
Bicliques for Preimages: Attacks on Skein-512

and the SHA-2 Family�

Dmitry Khovratovich1, Christian Rechberger2, and Alexandra Savelieva3

1 Microsoft Research Redmond, USA
2 DTU MAT, Denmark

3 National Research University Higher School of Economics, Russia

Abstract. We present a new concept of biclique as a tool for preim-
age attacks, which employs many powerful techniques from differential
cryptanalysis of block ciphers and hash functions.

The new tool has proved to be widely applicable by inspiring many
authors to publish new results of the full versions of AES, KASUMI,
IDEA, and Square. In this paper, we show how our concept leads to
the first cryptanalysis of the round-reduced Skein hash function, and
describe an attack on the SHA-2 hash function with more rounds than
before.

Keywords: SHA-2, SHA-256, SHA-512, Skein, SHA-3, hash function,
meet-in-the-middle attack, splice-and-cut, preimage attack, initial struc-
ture, biclique.

1 Introduction

Major breakthrough in preimage attacks on hash functions happened in 2008
when the so-called splice-and-cut framework was introduced. Its applications to
MD4 and MD5 [2,25], and later to Tiger [11] brought amazing results. Internal
properties of message schedule appeared to be limiting application of this frame-
work to SHA-x family [1,3]. However, the concept of biclique introduced in this
paper allows to mitigate such obstacles, as demonstrated by our results.

This is the first work on the concept of biclique cryptanalysis. We focus on
new definitions and algorithms and concentrate on the hash function setting.
As applications, we present an attack on the Skein hash function (the only one
existing so far) and the SHA-2 family . Our findings are summarized in Table 1.

Splice-and-cut framework and its progress. Both splice-and-cut and meet-in-the-
middle attacks exploit the property that a part of a primitive does not make use
of particular key/message bits (called neutral bits). If the property holds, the
computation of this part remains the same when we flip those bits in the other

� This work was supported by the European Commission under contract ICT-2007-
216646 (ECRYPT II) and the Federal Target Program “Scientific and scientific-
pedagogical personnel of innovative Russia“ in 2009-2013 under contract No. P965
from 27 May, 2010.

A. Canteaut (Ed.): FSE 2012, LNCS 7549, pp. 244–263, 2012.
c© International Association for Cryptologic Research 2012

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 245

part of a primitive. Assume that neutral bits can be found for both parts (also
called chunks). Then a cryptanalyst prepares a set of independent computations
for all possible values of those bits and subsequently checks for a match in the
middle. Efficiency of the attack depends on the number of neutral bits.

Sasaki and Aoki observed [2,25] that compression functions with permutation-
based message schedule are vulnerable to this kind of attack as chunks can be
long. They proposed several ways to improve splice-and-cut framework, including
a very interesting trick referred to as initial structure [3,26]. It can be informally
defined as an overlapping of chunks, where neutral bits, although formally be-
longing to both chunks, are involved in the computation of the proper chunk
only. In our work we aimed to explore the potential of initial structure.

Our Contributions. We replace the idea of the initial structure with a more
formal and general concept of biclique that provides us with a new level of
understanding. In terms of graph theory, bicliques are structures represented by
two sets of states with each state having a relation with all states in another set.
We derive a system of functional equations linking internal states several rounds
apart, and show that it is equivalent to a system of differentials, so the full
structure of states can be built out of a set of trails. The differential view allows
us to apply numerous tools from collision search and differential cryptanalysis.
We propose three generic and flexible algorithms for constructing the bicliques.

Our simple example of biclique application is an attack on round-reduced
Skein-512 hash function, the SHA-3 finalist which currently lacks any other at-
tacks in the hash setting. We penetrate 22 rounds of Skein-512, which is com-
parable to the best attacks on the compression function that survived the last
tweak. Our attack on the compression function of Skein-512 covers 37 rounds.

Our second group of applications is the SHA-2 family. We heavily use differ-
ential trails in SHA-2, message modification techniques from SHA-1 and SHA-0,
trail backtracking techniques from RadioGatun, Grindahl, SHA-1, etc., to build
attacks on 45-round SHA-256 and 50-round SHA-512 (both the best attacks
in the hash mode). For the compression functions, we penetrate up to 7 more
rounds, reaching 52 rounds and violating the security of about 80% of SHA-256.

Table 1. New (second) preimage attacks on Skein-512 and the SHA-2 family

Reference Target Steps Complexity Memory

Pseudo-preimage Second Preimage Preimage (words)

Section 4 Skein-512 22 2508 2511 - 26

Section 6 Skein-512 37 2511.2 - - 264

[1,11] SHA-256 43 2251.9 2254.9 2254.9 26

Section 5 SHA-256 45 2253 2255.5 2255.5 26

Section 6 SHA-256 52 2255 - - 26

[1,11] SHA-512 46 2509 2511.5 2511.5 26

Section 5 SHA-512 50 2509 2511.5 2511.5 24

Section 6 SHA-512 57 2511 - - 26

246 D. Khovratovich, C. Rechberger, and A. Savelieva

2 Bicliques

In this section we introduce preimage attacks with bicliques. We consider hash
functions with block cipher based compression functions H = EN (X)⊕X , where

E is the block cipher keyed with parameter N (notation
N−→ and

N←− will be used
for E computed in forward and backward direction respectively). Depending on
the design, parameters (N , X) will be either (M , CV) for the most popular
Davies-Meyer mode, or (CV , M) for Matyas-Meyer-Oseas mode, where CV is
the chaining variable and M is the message.

Let f be a sub-cipher of E, and N = {N [i, j]} be a group of parameters for
f . Then a biclique of dimension d over f for N is a pair of sets {Qi} and {Pj}
of 2d states each such that

Qi
N [i,j]−−−−→

f
Pj . (1)

A biclique is used in the preimage search as follows (Figure 1). First, we note
that if N [i, j] yeilds a preimage, then

E : X
N [i,j]−−−−→ Qi

N [i,j]−−−−→
f

Pj
N [i,j]−−−−→ H.

An adversary selects a variable v outside of f (w.l.o.g. between Pj and H) and
checks, for appropriate choices of sub-ciphers g1 and g2, if

∃i, j : Pj
N [i,j]−−−−→
g1

v
?
= v

N [i,j]←−−−−
g2

Qi.

