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Abstract. In gene expression data a bicluster is a subset of genes and
a subset of conditions which show correlating levels of expression. How-
ever, the problem of finding significant biclusters in gene expression data
grows exponentially with the size of the dataset. This means that exhaus-
tive search for good biclusters is not feasible in real datasets so greedy
search techniques such as Cheng and Church’s node deletion algorithm
have been used. It is to be expected that stochastic search techniques
such as Genetic Algorithms or Simulated Annealing might produce bet-
ter solutions than greedy search. In this paper we show that a Simu-
lated Annealing approach is well suited to this problem and we present
a comparative evaluation of Simulated Annealing and node deletion on
a variety of datasets and show that Simulated Annealing discovers more
significant biclusters in many cases.

1 Introduction

In recent years the advent of DNA microarray technologies has revolutionised
the study of gene expression. It is now possible to monitor the expressions of
thousands of genes in parallel over various experimental conditions (e.g. different
patients, tissue types and growth environments), all within a single experiment
(see Lander [1]). Results from multiple experiments may be combined potentially
producing datasets containing thousands of genes monitored over hundreds of
conditions. These results are usually presented in the form of a table or data
matrix where rows represent genes and columns represent conditions. The value
in each cell in the matrix represents the expression level of a particular gene
under a specific condition. Thorough analysis of these datasets aids in the anno-
tation of gene function and the discovery of related genes and conditions which
ultimately contributes to the elucidation of biological systems at a molecular
level [2]. However mining this valuable information from such large volumes of
data presents a far from trivial task.

Clustering is important in gene expression analysis because it is often useful
to group genes according to their expression levels under multiple conditions.
It may also be useful to cluster conditions based on the expression of different
genes. These correspond to clustering the rows or the columns of the data array.
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It is a characteristic of this gene expression data that it is not necessary to
include all the rows or columns in these clusters. In fact it may be useful to
identify a subset of the conditions where a subset of the genes act in a coherent
manner - this is termed biclustering [3; 4].

The review of biclustering algorithms for biological data analysis presented
by Madeira and Oliveira [4] identifies greedy search algorithms as a promising
approach. Greedy search algorithms start with an initial solution and find a
locally optimal solution by successive transformations on that solution that im-
prove some fitness function. Simulated Annealing (SA) [5] is an improvement on
greedy search in that it has the potential to escape local minima (see section 3).
In this paper we present a biclustering technique based on SA that improves on
results produced by Cheng and Church’s node deletion algorithms that employ
greedy search [3] in most of the cases examined. We perform this evaluation on
three datasets derived from human and yeast expression studies and show that
our SA based solution finds more significant biclusters in each dataset. The mea-
sure of significance we use is the mean-square residue score proposed by Cheng
and Church [3].

Before presenting this evaluation we provide an overview of cluster analysis
and biclustering in section 2 and a brief introduction to Simulated Annealing in
3. The experimental methods are presented in section 4 and the evaluation and
results are given in section 5. The paper concludes with some conclusions and
an outline of avenues for future work in section 6.

2 Cluster Analysis and Biclustering

One of the main methods used to discover patterns within gene expression data
has been cluster analysis (or simply clustering). Well established in other fields
[6], clustering has been integrated with some success into the gene expression
analysis fold [7], [8], [9]. Clustering is an unsupervised learning technique that at-
tempts to model the trends within data in order to uncover previously unknown
relationships and classifications. Therefore it is an ideal technique to apply to
gene expression data which in many cases may represent a plethora of biological
systems and gene relationships not as of yet discovered or fully described. Clus-
ter analysis groups objects on the basis of their similarity as determined by a
chosen metric which may vary according to context. In gene expression analysis,
similarity of expression is best computed using a correlation score (e.g. Pearson’s
Correlation Coefficient) of the row vectors within the data matrix [7]. Grouping
genes in this way aids annotation of uncharacterised genes and the elucidation
gene regulatory networks. The clustering of conditions may also be performed
by grouping on the basis of column vector correlation. In this way conditions,
such as cancer types, which may be difficult to clinically classify, may be related
on a molecular level [10].

