mesh

points N = 100, J = 0.5, δ̃ = 1, g = 1, ǫ = η = 1.7810−5, β =

10−4, t = 0.9, r = 510−4, α = 0, and γ = 1.

device corresponds to having the gain peak just between two

laser modes (i.e., δ̃ = π/γ in our parametrization); in this case,

the two modes will have the same threshold and lasing can be

quite different than when only one mode is active. In addition,

instabilities arising from the multimode character of the system

as, for example, the Risken-Nummedal instability [37] can

develop when the gain curve is broader than the mode spacing

and the pump level is high enough.

The dynamics in these cases can readily be analyzed

with the traveling wave model, which naturally retains the

dynamics of the different modes and the effects of the

detuning. Hence, it can allow one to explore the dynamics

of the system in cases where different longitudinal modes are

active.

In this section we present and discuss some remarkable

dynamical behaviors obtained in these situations, although we

note that the large variety of scenarios that we have observed

calls for the development of a bifurcation tool of our TWM

that would allow us to better understand the role played by

the different parameters. To the best of our knowledge, these

results have not been previously reported in the literature. It

should be noted, however, that some of them are obtained for

very high pumping levels, J ∼ 10 − 100Jth, which might be

difficult or even impossible to achieve in an experiment. First,

we present the situation where a moderate gain bandwidth

is taken into account, and how different behaviors arise in

this case depending on the pump and the detuning. In the

second part of this section the case of a large gain bandwidth

is discussed.

A. Moderate gain bandwidth

We consider here the case when the gain spectrum has

moderate width, γ = 10. We first discuss the case when the

gain spectrum peak lies just between two modes, δ̃ = 0.3141.

In this case, modes m = 0 and m = 1 have exactly the same

threshold, so the dynamical scenario at the laser threshold

corresponds to a degenerate Hopf bifurcation. It should,

moreover, be noted that for each of these frequencies there

are two different solution branches which for small r are

also almost degenerate, as discussed in Sec. II A. This highly

degenerated situation allows the system to lase in a great
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FIG. 10. (Color online) Bifurcation diagram near threshold. The

fields begin to emit multimode bidirectionally, then after J = 0.028

the backward (−) field is favored. Mesh points N = 100, δ̃ = 0.3141,

g = 5, ǫ = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4, α = 0, and

γ = 10.

variety of possible states, which can give rise to unexpected

dynamical behaviors. We subsequently discuss the effect of

the detuning in this case, since varying the detuning allows

one to reduce the degeneracy of the system.

Figure 10 shows the bifurcation diagram near the threshold

for the ring laser with moderate gain bandwidth (laser

parameters specified in the caption). First, the two counter-

propagating fields are both emitting with equal intensity in

two modes separated by one-mode spacing (i.e., the laser

starts to emit bidirectionally in consecutive modes, m = 0

and m = 1). As we increase the pump, one of the directions

becomes dominant over the other, and additional modes are

excited. For high enough pump (see Fig. 11), the system

emits almost unidirectionally; however, the emission exhibits

100% oscillations at the round-trip time which correspond

to an emission spectrum that involves four dominant modes.

Further increasing the pump, the intensity oscillation becomes

nonlinear, which corresponds to the locking of a moderate

number of modes (see Fig. 12); this regime can be interpreted

as a shallow mode-locked solution.

At even higher pumps, the nonlinear oscillation disappears

and the emission becomes again bidirectional with both

2000 2002 2004 2006 2008 2010
0

5

10

Time (Round trips)

In
te

n
s
it
y
 (

a
rb

.u
n
it
s
)

−4 −3 −2 −1 0 1 2 3 4
10

−2
10

−1
10

0
10

1
10

2
10

3
10

4
10

5

Mode Number m

P
o
w

e
r

 S
p
e
c
tr

u
m

 (
a
rb

.u
n
it
s
)

|A
+
|
2

|A
−
|
2

(b)

(a)

FIG. 11. (Color online) Unidirectional oscillating emission.

(a) Power spectra. (b) Time trace. Mesh points N = 400, J = 1, δ̃ =

0.3141, g = 5, ǫ = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4,

α = 0, and γ = 10.
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FIG. 12. (Color online) Mode-locked solution. (a) Power spectra.