A positive answer yields a candidate preimage. Here, to compute v from Qi, the
adversary first computes X and then derives the output of E as X ⊕H .

To benefit from the meet-in-the-middle framework, the variable v is chosen
so that g1 and g2 are independent of i and j respectively:

Pj
N [∗,j]−−−−→
g1

v
?
= v

N [i,∗]←−−−−
g2

Qi.

Then the complexity of testing 22d messages for preimages is computed as fol-
lows:

C = 2d(Cg1 + Cg2) + Cbicl + Crecheck,

where Cbicl is the biclique construction cost, and Crecheck is the complexity
of rechecking the remaining candidates on the full state. We explain how to
amortize the biclique construction in the next section. Clearly, one needs 2n−2d

bicliques of dimension d to test 2n parameters.

3 Biclique Construction Algorithms

Here we introduce several algorithms for the biclique construction. They differ
in complexity and requirements to the dimension of a biclique and properties of
the mapping f .

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 247

Q0

Q2

P0

P1

message

CV
P2

Q1

M [3, 3]

M [0, 0]

M [∗, j]

Q3 P3

M [i, j]

M [∗, 3]

M [∗, 0]

M [3, ∗]

M [0, ∗]

H

M [i, ∗] M [∗, j]

M [∗, 0]

M [∗, 3]

Fig. 1. Biclique of dimension 2 in the meet-in-the-middle attack on a Davies-Meyer
compression function

Consider a single mapping in Equation (1)

Q0
N [0,0]−−−−→

f
P0. (2)

We call this a basic computation. Consider the other mappings as differentials
to the basic computation:

∇i

ΔN
i,j−−−→
f

Δj , (3)

so that

Qi = Q0 ⊕∇i, Pj = P0 ⊕Δj , N [i, j] = N [0, 0]⊕ΔN
i,j .

Vice versa, if a computation (2) is a solution to 22d differentials in (3), then it
is a basic computation for a biclique.

The algorithms presented below allow us to reduce the number of differentials
needed for a biclique, and hence construct a biclique efficiently.

Algorithm 1. Let the differences in the set N be defined as the following linear
function:

ΔN
i,j = ΔN

j ⊕∇N
i (4)

Let us fix Q0 and construct Pj as follows:

Q0
N [0,j]−−−−→

f
Pj . (5)

As a result, we get a set of trails:

0
ΔN

j−−→
f

Δj . (6)

248 D. Khovratovich, C. Rechberger, and A. Savelieva

Let us also construct Qi out of P0:

Qi
N [i,0]←−−−−

f
P0, (7)

and get another set of trails:

∇i
∇N

i←−−
f

0. (8)

Suppose that the trails (8) do not affect active non-linear elements in the trails
(6). Then Qi are solutions to the trails (6), so we get the biclique equation:

Qi
N [i,j]−−−−→

f
Pj . (9)

Assume that the computation (7) does not affect active non-linear elements in
the trails (6) with probability 2−t. The probability that 2d computations affect

no condition is 2−t2d . Equation (9) is satisfied with probability 2−t2d , so we need

2t2
d

solutions to Equation (6) to build a biclique (feasible for small d).
This algorithm is used in the preimage attack on the hash function Skein-

512. For non-ARX primitives with predictable diffusion it can even be made
deterministic. For example, for AES [8] and Square it is easy to build truncated
differential trails that do not share active non-linear components with probability
1. As a result, the biclique construction can be simply explained using a picture
of trails (Figure 2). �

Trails
share no active elements

Biclique

Fig. 2. Biclique construction out of non-interleaving trails

Algorithm 2. (Modification of Algorithm 1 for the case when the hash function
operates in DM mode, and we can control internal state and injections of message
M within the biclique). Assume that the mapping f uses several independent
parts (blocks) of message M via message injections (like in SHA-2). Consider
a message group with property (4) but do not define the messages yet. Choose
a state Q0 satisfying sufficient conditions to build sets of trails (6) and (8)
that do not share active non-linear components. Then find N [0, 0] such that

Q0
N [0,0]−−−−→

f
P0 conforms to both sets of trails. Since the sets do not share active

non-linear components, we get

Qi
N [i,j]−−−−→

f
Pj ,

where Qi = Q0 ⊕∇i, Pj = P0 ⊕Δj .

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 249

We can control message injections in f , and therefore, are able to define
N [0, 0] block by block similarly to the trail backtracking [5]. The procedure that
ensures that the message N [0, 0] is well-defined, and the trails (6) and (8) do not
contradict, was first proposed in [1] and referred to as message compensation. �

Algorithm 3. (for bicliques of dimension 1) We apply this rebound-style [20]
algorithm if the mapping f is too long for differential trails with reasonable
number of sufficient conditions. Then we split it into two parts f1 and f2 and
consider two differential trails with probabilities p and q, respectively:

0
ΔN−−→
f1

Δ, ∇ ∇N−−→
f2

0. (10)

We fix the state S between f1 and f2, and consider a quartet of states:

S, S ⊕Δ, S ⊕∇, S ⊕Δ⊕∇.

Suppose that a quartet of states is a quartet in the middle of the boomerang
attack, which happens with probability p2q2 for a randomN under an approriate
independency assumption. Then we derive input states Q0, Q1 and output states
P0, P1, which are linked as follows (see also Figure 3):

Q0
N−→
f1

S
N−→
f2

P0; Q0
N⊕ΔN

−−−−−→
f1

S ⊕Δ
N⊕ΔN

−−−−−→
f2

P1;

Q1
N⊕∇N−−−−−→

f1
S ⊕∇ N⊕∇N−−−−−→

f2
P0; Q1

N⊕ΔN⊕∇N−−−−−−−−→
f1

S ⊕Δ⊕∇ N⊕ΔN⊕∇N−−−−−−−−→
f2

P1.

Therefore, we get a biclique, where the set of parameters N is defined as follows:

N [0, 0] = N ; N [0, 1] = N ⊕ΔN ; N [1, 0] = N ⊕∇N ; N [1, 1] = N ⊕ΔN ⊕∇N .�

??

? ?