In the field of gene expression analysis, datasets are continually growing in
size as the experimental capacity improves and as more microarray experiments
are performed. As the size of datasets increase it becomes increasingly unlikely



that objects will retain similarity across all features - thus making clustering
problematic. The biological context exacerbates this problem as it is not uncom-
mon for the expression of genes to be highly similar under one set of conditions
and yet independent under another set [11]. Therefore in these large expression
datasets better, more comprehensive clusterings may be achieved by examining
similarity over a subset of genes or conditions only.

A variation on the clustering approach that supports the discovery of these
local signals within a dataset is that of biclustering. In general biclustering refers
to the ’simultaneous clustering’ of both rows and columns of a data matrix [12].
Hartigan pioneered this type of analysis in the seventies using two-way analysis
of variance to locate constant valued sub-matrices within datasets. Biclustering
may be thought of as a more specific type of sub-space clustering that enforces
correlation within a subset of features (conditions) as well as a subset of ob-
jects(genes) - clustering both like objects and like features. This approach suits
the gene expression context as related genes are thought to be regulated in a
synchronised fashion and over certain conditions [13] Therefore discovering the
dominant biclusters within a gene expression dataset may aid the discovery of
these co-regulated groups. More recently, inspired by Hartigan’s so called ’direct
clustering’ approaches [14] the concept was introduced to the area of gene ex-
pression analysis by Cheng and Church [3]. Since then several similar approaches
have been taken within gene expression analysis [15], [16], [17].

Cheng and Church defined a bicluster to be a subset of genes and a subset
conditions with a ’high similarity score’, where similarity is a measure of the
coherence of genes and conditions in the subset. A group of genes are said to
be coherent if their level of expression reacts in parallel or correlates across a
set of conditions. Similarly a set of conditions may also have coherent levels of
expression across a set of genes. Cheng and Church developed a score called the
mean squared residue score and which takes into account both row and column
correlations and therefore makes it possible to simultaneously evaluate the co-
herence of rows and columns within a sub-matrix. They thus defined a bicluster
to be a sub-matrix composed of a subset of genes and subset of conditions with a
low mean squared residue score (the lower the score the better the correlation of
the rows and columns). The residue score of an entry aij in a bicluster IJ (where
I is the subset of rows and J the subset of columns making up the bicluster) is
a measure of how well the entry fits into that bicluster. It is defined to be:

R(aij) = aij − aIj − aiJ + aIJ (1)

where aiJ is the mean of the ith row in the bicluster, aIj is the mean of
the jth column and aIJ mean of the whole bicluster. The overall mean squared
residue score is:

H(I, J) =
1

|I||J |
∑

i∈I,j∈J

R(aij)2 (2)

The problem then is how to best locate these biclusters with low scores within
a parent data matrix. The obvious deterministic approach is to sequentially run



through all the possible combinations of rows and columns of the data matrix
and find the sub-matrices which satisfy a predefined low score, δ (the set of δ-
biclusters). However the number of possible sub-matrices increases exponentially
with the size of the parent matrix and this task becomes practically impossible
when the matrix exceeds the fairly modest size of a few hundred elements. Cheng
and Church likened the maximum bicluster search to that of locating a maximum
biclique (largest complete sub-graph) within a parent bipartite graph which has
been proven to be NP-Hard [18]. Biclustering based upon this graph theoretic
paradigm was more fully developed in other studies [16]. Cheng and Church
designed a set of heuristic algorithms to locate these δ-biclusters sequentially
in a top-down manner by deleting the row and column nodes from the parent
matrix which most improve the mean squared residue score.

In a subsequent study [19] a weakness was noted in this approach in that
there was the possibility that the system would become trapped at a local min-
imum so the maximal or best bicluster is unlikely to be found. Thus significant
relationships within the data may be overlooked.

3 Simulated Annealing

Many optimisation techniques, such as the node deletion method outlined above,
are prone to the problem of becoming trapped at local minima. A local minimum
represents a good solution but not the best or global solution. This occurs when
a greedy search finds a good solution which cannot be improved upon given
the locality of the search space. In such a scenario one way to expand the search
space is to accept changes that do not immediately improve the fitness but which
allow the search to explore other areas outside the locality for better solutions.