(b) Time trace. J = 3. For other parameters, see Fig. 11.

directions emitting stable and with the same power (see

Fig. 13).

However, a closer look at the emission in this regime (see

Fig. 14) reveals that, surprisingly, each emission direction is

dominated by a single mode, m = 0 for A+ and m = 1 for A−.

Hence each mode contributes in complementary ways to lasing

in each direction: while emission in the forward direction is

dominated by the reddest mode, the backward direction lases

dominantly on the bluest mode. This regime is, of course,

twofold degenerate.

This transition comes from the fact that the population

inversion grating tries to favor the almost unidirectionnal

emission at the same frequency because it induces an effective

cross saturation of the gain between the forward and backward

waves [8] which is larger if they have the same frequency

[see Eqs. (1)–(4)]. But the power extracted from the system in

the bidirectional monochromatic state is not optimal because

the atoms located at the nodes of the standing wave do

not contribute to stimulated emission. The power extraction

can be increased in the case of bichromatic emission when

the gain curve is broad enough and the frequency separation

between the modes is larger than the decay rate of the popu-

lation grating (2π ≫ η). In this case, the population grating

cannot develop in response to the counter-propagating fields,
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FIG. 13. (Color online) Bifurcation diagram showing the transi-

tion from unidirectional oscillating emission to bidirectional emission

at different frequencies. (a) Power spectra. (b) Time trace. Mesh points

N = 400, δ̃ = 0.3141, g = 5, ǫ = 10−2, η = 0.1, β = 10−4, t = 0.9,

r = 510−4, α = 0, and γ = 10.
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FIG. 14. (Color online) Bidirectional oscillating emission at

different frequencies. (a) Power spectra. (b) Time trace. J = 4. For

other parameters, see Fig. 11.

hereby effectively reducing cross-gain saturation between the

forward and backward waves and restoring the possibility

of obtaining stable bidirectional operation. We conclude that

this is a pure dynamical effect that allows for bichromatic

bidirectional emission at high current.

1. Dependence on detuning

In order to see the effect of the detuning on the behavior of

the laser in the case of moderate gain bandwidth, we perform

simulations for different δ̃. For δ̃ = 0.3, the laser begins to

emit bidirectionally in a mode m = 0 but it rapidly becomes

almost unidirectional with a small amplitude oscillation that

corresponds to residual emission in mode m = 1 (see inset in

Fig. 15). As we increase the pump, the emission becomes

increasingly unidirectional and single mode until J = 0.4,

where mode m = 1 starts to lase and favors the opposite di-

rection. Above this pump value, the laser emits bidirectionally

with each direction dominated by a different mode as in the

previous subsection. However, the nonsymmetrical position

of the cavity modes with respect to the peak of the gain curve
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FIG. 15. (Color online) Bifurcation diagram for γ = 10 and δ̃ =

0.3. (Inset) Bifurcation diagram near the threshold. Mesh points N =

400, g = 5, ǫ = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4, and

α = 0.
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FIG. 16. (Color online) Bidirectional emission. (a) Power spectra.

(b) Time trace. Mesh points N = 400, J = 1, δ̃ = 0.3, g = 5, ǫ =

10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4, α = 0, and γ = 10.

produces a sensible difference between the intensities of the

two counter-propagating fields (see Fig. 16).

The above results have been obtained by starting the

simulations from a noisy initial condition that does not favor

any of the emission directions. However, when the simulations

are launched from an initial condition that privileges one of

the directions (see Fig. 17), we find for some current values

an almost unidirectional solution oscillating at the modal beat

note with almost 100% amplitude. This solution is analogous

to that in Fig. 13 in the previous subsection, and it eventually

also disappears into the bidirectional solution of Fig. 15.

The former result evidences that the unidirectional oscillating

solution and the bidirectional emission at different frequencies

can coexist depending on the parameters. We have tried to

induce jumps among these two types of solutions by injecting

optical pulses, but we have not managed to stably control the

emission state of the system; after a relatively long transient,

the system returned to the original emission state, indicating

that in spite of their coexistence, the perturbation in phase

space requires specific characteristics to place the system into

the basin of attraction of the other solution.