N [0, 0] N [1, 1]

N [1, 0]

N [0, 1]

Guess
difference

in computations

Resolve
in the middle

Q0 Q1

P1P0

Construct
solutions

Fig. 3. Rebound-style algorithm for biclique construction

We use Algorithm 2 in the attacks on SHA-256 and SHA-512, and Algorithm 3
is applied in the preimage attack on the Skein compression function. In practice,
we use freedom in the internal state and in the message injection fulfill conditions
in both trails with tools like message modification and auxiliary paths.

250 D. Khovratovich, C. Rechberger, and A. Savelieva

4 Simple Case: Second Preimage Attack on Skein-512

Skein [10] is a SHA-3 finalist, and gets a lot of cryptanalytic attention. Differ-
ential [4] and rotational cryptanalysis [17] led the authors of Skein to tweak the
design twice. As a result, the rotational property, which allowed cryptanalysts
to penetrate the highest number of rounds, does not exist anymore in the new
version of Skein. Hence the best known attack are near-collisions on up to 24
rounds (rounds 20-43) of the compression function of Skein [4,27]. Very recently
near-collisions attacks on up to 32 rounds of Skein-256 were demonstrated [29].

The cryptanalysis of Skein in the hash setting is very limited. Rotational
attacks did not extend to the Skein hash function, and the differential attacks
were not applied in this model. In our paper, we demonstrate the first attack in
this arguably much more relevant setting. At the time of publication this is the
only cryptanalytic attack on round-reduced version of Skein hash function.

We chose to give the simplest example in the strongest model rather than
to attack the highest number of rounds. The attack we present is on a 22-
round version of Skein-512 hash function. In addition to the biclique concept, an
interesting feature of our attack is the application of statistical hypothesis test
at the matching phase. This technique is applied for the first time and allows
to cover more rounds than direct or symbolic (indirect) matching with the same
computational complexity.

4.1 Second Preimage Attack on the Reduced Skein-512 Hash

Details of Skein specification are provided in Appendix A. We consider Skein-512
reduced to rounds 3–24. In the hash function setting we are given the messageM
and the tweak value T , and have to find a second preimage. We produce several
pseudo-preimages (CV,M ′) to a call of the compression function that uses 512
bits of M , and then find a valid prefix that maps the original IV to one of the
chaining values that we generated. Let f map the state after round 11 to the
state before round 16. We construct a biclique of dimension 3 for f following
Algorithm 1 (Section 3):

1. Define ΔN
j = (0, j � 58, j � 58, 0, 0, 0, 0, 0) and ∇N

i = (0, 0, 0, i � 55, i �
55, 0, 0, 0).

2. Generate Q0 and compute P0, P1, . . . , P7. If the trails 0
ΔN

j−−→
f

Δj are not

based on the linear difference propagation, repeat the step.
3. Compute Qi and check if the condition on active non-linear elements is

fulfilled. If so, output a biclique.

We use a differential trail that follows a linear approximation that is a variant of
the 4-round differential trail, which can be obtained in a similar way to the one
presented in the paper [4]. The number of active bits is given in Table 2. Further
details of the trail are provided Appendix A in Table 5. For the trails based on

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 251

the 3-bit difference ΔN
j we have 206 sufficient conditions in total. Computations

of Qi out of P0 do not affect those conditions with probability 2−0.3 (verified
experimentally). Therefore, for the eight states Pj the probability is 2−0.3·8 ≈
2−3. We construct a 4-round biclique with complexity at most 2206+3 = 2209.
Note that we have 1024− 209 = 815 degrees of freedom left.

Table 2. Number of active bits in the most dense Δ-trail in 4 rounds of Skein-512

I0 I1 I2 I3 I4 I5 I6 I7 Conditions in the round

S12−A 3 3

S13−A 6 3 9

S14−A 6 3 3 12 24

S15−A 3 6 3 24 12 6 6 3 63

S15−P 21 9 12 4 3 18 3 37 107 (message addition)

Probabilistic matching. The matching variable v consists of bits 30, 31, 53 of
the word 1 after round 24. Due to carry effects, there is a small probability that
those bits require the knowledge of the full message to be computed in both
directions. This probability was experimentally estimated as 0.09. The matching
bits can be computed from both chunks independently with probability 0.91, so
with probability ≈ 2−0.1 we have a type-I error [22], i.e. a false positive, and
the candidate is discarded (insisting on probability 1, as in earlier work, would
have resulted in an attack on a smaller number of rounds).

Layout of the attack is as follows:

1. Build a biclique of dimension 3 in rounds 12-15 with key additions (key
addition + 4 rounds + key addition).

2. Compute forward chunk in rounds 16-19, backward chunks in rounds 8-11,
and bits I130,31,53 of the the state S24−P in both directions in the partial
matching procedure.

3. Check for the match in these bits, produce 23 key candidates, which get
reduced to 22.9 due to the type-I error. Check them for the match on the full
state.

4. Generate a new biclique out of the first one by change of key bits.
5. Repeat steps 2-5 2507.5 times and generate 2507.5−509+2.9 = 21.6 full pseudo-

preimages.
6. Match one of the pseudo-preimages with the real CV0.

Complexity. The biclique construction cost can be made negligible, since many
bicliques can be produced out of one. Indeed, we are able to flip most of the bits
in the message so that the biclique computation between the message injections
remain unaffected, and only output states are changed. Every new biclique needs
half of rounds 8-11 and 16-19 recomputing, and half of rounds 3-5 and 21-24
computing to derive the value of the matching variable. Hence each biclique tests
26 preimage candidates at cost of (2+ 2+1.5) · 8+ (2+ 2+2) · 8 = 92 rounds of

252 D. Khovratovich, C. Rechberger, and A. Savelieva

22-round Skein, or 22.3 calls of the compression function, taking a recheck into
account. As a result, a full pseudo-preimage is found with complexity 2508.4.
We need 21.6 ≈ 3 pseudo-preimages to match one of 2510.4 prefixes, so the total
complexity is 2511.2.

5 Preimage Attacks on the SHA-2 Hash Functions

The SHA-2 family is the object of very intensive cryptanalysis in the world of
hash functions. We briefly review parts of the specification [23] needed for the
cryptanalysis in Appendix B. In contrast to its predecessors, collision attacks
are no longer the major threat with the best attack on 24 rounds of the hash
function [13,24]. So far the best attacks on the SHA-2 family are preimage at-
tacks on the hash function in the splice-and-cut framework [1] and a boomerang
distinguisher that is only applicable for the compression function [18].