Simulated Annealing is a well established stochastic approach used to over-
come this feature of greedy optimisation. This process was originally developed
by Metropolis [20] to model the cooling and crystallisation of materials such as
glass and metals. Subsequently Kirkpatrick [5] noted that this model could be
adapted to solve optimisation problems and provide a way for a system to escape
local minima. Classic optimization techniques accept only improvements in the
system as measured by a chosen fitness function. Simulated annealing differs in
that it allows the probabilistic acceptance of changes in the system that lead to
a temporary disimprovement of the fitness score.

In a cooling crystalline solid the probability of accepting change which leads
to a higher energy state P (∆E) is defined by Boltzman’s equation:

P (∆E) ∝ e−
∆E
T (3)

Where ∆E is the difference in energy between the old and new states and T is
the amount of random energy available i.e. the temperature of the system. The
crystalline structure which results represents the lowest possible energy state or
global solution for the system. Simulated Annealing models this natural process
in a bid to discover a solution closer to this global optimum. In the virtual en-
vironment a variable corresponding to temperature is gradually decremented to



ensure a convergence at some point. In the natural process the system cools
logarithmically, this type of annealing schedule is referred to as boltzman’s an-
nealing. It is given by the equation:

T (k) =
T0

log k
(4)

Boltzmann annealing is so time consuming that many alternative simplified cool-
ing schedules have been introduced for practical problem solving; the following
linear cooling model is popular.

T (k) =
T (k − 1)

1 + σ
(5)

Simulated Annealing has been applied to such problems as the well known trav-
elling salesman problem [21] and optimisation of wiring on computer chips [5].
Its application to biclustering within the area of gene expression is a logical step
given the drawbacks of current approaches.

4 Experimental Methods

4.1 Biclustering using Node Deletion

Church and Cheng’s biclustering implementation is composed of three algo-
rithms. The first is a multi-node deletion algorithm, designed to speed up the
processing of large datasets. However this also diminishes the accuracy of the
search result, potentially reducing the size of discovered biclusters, and therefore
is precluded from the evaluation. The second algorithm is a single node deletion
algorithm which is the main greedy search part of the approach. Also included
in the comparisons is a node addition algorithm, designed to search the remain-
ing matrix subsequent to the discovery biclusters for missed rows or columns.
This addition algorithm also adds in anti-correlated or inverted rows which may
represent negatively regulated genes. This addition algorithm contributes signif-
icantly to the size of the biclusters produced by addition of these anti-correlated
rows.

The node deletion algorithm begins with the parent matrix and iteratively
removes the rows and columns which most improve the fitness function score.
This score is based on the concept of an entry’s residue score and mean square
residue scores introduced in equations 1 and 2). Every row and column in the
matrix is assigned a row and column score, which is the mean squared residue
for the entries in the row/column. This row/column score represents how well
each row/column fits in with the rest of the data in the matrix. The row or
column with the highest (worst) mean squared residue score is deleted. The
algorithm doesn’t allow any rows/columns to be dynamically added back in
during this greedy search and it is only after the greedy search has finished that
node addition algorithm is executed. A dynamic addition of rows/columns to
improve the fitness score is one way in which the search could be augmented.



4.2 Biclustering using Simulated Annealing

Several parameters are common to every Simulated Annealing implementation.
The first most obvious is the fitness function or how to quantitatively define
whether the system improves or not after a perturbation. Cheng and Church’s
mean squared residue score was used as the fitness function in this study. The
annealing schedule used was of the type in equation 5 with σ = 0.1. The means
that each subsequent temperature is approximately 0.9 times that of the previ-
ous temperature. Also important in Simulated Annealing is how long the search
spends at each temperature to ensure the search space a has been adequately ex-
plored. This is measured in terms of how often the system is perturbed(attempts)
and how many times this perturbance is accepted (successes). These values are
linked to the size of the search space and are generally a multiple of the num-
ber of objects in the dataset, in this case the number of genes. In this study
the number of Successes was set to be equal to 10 times that of the number of
genes with the number of Attempts 10 times that again. So for a dataset of 1000
genes between 10,000 and 100,000 changes would be made to the system at each
temperature before it is lowered. The system begins with all rows and columns
included and the search space is traversed by both deletion and re-addition of
rows and columns.