Finally, in the case that the gain peak is close to one of the

cavity modes, multimode dynamics is suppressed because the

mode closest to the gain peak takes all the energy provided

to the system. For a detuning value δ̃ = 0.15 the laser emits

single mode unidirectionally as shown in Fig. 18.
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FIG. 17. (Color online) Unidirectional oscillating emission.

(a) Power spectra. (b) Time trace. For parameters, see Fig. 16.
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FIG. 18. (Color online) Bifurcation diagram for γ = 10 and δ̃ =

0.15. (Inset) Bifurcation diagram near the threshold. Mesh points

N = 400, g = 5, ǫ = 10−2, η = 0.1, β = 10−4, t = 0.9, r = 510−4,

and α = 0.

B. Large gain bandwidth

In this section we consider a large gain bandwidth (γ =

100) that allows for a rich variety of dynamical behaviors

because a large number of modes can become active.

The bifurcation diagram shown in Fig. 19 summarizes

the different behaviors observed when the peak of the gain

curve is just between the first two modes, δ̃ = 0.03141.

Close to threshold, the laser emits bidirectionally with two

modes active in each direction as in Fig. 10. Increasing

the pump, the forward direction becomes dominant and

mode m = 0 dominates; conversely, the backward direction is
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FIG. 19. (Color online) Bifurcation diagram showing different

behaviors for γ = 100 and δ̃ = 0.03141. (Inset) Bifurcation dia-

gram near the threshold. First, close to threshold, the laser emits

bidirectionally with both counter-propagating fields emitting at two

consecutive modes. Then a regime of bidirectional emission at

different frequencies appears (see Fig. 20). Third, an oscillating

regime where the counter-propagating fields are out of phase (see

Fig. 21). Fourth, a unidirectional multimode solution, composed by

not-consecutive modes (see Fig. 22). Fifth, a bidirectional emission

at different frequencies at not-consecutive modes (see Fig. 23). Mesh

points N = 400, g = 5, ǫ = 10−2, η = 210−2, β = 10−4, t = 0.9,

r = 510−4, and α = 0.
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FIG. 20. (Color online) Bidirectional emission at different fre-

quencies. (a) Power spectra. (b) Time trace. Mesh points N = 400,

J = 0.4, δ̃ = 0.03141, g = 5, ǫ = 10−2, η = 210−2, β = 10−4, t =

0.9, r = 510−4, α = 0, and γ = 100.

dominated by mode m = 1 (see Fig. 20). In this regime, both

emission directions oscillate in phase, but as the pump is still

increased, more modes become excited and the oscillations

of the intensity of the counter-propagating fields are out of

phase (see Fig. 21). Still increasing the pump, a regime of

almost single-mode, unidirectional emission is recovered (see

Fig. 22) for a small range of pump values. We see that in

this case, the depressed emission direction is dominated by

mode m = 2, with a secondary peak on mode m = −2 excited

by four-wave mixing processes. Such a regime indicates that

the gain suppression of mode m = 1 by emission on mode

m = 0 is strong enough to inhibit emission on mode m = 1.

However, the large bandwidth of the gain curve allows modes

farther away from mode m = 0 to become active when the

pump is still increased. As shown in Fig. 23, this leads again

to a bidirectional solution where each direction dominantly

lases on different modes separated by twice the mode spacing.

1. Dependence on detuning

For detuning values above δ̃ = 0.025, the behavior of the

system is qualitatively the same described in the previous sub-

section (see Fig. 24). However, the nonsymmetrical position

of the gain curve peak makes the DC component of the fields

different and a unidirectional solution is found near threshold.
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FIG. 21. (Color online) Multimode alternate oscillations.

(a) Power spectra. (b) Time trace. J = 1.5. Other parameters are

as in Fig. 20.
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FIG. 22. (Color online) Unidirectional emission. (a) Power spec-

tra. (b) Time trace. J = 1.9. Other parameters are as in Fig. 20.
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FIG. 23. (Color online) Bidirectional emission at different fre-

quencies. (a) Power spectra. (b) Time trace. J = 2.5. Other parame-

ters are as in Fig. 20.
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FIG. 24. (Color online) Bifurcation diagram for γ = 100 and

δ̃ = 0.03. (Inset) Bifurcation diagram near the threshold. First,

bidirectional emission is found near threshold, then one of the fields

is suppressed and a unidirectional regime is found; after that the

suppressed field begins to emit at a different frequency with respect

to that emitted by the not- suppressed field and a bidirectional solution

appears. Increasing the pump we find a unidirectional solution that

ends up in a bidirectional solution emitting at not-consecutive modes.