We demonstrate that our concept of biclique adds two rounds to the attack on
SHA-256, four rounds to the attack on SHA-512, and many more when attacking
the compression functions. The full layout of our attacks is provided in Table 3.
The biclique is based on a 6-round trail with few conditions, easy to use as a ∇-
differential. The number of attacked rounds depends significantly on its position,
because:

– message injections in rounds 14-15 are partially determined by the padding
rules;

– chunks do not bypass the feedforward operation due to high nonlinearity of
the message schedule;

– chunks do not have maximal length, otherwise the biclique trail becomes too
dense.

SHA-256. We construct a 6-round biclique with Algorithm 2, Section 3 and
place it in rounds 17-22 (see Appendix C for more details of the attack).

SHA-512. The biclique is similar to the one we build for SHA-256. However,
our attack on SHA-512 does not fix all the 129 padding bits of the last block.
This approach still allows to generate short second preimages by using the first
preimage to invest the last block that includes the padding and perform the
preimage attack in the last chaining input as the target.

For a preimage attack without a first preimage, expandable messages such as
described in [16] can be used. This adds no noticeable cost as the effort is only
slightly above the birthday bound.

In addition, the compression function attack needs to fulfill the following two
properties. Firstly, the end of the message (before the length encoding, i.e., the
LSB of W 13) has to be ’1’. Secondly, the length needs to be an exact multiple
of the block length, i.e., fix the last nine bits of W 15 to ”1101111111” (895). In
total 11 bits need to be fixed.

Details of the attack are presented in Appendix D.

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 253

Table 3. Parameters of the preimage attack on reduced SHA-2 hash functions

Target Attack layout

Biclique

Rounds Dimension ΔM bits: ∇M bits: Complexity Freedom used

SHA-256 17-22 3 W 17
25,26,27 W 22

22,23,31 232 416

hash Message compensation

function Equations Constants used in the biclique

(45-round 9 2

version) Chunks Matching

Forward Backward Partial matching Matching bits Complexity per match

2-16 23-36 37→ 38← 1 A38
0,1,2,3 23

Biclique

Rounds Dimension ΔM bits: ∇M bits: Complexity Freedom used

SHA-512 21-26 3 W 21
60,61,62 W 26

53,54,55 232 832

hash Message compensation

function Equations Constants used in the biclique

(50-round 9 2

version) Chunks Matching

Forward Backward Partial matching Matching bits Complexity per match

6-20 27-40 41→ 43← 5 A43
0,1,2 23

6 Attacks on the Compression Functions: SHA-2 and
Skein

6.1 Preimage Attacks on the Skein Compression Functions

In this section we provide an attack on the 37-round Skein-512 compression
function. Control over the tweak value gives us additional freedom both in chunks
and the biclique construction.

The attack parameters are listed in Table 4. We build a biclique in rounds 16-
23, and apply the attack to rounds 2-38. Bicliques are constructed by Algorithm
3 (Section 3). We use two differential trails: based on ΔM (Δ-trail) for rounds
16-19 (including key addition in round 19) and based on ∇M (∇-trail) for rounds
20-23. The Δ- and ∇- trails are based on the evolution of a single difference in
the linearized Skein and have probability 2−52 and 2−29 respectively.

The biclique is constructed as follows. First, we restrict to rounds 19-20, where
the compression function can be split into two independent 256-bit transforma-
tions. A simple approach with table lookups gives a solution to restricted trails
with amortized cost 1 (more efficient methods certainly exist). Then we ex-
tend this solution to an 8-round biclique by the bits of K5. We use K5 in the
messagemodification-like process and adjust the sufficient conditions in rounds
16-23. We have 221 degrees of freedom for that (computed experimentally). As
many as 96 bits of freedom do not affect the biclique at all and are used to reduce
the amortized cost to only a single round.

254 D. Khovratovich, C. Rechberger, and A. Savelieva

Table 4. Parameters of the preimage attack on the 37-round Skein-512 compression
function

Biclique

Rounds Dimension ΔM bits ∇M bits Complexity Freedom used

16-23 1 K[0] K[4]63 2256 162

Chunks Matching

Forward Backward Partial matching Matching bit Matching pairs Complexity

8-15 24-31 32→ 38 = 2← 7 I325 22 21.1

In the matching part we recompute 29 rounds per biclique. However, a single
key bit flip affects only half of rounds 12-15 and 24-27, and also we need to
compute only a half of rounds 2-5 and 35-38. In total, we recompute 42 rounds,
or 21.2 calls of the compression function per structure, and get 2 candidates
matching on one bit. The full preimage is found with complexity 2511.2.

6.2 Preimage Attacks on the SHA-2 Compression Functions

In this section we provide short description of attacks on the SHA-2 compression
functions. The number of rounds we obtain for the compression function setting
is in both cases comparable to [18], the latter however does not allow extension
to the hash function nor does it violate any “traditional” security requirement.
The preimage attack on the compression function is relevant if it is faster than
2n, though not all these attacks are convertible to the hash function attacks. As a
result, we can apply the splice-and-cut attack with the minimum gain to squeeze
out the maximum number of rounds. This implies that we consider bicliques of
dimension 1. In differential terms, we consider single bit differences ΔM

1 and
∇M

1 . As a result, we get sparse trails with few conditions, and can extend them
to more rounds.

– Build 11-round biclique out of a 11-round ∇-trail in rounds 17-27 (SHA-256)
and 21-31 (SHA-512). The trail is a variant of the trail in Table 7 that starts
with one-bit difference.

– Construct message words in the biclique as follows. In SHA-256 fix all
the message words to constants, then apply the difference ΔM

1 to W 17,
and assume the linear evolution of ΔM

1 when calculating ΔW 17+i from
W 2, . . . ,W 17. Assume also the linear evolution of ∇M when calculating
∇W 27−i from W 28, . . . ,W 42. Analogously for SHA-512.

– Build the biclique using internal message words as freedom, then spend the
remaining 5 message words to ensure the Δ and ∇-trails in the message
schedule. As a result, we get the longest possible chunks (2-16 and 28-42 in
SHA-256).

Therefore, we gain 5 more rounds in the biclique, and two more rounds in the
forward chunk. This results in a 52-round attack on the SHA-256 compression
function, and a 57-round attack on the SHA-512 compression function.