Another important parameter is the initial temperature of the system, T0. If
this parameter is set too high the system will take too long to converge and if it
is set too low the potential search space will be much reduced. It has been found
by experiment that in general an optimal starting temperature is one which
allows 80 percent of reversals to be accepted [22]. The minimum size of a result
was set to 10x10 otherwise the search would continue deleting rows and columns
until a trivial bicluster of size one row or one column and score 0 remained. It is
thought that a correlation over a minimum of 10 rows by 10 columns represents
a significant relationship between genes and conditions. Because of the large
inequality in the number of columns and rows in the datasets used the resultant
biclusters tend to contain the minimum 10 columns.

Furthermore, in order to align the Simulated Annealing with the Cheng and
Church node deletion algorithm and allow comparison of solutions, some way
needed to be found to allow the Simulated Annealing to locate biclusters of
a chosen δ value. Firstly the search began in a top-down way similar to node
deletion with all rows and columns being included. Upon reaching a δ-bicluster
solution the size of the solution is constrained to that minimum. Then a bottom
up search ensues from this point in which the size of the bicluster is increased
but the score maintained around δ. Also to align the Simulated Annealing with
the Cheng and Church node deletion approach the node addition is performed
after the search. This mainly adds anti-correlated genes to the bicluster.

4.3 Datasets Used

Cheng and Church chose a yeast cell cycle dataset on which to perform bi-
clustering. This dataset contains 2,884 genes and 17 conditions and is available



at http://arep.med.harvard.edu/biclustering/yeast.matrix. Simulated annealing
was used to perform biclustering on this dataset in order to compare and evalu-
ate this new approach. Many of the genes in this dataset vary little in expression
across the 17 conditions so the largest biclusters are inclined to be quite flat.
Also 17 conditions are not many in which to find significant sub-signals of 10
columns or more. Two additional datasets, both larger in terms of the number of
conditions and more variable in terms gene expression across the conditions, are
also used to compare the two biclustering methods. The first dataset containing
27 conditions and 2,774 genes is derived from a study on scleroderma, a poten-
tially serious skin disorder which affects epithelial cells [23]. This dataset contains
genes expression data from both normal and affected patients and can be found
at http://genome-www.stanford.edu/scleroderma/data.shtml. The last dataset
of 3051 genes and 38 conditions representing different classes of lymphoma was
also used to compare the two biclustering techniques. This dataset was distilled
form a larger dataset [24] using techniques described in [25] to enrich the dataset
with genes with the highest variance across conditions.

5 Evaluation of Biclusters

A further difficulty with biclustering is the lack of established evaluation meth-
ods. Parameters often used for cluster evaluation such as inter and intra cluster
distances have reduced meaning when one considers biclusters which may be
composed of groupings in different dimensions and have potentially overlapping
relationships i.e. biclusters could share a number of features (conditions) or ob-
jects (genes). There are two questions dealt with in the evaluation section. The
first question is whether Simulated Annealing can retrieve solutions closer to
the global optimum. In the bicluster search a solution closer to the global op-
timum would be represented by discovering larger δ-biclusters than the Cheng
and Church algorithm. The second question is related to one which is continually
being debated in biology - whether genes which show similar expression can be
classed into functional modules which bear out under practical scrutiny. In this
paper we use an annotated gene set to investigate whether Simulated Annealing
discovers such verifiable biclusters.

5.1 Comparisons with Node Deletion

Cheng and Church chose biclusters with a correlation threshold as measured
by the mean squared residue score of 300 ( as determined by equation (2)). A
Simulated Annealing algorithm capable of locating solutions closer to the global
maximum should therefore discover larger biclusters of the selected quality. It
should find larger δ-biclusters. Also consequentially in a sequential search where
discovered biclusters are masked biclusters should be discovered in order from
largest to smallest.