Mesh points N = 400, g = 5, ǫ = 10−2, η = 210−2, β = 10−4,

t = 0.9, r = 510−4, and α = 0.
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FIG. 25. (Color online) Bifurcation diagram for γ = 100 and δ̃ =

0.015. (Inset) Bifurcation diagram near the threshold. Near threshold

the laser emits bidirectionally but for a wide range on pump the laser

emits unidirectionally single mode, then near J = 2.2 different modes

start to lase, and a mode-locked solution arises (see Fig. 26). Mesh

points N = 400, g = 5, ǫ = 10−2, η = 210−2, β = 10−4, t = 0.9,

r = 510−4, and α = 0.

A different scenario emerges at low detunings. When the

detuning is decreased to a value δ̃ = 0.015 (see Fig. 25),

the laser starts emitting bidirectionally with both directions

emitting on two consecutive modes. For slightly higher pump,

one emission direction starts to dominate with quasi-single-

mode emission up to J ≈ 2.4, where a unidirectional solution

arises with a high number of active modes (see Fig. 26).

Although this solution appears very far away from the lasing

threshold, it is worth being examined in detail. The solution

has the characteristics of a unidirectional mode-locked state,

since the laser emits sharp and narrow pulses being in one

direction only. Note that this is a harmonic mode-locked state,

with pulses occurring at twice the fundamental repetition rate.

The duty cycle of the pulses is around 6%. It is worth remarking

that this solution appears without inserting in the cavity any

additional element that favors pulsed operation (i.e., a saturable

absorber or alike), but it merely arises from an instability

of the cw solution occurring when the power level is such

that the Rabi frequency of the two-level atoms equals the
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FIG. 26. (Color online) Mode-locked emission. (a) Power spec-

tra. (b) Time trace. Mesh points N = 400, J = 3, δ̃ = 0.015, g = 5,

ǫ = 10−2, η = 210−2, β = 10−4, t = 0.9, r = 510−4, α = 0, γ =

100, n = 1 and L = 1m.

polarization dephasing rate. From this point of view, then, the

mechanism that triggers this solution is analogous to that in the

Risken-Nummedal instability. The main difference between

our case and the classical Risken-Nummedal instability is that

the large gain curve that we are considering allows for the

excitation of additional side modes through four-wave mixing

processes mediated by both D0 and D±2, which give rise to

the pulsed emission of the system.

V. CONCLUSIONS

The multimode dynamics of a two-level ring laser has

been explored using a bidirectional TWM. The model and

its numerical implementation have been tested by reproducing

the dynamical results obtained in the single-mode limit by

Zeghlache et al. [33]. We have shown that the dynamical

regimes reported in [33] are robust against noise and residual

reflections provided that the single-mode limit holds. We

have found dynamical regimes where the emission in each

direction occurs at different wavelengths, each direction being

associated with a different longitudinal mode. In addition, the

influence of the detuning and the width of the gain spectrum

have been thoroughly analyzed, and the onset of unidirectional,

mode-locked emission for large gain bandwidth and relatively

small detuning has been studied in detail.
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APPENDIX A: DERIVATION OF THE MODEL

The wave equation for an electric field E(z,t) in a medium

can be written as

∂2E

∂z2
−

n2

c2

∂2E

∂t2
= µ

∂2P

∂t2
, (A1)

where P is the polarization of the medium, n is the refraction

index of the medium, c is the speed of light in vacuum, and µ is

the magnetic permeability of the medium [31,38]. Assuming a

quasimonochromatic field around the optical carrier frequency

ω0, we can express it as

E(z,t) = F (z,t)e−iω0t + c.c., (A2)

where c.c. denotes complex conjugate and F (z,t) is the

slowly time-varying amplitude of the field, that is, |∂F/∂t |

≪ ω0|F |.