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 255

7 Discussion and Conclusions

We introduced a new concept of bicliques for meet-in-the-middle attacks. We pre-
sented several applications of biclique cryptanalysis, including the best preimage
attacks so far on SHA-256, SHA-512, and the SHA-3 finalist Skein. In line with
most cryptanalytic work, we focused on obtaining results on as many rounds as
possible. Though all the functions in this paper are ARX-based, our technique
can also be applied to other narrow-pipe designs.

Overall, the differential view gives a cryptanalyst much more freedom and
flexibility compared to previous attacks. We can outline the following benefits
of applying the biclique concept:

– Use of differential trails in a biclique with a small number of sufficient con-
ditions;

– Deterministic algorithms to build a biclique, which can be adapted for a
particular primitive;

– Use of various tools from differential cryptanalysis like trail backtracking [5],
message modification and neutral bits [6,15,21,28], condition propagation [9],
and rebound techniques [20].

Status of SHA-2 and Skein-512. For SHA-256, SHA-512, and Skein-512, we
considered both the hash function and the compression function setting. In all
settings we obtained cryptanalytic results on more rounds than any other known
method. Based on these results we conclude that Skein-512 is more resistant
against splice-and-cut cryptanalysis than SHA-512.

Other Applications of Biclique Cryptanalysis. Soon after the initial cir-
culation of this work, the idea of biclique cryptanalysis found other applications.
Bicliques have large potential in attacks on block ciphers, as has been demon-
strated by recent attacks on the full versions of popular block ciphers. Among
them we mention key recovery faster than brute force for AES-128, AES-192,
and AES-256 by Bogdanov et al. [8]. Cryptanalysis of AES employed algorithms
for biclique construction which are partly covered in Section 3. In this context we
also mention new and improved results on Kasumi by Jia et al. [14] and IDEA
by Biham et al. [7] as well as more results announced both publicly [12,19,30]
and privately.

Acknowledgements. Part of this work was done while Christian Rechberger
was with KU Leuven and visiting MSR Redmond, and while Alexandra Savelieva
was visiting MSR Redmond. The authors would like to thank Eik List and
anonymous reviewers for useful comments on earlier versions of the paper.

References

1. Aoki, K., Guo, J., Matusiewicz, K., Sasaki, Y., Wang, L.: Preimages for Step-
Reduced SHA-2. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
578–597. Springer, Heidelberg (2009)

256 D. Khovratovich, C. Rechberger, and A. Savelieva

2. Aoki, K., Sasaki, Y.: Preimage Attacks on One-Block MD4, 63-Step MD5 and
More. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381,
pp. 103–119. Springer, Heidelberg (2009)

3. Aoki, K., Sasaki, Y.: Meet-in-the-Middle Preimage Attacks Against Reduced SHA-
0 and SHA-1. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 70–89.
Springer, Heidelberg (2009)

4. Aumasson, J.-P., Çalık, Ç., Meier, W., Özen, O., Phan, R.C.-W., Varıcı, K.: Im-
proved Cryptanalysis of Skein. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS,
vol. 5912, pp. 542–559. Springer, Heidelberg (2009)

5. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: RadioGatun, a belt-and-mill
hash function. In: NIST Cryptographic Hash Workshop (2006),
http://radiogatun.noekeon.org/

6. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

7. Biham, E., Dunkelman, O., Keller, N., Shamir, A.: New Data-Efficient Attacks on
Reduced-Round IDEA. Cryptology ePrint Archive, Report 2011/417 (2011),
http://eprint.iacr.org/

8. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the
full AES. In: Lee, D.H. (ed.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344–371.
Springer, Heidelberg (2011), http://eprint.iacr.org/2011/449

9. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

10. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas,
J., Walker, J.: The Skein hash function family, version 1.3 (October 1, 2010)

11. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced Meet-in-the-Middle Preim-
age Attacks: First Results on Full Tiger, and Improved Results on MD4 and SHA-2.
In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Hei-
delberg (2010)

12. Hong, D.: Biclique attack on the full HIGHT. To appear in ICISC 2011 (2011)
13. Indesteege, S., Mendel, F., Preneel, B., Rechberger, C.: Collisions and Other Non-

random Properties for Step-Reduced SHA-256. In: Avanzi, R.M., Keliher, L., Sica,
F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 276–293. Springer, Heidelberg (2009)

14. Jia, K., Yu, H., Wang, X.: A meet-in-the-middle attack on the full KASUMI.
Cryptology ePrint Archive, Report 2011/466 (2011), http://eprint.iacr.org/

15. Joux, A., Peyrin, T.: Hash Functions and the (Amplified) Boomerang Attack. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 244–263. Springer, Heidel-
berg (2007)

16. Kelsey, J., Schneier, B.: Second Preimages on n-Bit Hash Functions for Much Less
than 2n Work. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

17. Khovratovich, D., Nikolić, I., Rechberger, C.: Rotational Rebound Attacks on Re-
duced Skein. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 1–19.
Springer, Heidelberg (2010)

18. Lamberger, M., Mendel, F.: Higher-order differential attack on reduced SHA-256
(2011), http://eprint.iacr.org/2011/037.pdf

19. Mala, H.: Biclique cryptanalysis of the block cipher SQUARE. Cryptology ePrint
Archive, Report 2011/500 (2011), http://eprint.iacr.org/

http://radiogatun.noekeon.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2011/449
http://eprint.iacr.org/
http://eprint.iacr.org/2011/037.pdf
http://eprint.iacr.org/

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 257

20. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The Rebound Attack:
Cryptanalysis of Reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE
2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009)

21. Naito, Y., Sasaki, Y., Shimoyama, T., Yajima, J., Kunihiro, N., Ohta, K.: Improved
Collision Search for SHA-0. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 21–36. Springer, Heidelberg (2006)

22. Neyman, J., Pearson, E.S.: The testing of statistical hypotheses in relation to
probabilities a priori. In: Proc. Camb. Phil. Soc. (1933)

23. NIST. FIPS-180-2: Secure Hash Standard (August 2002),
http://www.itl.nist.gov/fipspubs/

24. Sanadhya, S.K., Sarkar, P.: New Collision Attacks against Up to 24-Step SHA-
2. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS,
vol. 5365, pp. 91–103. Springer, Heidelberg (2008)