The Simulated Annealing algorithm was applied to the same yeast dataset as
used by Cheng and Church [3]. Cheng and Church used a mean squared residue



threshold of 300 at which to terminate the search. In this study thresholds of
300, 200 and 100 were set and the size of the discovered biclusters compared in
each case.

The original Cheng and Church algorithm produces δ-biclusters with varying
column and row number. As described in the methods section 4. Simulated
Annealing produces significant δ-biclusters no less than 10 columns in size. To
align the algorithms and ensure that the column size of the resultant biclusters
does not bias the results an Adjusted Node Deletion Algorithm is also run in
which the column size is set to 10.

The Simulated Annealing algorithm performed better than the Church and
Cheng node deletion algorithm in most cases over several datasets locating larger
δ-biclusters of genes and conditions. The results were best for the yeast data
shown in figure 1. It can also be seen that the Adjusted Node Deletion algorithm
performs better also, demonstrating that larger δ-biclusters can be found over a
reduced set of 10 features/columns. If the first bicluster is masked using random
values, as in [3]. Simulating Annealing performs similarly in finding a second δ-
bicluster 2. Two further datasets Scleroderma and Lymphoma are also analysed,
all results are shown in Table 1. Figure 2 compares the results from the Adjusted
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Fig. 1. δ-bicluster comparisons of Cheng and Church’s Node Deletion algorithm,
Adjusted Node Deletion Algorithm and Simulated Annealing using the yeast
dataset over three different correlation scores, X-axis. The numbers on the Y-
axis represent the size of a bicluster i.e. its columns multiplied by its rows.

Node Deletion algorithm and the Simulated Annealing algorithm in discovery
of the second bicluster. Here we can see that the Simulated Annealing performs
significantly better in the yeast dataset. Table 1 demonstrates how the three
algorithms performed on the three datasets. In all cases Simulated Annealing
out-performs the original Cheng and Church Node Deletion Algorithm. However
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Fig. 2. δ-bicluster comparisons of Cheng and Church’s Node Deletion algo-
rithm, Adjusted Node Deltion Algorithm and Simulated Annealing using the
yeast dataset over three different correlation scores, X-axis. The numbers on the
Y-axis represent the size of a bicluster i.e. its columns multiplied by its rows.

when adjusted to yield biclusters with 10 columns/features the Node Deletion
Algorithm performs better. The Simulated Annealing performs better than this
adjusted Node Deletion algorithm in 4/9 cases and draws in a further 3. Table 1
also shows that Simulated Annealing performed best in discovering the second
biclusters in 6/9 cases over the three datasets.

Node
Deletion

Adjusted
Node
Deletion

Simulated
Annealing

Node
Deletion

Adjusted
Node
Deletion

Simulated
Annealing

Yeast First Bicluster Second Bicluster

δ = 300 15165 15750 16460 9012 3930 8320
200 8463 9540 10360 4972 2630 3860
100 2520 2700 2940 1260 830 1390

Scleroderma

δ = 300 13590 18260 18230 4320 6780 6310
200 7296 12920 13210 7876 3290 4030
100 2730 5170 5140 1570 830 850

Lymphoma

δ = 300 1344 3320 3220 518 1740 1810
200 1032 2510 2460 300 1370 1200
100 851 1780 1790 136 1050 810

Table 1. First and Second Biclusters of three different /delta-scores from each
datasetIn the table the best biclusters in each column are marked in bold. Where
there are two marked this is considered a draw because of the very small per-
centage difference in size(less than 0.005 percent). In the Second Bicluster search
values in italics are not readily comparable because the first bicluster discovered
by Node Deletion is often significantly smaller than that from the other two
techniques - leaving more data to work with.