Analogously, the polarization of the active medium can be

decomposed as

P(z,t) = i[�(z,t)e−iω0t − c.c.], (A3)
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where �(z,t) is the slowly time-varying amplitude of the

material polarization. Assuming a quasiresonant two-level

medium—composed of NA identical two-level atoms per unit

volume with a resonance frequency ωA between the upper

and the lower levels—the polarization � can be determined,

in the rotating wave approximation, by the density matrix

formalism [31,38]. Its time evolution is given by

∂�

∂t
= −(iδ + γ⊥)� −

µ̃2

h̄
NF, (A4)

where N (z,t) is the population inversion density, δ is the

detuning, which takes into account the difference between the

atomic transition frequency and the emission frequency (i.e.,

δ = ωA − ω0), γ⊥ is the polarization decay rate, and µ̃ is the

component of the dipole moment along the direction of the

field. N in turn evolves according to

∂N

∂t
=

2

h̄
(F�∗ + c.c.) + J − γ‖N + D∂2

z N, (A5)

where Q is the external pump, h̄ is the Planck’s constant

divided by 2π , γ‖ is the population inversion decay rate, and

D is the diffusion coefficient [31,38].

Noting that amplification of the field usually requires

propagation over distances long compared to the optical

wavelength λ0 = 2πc/(nω0), we can further decompose the

local field amplitude into forward (+) and backward (−)

propagating components,

F (z,t) = E+(z,t)eiq0z + E−(z,t)e−iq0z, (A6)

where E±(z,t) are slowly varying both in space and time, as

compared with q−1
0 and ω−1

0 , respectively. Analogously, we

have that

�(z,t) = P+(z,t)eiq0z + P−(z,t)e−iq0z. (A7)

Using these decompositions we can write the slowly varying

approximation (SVA) [31] for the wave equation (A1) as

±
∂E±

∂z
+

n

c

∂E±

∂t
= −

ω0cµ

2n
P±. (A8)

These equations are complemented with boundary conditions

[39] for the geometry considered, in this case a ring, that can

be written as

E+(0) = t+E+(L)eiq0L + r−E−(0),
(A9)

E−(L)e−iq0L = t−E−(0) + r+E+(L)eiq0L,

where L is the length of the ring and t± and r± denote the

transmissivity and reflectivity of the forward and backward

waves, which follows |t±|2 + |r±|2 = 1 − ε±, where ε± are

the losses at the point coupler.

Using (A6) and (A7) into (A4) and (A5) evidences that the

presence of counter-propagating fields creates a spatial mod-

ulation of the population inversion. This important property

follows from the iterative relationship between the diagonal

and off-diagonal matrix elements of the density matrix ρ̂ [40].

As a result, only odd harmonics appear in the expansion of

P and only even harmonics appear in the expansion of the

population difference D. This spatial modulation acts as a

Bragg grating and creates a coupling between the counter-

propagating fields. In order to get the dynamics of this grating

explicitly we decompose the population difference in different

spatial contributions as

N = N0 + N+2e
2iq0z + N−2e

−2iq0z + · · · (A10)

Such a decomposition yields an infinite hierarchy of equations

that has to be truncated in order to keep the problem treatable.

In systems with large diffusion, the truncation can be justified

due to the quadratically increasing damping of the high-order

terms [30,32]; in other cases, the intensity of the fields has to be

low compared to the saturation intensity of the medium [33].

To the dominant order, the medium evolves according to

∂P±

∂t
= −(iδ + γ⊥)P± −

µ̃2

h̄
(N0E± + N±2E∓), (A11)

∂N0

∂t
=

2

h̄
(E+P ∗

+ + E−P ∗
− + c.c.) + J − γ‖N0 + D∂2

z N0,

(A12)

and

∂N±2

∂t
=

2

h̄
(E±P ∗

∓ + E∗
∓P±) −

(
γ‖ + 4q2

0 D
)
N±2, (A13)

where we have used twice that |∂zN±2| ≪ q0|N±2|. We can

see in that diffusion tries to smear out the grating in the

population inversion (A13) by inducing a much larger effective

relaxation rate for N±2 than for N0. We can also see in (A11)

that the polarization in the forward direction has a contribution

from the field in the backward direction and vice versa. This

“reflection on the grating” leads to cross-saturation of the

fields, as could be seen by adiabatic elimination of P±.