25. Sasaki, Y., Aoki, K.: Preimage Attacks on Step-Reduced MD5. In: Mu, Y., Susilo,
W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 282–296. Springer, Hei-
delberg (2008)

26. Sasaki, Y., Aoki, K.: Finding Preimages in Full MD5 Faster Than Exhaustive
Search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152.
Springer, Heidelberg (2009)

27. Su, B., Wu, W., Wu, S., Dong, L.: Near-Collisions on the Reduced-Round Compres-
sion Functions of Skein and BLAKE. Cryptology ePrint Archive, Report 2010/355
(2010), http://eprint.iacr.org/

28. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

29. Yu, H., Chen, J., Jia, K., Wang, X.: Near-Collision Attack on the Step-Reduced
Compression Function of Skein-256. Cryptology ePrint Archive, Report 2011/148
(2011), http://eprint.iacr.org/

30. Chen, S.Z., Xu, T.M.: Biclique Attack of the Full ARIA-256. Cryptology ePrint
Archive, Report 2012/011 (2012), http://eprint.iacr.org/

A Skein Specification and Details of Differential Trail
Design

Skein-512 is based on the block cipher Threefish-512 — a 512-bit block cipher
with a 512-bit key parametrized by a 128-bit tweak. Both the internal state I
and the key K consist of eight 64-bit words, and the tweak T is two 64-bit words.
The compression function F (CV, T,M) of Skein is defined as:

F (CV, T,M) = ECV,T (M)⊕M,

where EK,T (P) is the Threefish cipher, CV is the previous chaining value, T
is the tweak, and M is the message block. The tweak value is a function of
parameters of message block M .

Threefish-512 transforms the plaintext P in 72 rounds as follows:

P → Add K0 → 4 rounds → Add K1 → . . . →→ Add K18 → C.

http://www.itl.nist.gov/fipspubs/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

258 D. Khovratovich, C. Rechberger, and A. Savelieva

The subkey Ks = (Ks
0 ,K

s
1 , . . . ,K

s
7) is produced out of the key K = (K[0],K[1],

. . . ,K[7]) as follows:

Ks
j = K[(s+ j) mod 9], 0 ≤ j ≤ 4; Ks

5 = K[(s+ 5) mod 9] + T [s mod 3];

Ks
6 = K[(s+ 6) mod 9] + T [(s+ 1) mod 3]; Ks

7 = K[(s+ 7) mod 9] + s,

where the additions are all modulo 264, s is a round counter, T [0] and T [1] are

tweak words, T [2] = T [0] + T [1], and K[8] = C240 ⊕
⊕7

j=0 K[j] with constant
C240 optimized against rotation attacks.

One round transforms the internal state as follows. Eight words I0, I1, . . . , I7

are grouped into pairs and each pair is processed by a simple 128-bit function
MIX. Then all the words are permuted by the operation PERM. Details of these
operations are irrelevant for the high-level description and can be found in [10].
We use the following notation for the internal states in round r:

Sr−A MIX−−−→ Sr−M PERM−−−−−→ Sr−P

Local collision in Skein-512. If an attacker controls both the IV and the tweak
he is able to introduce difference in these inputs so that one of subkeys has zero
difference. As a result, he gets a differential which has no difference in internal
state for 8 rounds. The lowest weight of input and output differences is achieved
with the combination ΔK[6] = ΔK[7] = ΔT [1] = δ, which gives difference
(0, 0, . . . , 0, δ) in the subkey K0 and (δ, 0, 0, . . . , 0) in K8, and zero difference
in the subkey K4. The local collisions for further rounds are constructed anal-
ogously. We use the following differences in the compression function attack to
make a local collision in rounds 8-15 and 24-31:

ΔK[0] = ΔT [0] = ΔT [1] = 1� 63; ΔK[3] = ΔK[4] = ΔT [1] = 1� 63.

B Specification of the SHA-2 Family of Hash Functions

The SHA-2 hash functions are based on a compression function that updates
the state of eight 32-bit state variables A, . . . , H according to the values of 16
32-bit words M0, . . . , M15 of the message. SHA-384 and SHA-512 operate on
64-bit words. For SHA-224 and SHA-256, the compression function consists of
64 rounds, and for SHA-384 and SHA-512 — of 80 rounds. The full state in
round r is denoted by Sr.

The i-th step uses the i-th word W i of the expanded message. The message
expansion works as follows. An input message is split into 512-bit or 1024-bit
message blocks (after padding). The message expansion takes as input a vector
M with 16 words and outputs a vector W with n words. The words W i of
the expanded vector are generated from the initial message M according to the
following equations (n is the number of steps of the compression function):

W i =

{
M i for 0 ≤ i < 15

σ1(W
i−2) +W i−7 + σ0(W

i−15) +W i−16 for 15 ≤ i < n
. (11)

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 259

Table 5. Details of the most dense Δ-trail for the result on the reduced Skein-512 hash
function

Round Active bits

Before Round 12 00

00

00

00

00

00

00

00011100

After Round 12 00

00

00

0001110000000000000000000000000000000000000111000000000000000000

00011100

00

00

00

After Round 13 0001110000000000000000000000000000000000000111000000000000000000

00

00011100

00

00

00011100

00

0001110000000000011100000000000000000000000111000000000001110000

After Round 14 00011100

0001110000000000000000000000000000000000000111000000000000000000

00011100

1111110000000011111100001110000000000011100111000000000001110000

0001110000000000011100000000000000000000000111000000000001110000

0001110000000000000000000000111000000000000000000000000000000000

0001110000000000000000000000000000000000000111000000000000000000

00011100

After Round 15 1110000000000011111100001110000000000011100111000000000001110000

0000000000000000000000000000000000011100000111000000000000011100

0000000000000000011100000000111000000000000111000000000001110000

000110110000000000000000

000111000000000000000000

0000000000011100011100000000111000001110000111000000000001110000

000111000000000000000000

1111110011100011111100110110011111100011100000111000011101110000

The round function of all the SHA-2 functions operates as follows:

T
(i)
1 = Hi +Σ1(E

i) + Ch(Ei, F i, Gi) +Ki +W i,

T
(i)
2 = Σ0(Ai) +Maj(Ai, Bi, Ci),

Ai+1 = T
(i)
1 + T

(i)
2 , Bi+1 = Ai, Ci+1 = Bi, Di+1 = Ci,

Ei+1 = Di + T 1
(i), F

i+1 = Ei, Gi+1 = F i, Hi+1 = Gi.