5.2 Biological Interpretation

A further way to evaluate the quality of biclusters is to search for an increased
biological significance of the discovered biclusters. Ideally biclusters would rep-
resent groups of related genes, some of which may overlap. Therefore in order
to evaluate biclusters it would make sense to apply the algorithm to an already
annotated and classed set of genes. Of the 2884 genes in the original Cheng and
Church yeast dataset 550 have been annotated, that is functions have been as-
signed based on functional analyses or sequence homology with other organisms.
These annotations can be found in an online database called Kyoto Encyclopae-
dia of Genes and Genomes (http://www.genome.jp/kegg/genes.html). Analyses
was carried out on this dataset using the Simulated Annealing Algorithm to
assess whether any of the discovered biclusters represented biological functional
modules. A δ-score of 100 was chosen as a quality threshold.

The table below represents the first two biclusters discovered from the an-
notated gene set. It can be seen that a large proportion of bicluster 1 are of
the same class of functionally similar genes (ribosomal proteins). The statisti-
cal significance of discovering this grouping is given by the ’lift’ score [26]. This
value measures whether a particular grouping is over-represented or not. If this
value is equal to 1 then the significance is no more than would be achieved by
a random selection. A value above 1 suggests that there is some positive bias
in the selection. The use of the mean squared residue as the objective function

No. of Genes Dominant Functional Category Genes in
Functional
Category

Lift Value

Bicluster 1 81 Ribosomal Proteins(96) 61 4.31
Glycolysis/Glucogenisis(26) 5 5.7

Bicluster 2 59 Basal Transcription Factors(10) 6 5.51
Nucleotide Metabolism(81) 16 1.84

Table 2. The first two biclusters found in the annotated gene set using SA. It
can be seen that the first bicluster discovered is rich in genes from the ribosomal
functional category. The second bicluster contains transcription factors and genes
involved nucleotide metabolism. These genes are the main regulators of protein
production and gene expression in the cell.

shows some bias in the type of biclusters it discovers. Because it is a measure
of how well an entry fits into an overall dataset and the approaches above begin
with the whole dataset - the biclusters found are in some ways distilled versions
of the parent dataset. The score promotes simultaneous selection of the most
representative features and objects. One can see that if a large bicluster existed
in a dataset, in which the rows behaved differently from the general trends in
the dataset, that its rows would be the first to be removed in a top-down type
search. This bias may also be seen in the contextual evaluation results from the



annotated gene set. Biclusters of the most influential rows and columns are se-
lected. The first bicluster found is rich in ribosomal proteins. The ribosome is the
main organelle responsible amino acid and protein production in the cell. These
proteins include transcription factors which go on to influence gene expression
in the whole cell. So the first bicluster represents a group of the most influential
rows. The second bicluster found contains some of these transcription factors
plus other proteins involves in transcription such as polymerases and nuclear
binding proteins. Thus the first two biclusters discovered represent groups of the
most influential genes involved in regulating gene expression. This apparent bias
may hinder the discovery of maximal biclusters.

6 Conclusions & Future Work

We have shown that Simulated Annealing perfoms better than Cheng and Church’s
original Node Deletion algorithm. Although the Adjusted Node Deletion algo-
rithm shows improvments on the original Simulated Annealing still performs
better in more cases reviewed. The performance of Simulated Annealing seems
to depend somewhat on the dataset in question with its best performance in
the yeast dataset. Cheng and Church’s mean square residue score was conceived
with their node deletion algorithm in mind. We have shown that its effectiveness
depends to some extent on that algorithm. As a measure of bicluster fitness it
is biased towards small biclusters. So when used with a search algorithm such
as SA that can avoid local minima, it will almost always produce trivial single-
ton biclusters. This is much less likely to happen with node deletion as it gets
trapped in local minima. Furthermore the score seems also to be biased in the
type of biclusters it discovers, finding groups of rows which best match the gen-
eral trends in the dataset. This is an interesting result and may imply that the
score could be applied to feature selection procedures. This bias was also seen
in the contextual evaluation with regulatory groups of genes being discovered
in the first two biclusters. Perhaps this factor could be harnessed for regulatory
gene prediction. Because of this slight bias in the score changes in the parameters
of SA which usually increase accuracy, such as a slower annealing schedule will
simply strengthen this bias. Afterall any optimisation method is only as good
as the fitness function used. As part of our future work in this area, it would
be very useful to develop a bicluster fitness measure that is not biased toward
small biclusters and in the types of biclusters it discovers.
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