Equations (A8) and (A11)–(A13) are equivalent to Eq. (3.4)

in [33] with the only difference that we retained the slow

spatial dependence of the fields while the good cavity limit

was invoked in [33] in order to work with time-dependent

field amplitudes only. In this way, our approach allows for

describing multimode dynamics that is beyond the scope of

[33].

For numerical purposes it is convenient to rewrite Eqs. (A8)

and (A11)–(A13) in dimensionless form,

±
∂A±

∂s
+

∂A±

∂τ
= B± − αA±, (A14)

1

γ

∂B±

∂τ
= −(1 + iδ̃)B± + g(D0A± + D±2A∓)

+
√

βD0ξ±(s,τ ), (A15)

1

ǫ

∂D0

∂τ
= J − D0 + 


∂2D0

∂s2
− (A+B∗

+ + A−B∗
− + c.c.),

(A16)
1

η

∂D±2

∂τ
= −D±2 −

ǫ

η
(A±B∗

∓ + A∗
∓B±), (A17)

where D0 = N0/NA, D±2 = N±2/NA and we have scaled the

fields and polarizations as

A± =

√
4n

µω0ch̄γ‖L
E±, B± = −

√
µω0c

nh̄γ‖L
P±. (A18)
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We have also included in Eq. (A14) a term modeling the

internal losses α for the electric fields, we have defined new

dimensionless parameters,

g =
µω0cµ̃

2L

2nh̄γ⊥

, γ =
γ⊥nL

c
, ǫ =

γ‖nL

c
,

(A19)

η =

(
γ‖ + 4q2

0 D
)
nL

c
, 
 =

D

γ‖L2
, δ̃ =

δ

γ⊥

,

and finally we have defined new coordinates,

τ =
c

nL
t, s =

z

L
. (A20)

In this new reference frame, the general boundary conditions

for the fields in the laser read

A+(0) = t+A+(1)eiγ ω̃0 + r−A−(0),
(A21)

A−(1)e−iγ ω̃0 = t−A−(0) + r+A+(1)eiγ ω̃0 .

Usually we shall take γ ω̃0 = 2πm where m = 0, ± 1, ± 2 . . .

then eiγ ω̃0 = 1 without loss of generality. It means that we take

the carrier frequency ω0 as one of the modes of the cavity.

We note that the effects of diffusion in (A16) are almost

negligible because the characteristic length scale of D0 is 1

(i.e., the cavity length), so that we can set 
 = 0 in (A16).

Instead, we should retain it in (A17) because the characteristic

length scale in this case is the emission wavelength λ0 =

2πc/ω0.

Finally, spontaneous emission is modeled by including

Langevin noise terms ξ±(s,τ ) [30]. They are taken to be

Gaussian white noise in space and time with zero mean and

correlations 〈ξ±(s,τ )ξ±(s ′,τ ′)〉 = δ(τ − τ ′)δ(s − s ′), and their

intensities are proportional to the population density [41].

APPENDIX B: NUMERICAL ALGORITHM

The numerical algorithm used to perform the simulation

of the normalized system of Eqs. (1)–(4) is based in the one

presented in [29]. This algorithm takes advantage of the fact

that the equations for the fields can be solved formally in terms

of integrals of the polarizations. We discretize time with time

step h, hence the spatial grid has also discretization step h. All

spatial points n = 1, . . . ,N are internal, with the first and last

FIG. 27. (Color online) Schematic representation of spatial dis-

cretization and the implementation of the boundary conditions for

the A+ electric field. In three steps: 1) Half-step explicit Euler;

2) boundary conditions; 3) Half-step implicit Euler. The mesh is

composed by N points and N intervals and two auxiliary points at 0

and N + 1 added for the implementation.

points located at h/2 from the nearest end (see Fig. 27). We

denote by Xn
j the value of variable X at time t = nh and grid

point s = jh.