Here Ki is a round constant. The bitwise boolean functions Maj and Ch as well
as two GF(2)-linear functions Σ0(x) and Σ1(x) used in the round function, and
message schedule functions σ0(x) and σ1(x) are defined in Table 6. A ≫ x and
A� x denote bit-rotation and bit-shift of A by x positions to the right.

C Details on the 46-Round SHA-256 Attack

C.1 Biclique Construction

Here we provide more details on the biclique construction algorithm:

260 D. Khovratovich, C. Rechberger, and A. Savelieva

Table 6. Details of SHA-2 hash family internal operation

Function SHA-2 Family

SHA-224 and SHA-256 SHA-384 and SHA-512

Ch(x, y, z) x ∧ y ⊕ x ∧ z

Maj(x, y, z) x ∧ y ⊕ x ∧ z ⊕ y ∧ z

Σ0(x) (x ≫ 2)⊕ (x ≫ 13)⊕ (x ≫ 22) (x ≫ 28) ⊕ (x ≫ 34)⊕ (x ≫ 39)

Σ1(x) (x ≫ 6)⊕ (x ≫ 11)⊕ (x ≫ 25) (x ≫ 14) ⊕ (x ≫ 18)⊕ (x ≫ 41)

σ0(x) (x ≫ 7)⊕ (x ≫ 18) ⊕ (x� 3) (x ≫ 1) ⊕ (x ≫ 8)⊕ (x� 7)

σ1(x) (x ≫ 17) ⊕ (x ≫ 19) ⊕ (x� 10) (x ≫ 19) ⊕ (x ≫ 61) ⊕ (x� 6)

1. Fix a group of 6-round differential trails ∇i
∇M

i−−→ 0 (the one based on 3-bit
difference is listed in Table 7). Derive a set of sufficient conditions on the
internal states (Table 8).

2. Fix the message compensation equations with constants c1, c2, . . . , c9 (Sec-
tion C.2).

3. Fix an arbitrary Q0 and modify it so that most of conditions in the compu-
tation Q0 → P0 are fulfilled. Derive Qi out of Q0 by applying ∇i.

4. Fix a group of 2-round trails (the one based on 3-bit difference is given in
Table 7) (ΔW 17 → ΔS19) as a Δ-trail (Equation (6)) in rounds 17-19.

5. Choose W 17,W 18, . . . ,W 22 and constants c8, c9 so that the conditions in the
computations Q0 → Pj , j = 0, . . . , 7 are fulfilled. Produce all Pj .

Finally, we produce Q0, . . . , Q7 and P0, . . . , P7 that conform to the biclique equa-
tions.

The complexity of building a single biclique is estimated as 232. 7 message
words left undefined in the message compensation equations give us enough
freedom to reuse a single biclique up to 2256 times. The complexity to recalculate
the chunks is upper bounded by 22 calls of the compression function. The total
amortized complexity of running a single biclique and producing 22 matches on
4 bits is 23 calls of the compression function. Since we need 2252 matches, the
complexity of the pseudo-preimage search is 2253. A full preimage can be found
with complexity approximately 21+(253+256)/2 ≈ 2255.5 by restarting the attack

procedure 2
256−253

2 = 21.5 times. Memory requirements are ≈ 21.5 × 24 words.

C.2 Message Compensation

Since any consecutive 16 message words in SHA-2 bijectively determine the rest
of the message block at an iteration of compression function, we need to place the
initial structure within a 16-round block and define such restrictions on message
dependencies that maximize the length of chunks.

We discovered that with W 17 and W 22 selected as the words with for a 6-step
initial structure, it is possible to expand 16-round message block {W 12, . . . ,W 27}
by 10 steps backwards and 9 steps forwards, so that {W 2, . . . ,W 16} are calcu-
lated independently of W 17 , and {W 23, ...,W 36} are calculated independently

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 261

of W 22. Below we define the message compensation conditions that make such
chunk separation possible (neutral bit words are outlined in frames):

−σ1(W
25) +W 27 = c1; −W 19 − σ1(W

24) +W 26 = c2

−σ1(W
23) +W 25 = c3 − W 17 +W 24 = c4

−σ1(W
21) +W 23 = c5; − σ1(W

19) +W 21 = c6

−σ1(W
17) +W 19 = c7; W 12 + σ0(W

13) = c8;

W 13 + W 22 = c9

(12)

W 14, . . . ,W 16,W 18, and W 20 can be chosen independently of both W 17 and
W 22, so we can assign W 14 and W 15 with 64-bit length of the message to satisfy
padding rules (additionally, 1 bit of W 13 needs to be fixed). W 18 and W 20 are
additional freedom for constructing the biclique. We use bits 25, 26, 27 as neutral
in W17. To prevent this difference from interleaving with the backward trail
difference in round 19, we restrict the behavior of the forward trail as specified
in Table 7 (aggregated conditions are given in Table 8).

C.3 Trails

The basic differential trail for the biclique is a 6-round trail in the backward
direction (ΔQ ← ∇M) that starts with the difference in bits 22, 23, and/or 31
in W22. The trail is briefly depicted in Table 7 with references to the sufficient
conditions (which work out for all the 7 possible differences) in Table 8.

Table 7. Details for biclique in SHA-256. Differential ∇- and Δ- trails (active bits).

Λ′ = {6, 11, 12, 16, 17, 20, 23, 24, 29, 30}, Φ = Σ1{25, 26, 27} = {0, 1, 2, 14, 15, 16, 19, 20, 21},
∗ refers to an arbitrary difference.

Trail R-nd A B C D E F G H W Cond-s

∇ 17 - - 22,23,31 - - Λ′ - * - 1
∇ 18 - - - 22,23,31 - - Λ′ - - 3,4
∇ 19 - - - - 22,23,31 - - Λ′ - 7-11
∇ 20 - - - - - 22,23,31 - - - 12
∇ 21 - - - - - - 22,23,31 - - 13
∇ 22 - - - - - - - 22,23,31 -
∇ 23 - - - - - - - - 22,23,31

Δ 18 * - - - 25,26,27 - - - - 2
Δ 19 * * - - Φ 25,26,27 - - - 5,6

With three neutral bits we construct a biclique with 8 starting points for
chunks in each direction. First, we choose the initial state A17, . . . , H17 so that
the conditions 1 and 5 are fulfilled. Then we proceed with a standard trail
backtracking procedure modifying the starting state if needed. Next, in round
18 we check whether the value of E stops carries in the forward trail. If not, we

262 D. Khovratovich, C. Rechberger, and A. Savelieva

Table 8. Sufficient conditions for the Δ- and ∇-trails in SHA-256

F – how the conditions are fulfilled (IC – initial configuration, SM – state modification).
C – total number of independent conditions; DW – conditions fulfilled by message words.