We use the midpoint discretization scheme for the fields

[29], so they are updated according to

An+1
+j =

1 − q

1 + q
An

+j−1 + p
(
Bn

+j−1 + Bn+1
+j

)
, (B1)

An+1
−j =

1 − q

1 + q
An

−j+1 + p
(
Bn

−j+1 + Bn+1
−j

)
, (B2)

where q = αh/2, p = (h/2)(1 + q)−1. For the polarizations

we have

Bn+1
±j = µBn

±j + νD
n+1/2

0j

(
An+1

±j + An
±j

)

+ νD
n+1/2

±2j

(
An+1

∓j + An
∓j

)
+

√
βhD0ξ±, (B3)

where µ = [1 − (γ h/2)(1 + iδ̃)][1 + (γ h/2)(1 + iδ̃)]−1 and

ν = (ghγ/2)[1 + (γ h/2)(1 + iδ̃)]−1, and where we have used

the approximation,

∫ t+
t

t

Dk(t)Al(t)dt ≃ 
tDk

(
t +


t

2

)
Al(t + 
t) + Al(t)

2
.

(B4)

At this point we note that Eq. (B3) needs the values of

the carriers (D0 and D±2) at intermediate time steps, hence

we use a temporal grid for the carrier densities which is

staggered by half a time step from the fields and polarizations.

This is different from the original algorithm in [29], where

the carriers are on the same temporal grid than the fields and

the polarizations and then interpolation is used to evaluate the

carriers at the intermediate times needed in (B1)–(B3). In our

case, the finite difference equations for carriers are, thus,

D
n+3/2

0j = ρD
n+1/2

0j + θJ

− θ
(
An+1

+j B∗n+1
+j + An+1

−j B∗n+1
−j + c.c.

)
(B5)

D
n+3/2

±2j = ρD
n+1/2

±2j , − θ
(
An+1

±j B∗n+1
∓j + A∗n+1

∓j Bn+1
±j

)
,

(B6)

where ρ = (1 + ǫh
2

)(1 − ǫh
2

)−1 and θ = ǫh(1 − ǫh
2

)−1.

1. Boundary conditions

In order to impose the general boundary conditions (5),

we have to consider that the fields propagate during half a

step, then experience partial reflection and transmission and

then they propagate for another half a step. In addition, we

recall the ring structure of our system, hence points j = 1 and

j = N are connected through the boundary conditions. This

procedure for A+ and A− is implemented as follows:

Step 1. We use an explicit Euler method to compute

the value of the fields just before arriving at boundary by

propagating the fields over half a step,

A
n+1/2

+N+1/2 − (1 − q)An
+N =

h

2
Bn

+N ,

(B7)

A
n+1/2

−1/2 − (1 − q)An
−1 =

h

2
Bn

−1.
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Step 2. We apply the boundary conditions and compute the

fields just after the boundary, which are denoted as Ã+ and

Ã−,

Ã
n+1/2

+1/2 = t+A
n+1/2

+N+1/2 + r−A
n+1/2

−1/2 ,
(B8)

Ã
n+1/2

−N+1/2 = t−A
n+1/2

−1/2 + r+A
n+1/2

+N+1/2.

Step 3. Finally we use the implicit Euler method for the

remaining half a step to calculate the value of the fields at time

n + 1,

(1 + q)An+1
+1 − Ã

n+1/2

+1/2 =
h

2
Bn+1

+1

(B9)

(1 + q)An+1
−N − Ã

n+1/2

−N+1/2 =
h

2
Bn+1

−N .

Note that these procedures can be very efficiently imple-

mented by adding to the spatial grid two auxiliary points j = 0

and j = N + 1 (see Fig. 27) located half a step away from the

facets where the fields and polarizations are

An
+0 = t+An

+N + r−An
−1

Bn
+0 = t+Bn

+N + r−Bn
−1

(B10)
An

−N+1 = t−An
−1 + r+An

+N

Bn
−N+1 = t−Bn

−1 + r+Bn
+N ,

and updating the fields by means of the standard midpoint

integration,

An+1
+1 =

1 − q

1 + q
An

+0 + p
(
Bn

+0 + Bn+1
+1

)
,

(B11)

An+1
−N =

1 − q

1 + q
An

−N+1 + p
(
Bn

−N+1 + Bn+1
−N

)
.
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