Ai – i-th bit of A; Λ = Σ1{22, 23, 31} = {6, 11, 12, 16, 17, 20, 25, 29, 30}

Round Conditions Purpose F C DW

17 1: A22,23,31 = B22,23,31 Absorption (MAJ) IC 3 0

2 : (W⊕E18)
25,26,27 = 0 Stop forw. carry SM 6 0

18 3 : EΛ′
= 1, Absorption (IFF) SM 9 0

4 : (D ⊕ E19)
22,23,31 = 0 Stop carry SM 3 0

5 : F 25,26,27 = G25,26,27, Absorption (IFF) IC 9 0

6 : (S1⊕ E19)
Φ = 0 Stop forw. carry SM 2 0

19 7: F 22,31 = G22,31 Absorption (IFF) SM 2 0

8: F 23 	= G23 Pass (IFF) SM 1 0

9: CH25 	= S125 Force carry (H) SM 1 0

10: (S1⊕H)Λ = 1 Stop carry (H) SM 9 0

11: (CH ⊕H)24 = 0 Force carry (H) SM 1 0

11’: (CH ⊕H)23 = 0 Force carry (H) SM 1 0

20 12 : E22,23,31 = 0 Absorption (IFF) W 19 21 21

21 13 : E22,23,31 = 1 Absorption (IFF) W 20 21 21

change the value of D in the starting state accordingly. Then we sequentially
modify the initial state to fulfill the conditions 2-11.

The last two conditions are affected by the message words W19 and W20. We
need to fulfill three bit conditions for everyW17, used in the attack. Therefore, we
spend 3 ·8 ·2 = 48 degrees of freedom in message wordsW17,W18,W19,W20,W21.
Note that there is a difference in W19 determined by the difference in W17 due to
the message compensation. We have fixed the constants c6 and c7 from Eq. 12
while defining W19 and W21. In total, we construct the biclique in about 232

time required to find proper W19 and W20.
Amount of freedom used. In total, we have 512 degrees of freedom in the

message and 256 degrees of freedom in the state. The biclique is determined by
the state in round 17 and message wordsW17–W21. The choice ofW19 andW21 is
equivalent to the choice of constants c6, c7 in Eq. 12. We spend 256+5 ·32 = 416
degrees of freedom for the biclique fulfilling as few as 47+42 (Table 8) conditions.
After the biclique is fixed, there are 768 − 416 = 352 degrees of freedom left.
We spend 32 + 32 + 2 = 66 for the padding, leaving 286 degrees of freedom.
Therefore, one biclique is enough for the full attack.

D Details on the 50-Round SHA-512 Attack

D.1 Biclique Construction

Steps of the algorithm are similar to those in Section C.1, except the trails are
described in Table 9. By applying similar reasoning, we estimated that a full
preimage can be found with complexity ≈ 2511.5 and memory ≈ 21.5× 24 words.

Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family 263

D.2 Message Compensation

The system of compensation equations is defined as follows:

−σ1(W
29) +W 31 =c1;−W 23 − σ1(W

28) +W 30 = c2;W
17 + W 26 = c9

−σ1(W
27) +W 29 =c3;− W 21 +W 28 = c4; −σ1(W

25) +W 27 = c5;

−σ1(W
23) +W 25 =c6;−σ1(W

21) +W 23 = c7; W 16 + σ0(W
17) = c8;

We use 1 LSB of W 13 and 10 LSB of W 15 for padding. The choice of constants
c8, c9 and fixed lower 53 bits of W 26 provide us with sufficient freedom. By
choosing c9 we define lower 53 bits of W 17. Having c8 chosen, we derive 45 lower
bits of W 16 fixed due to σ0. We get lower 37 bits of W 15, 29 bits of W 14 and 21
bit of W 13 fixed. As we need only one LSB of W 13 and 10 LSB of W 15 to be
fixed, we use lower 33 bits of W 26 and c9, and lower 25 bits of c8.

D.3 Trails

The basic differential trail for the biclique is a 6-round trail in the backward
direction (ΔQ ← ∇M) that starts with the difference in bits 53, 54, and/or 55
in W 26. We also use bits 60, 61, 62 as neutral in W 21. To prevent this difference
from interleaving with the backward trail difference in round 19, we restrict the
behavior of the forward trail. The trails are depicted in Table 9.

Table 9. Details for biclique in SHA-512. Differential ∇- and Δ-trails (active bits).

Λ = Σ1{53, 54, 55} = {12, 13, 14, 35, 36, 37, 39, 40, 41}, Φ = Σ1{60, 61, 62} ={17, 20, 21, 42, 43, 44, 46, 47, 48},
∗ refers to an arbitrary difference.

Trail Round A B C D E F G H Cond-s

∇ 21 - - 53,54,55 - - Λ - * 3
∇ 22 - - - 53,54,55 - - Λ - 12
∇ 23 - - - - 53,54,55 - - Λ 12
∇ 24 - - - - - 53,54,55 - - 24
∇ 25 - - - - - - 53,54,55 - 24
∇ 26 - - - - - - - 53,54,55

Δ 22 * - - - 60,61,62 - - - 3
Δ 23 * * - - Φ 60,61,62 - - 18

	Bicliques for Preimages: Attacks on Skein-512 and the SHA-2 Family
	Introduction
	Bicliques
	Biclique Construction Algorithms
	Simple Case: Second Preimage Attack on Skein-512
	Second Preimage Attack on the Reduced Skein-512 Hash

	Preimage Attacks on the SHA-2 Hash Functions
	Attacks on the Compression Functions: SHA-2 and Skein
	Preimage Attacks on the Skein Compression Functions
	Preimage Attacks on the SHA-2 Compression Functions

	Discussion and Conclusions
	References

