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Abstract

Background: Biclustering algorithms belong to a distinct class of clustering algorithms that

perform simultaneous clustering of both rows and columns of the gene expression matrix and can

be a very useful analysis tool when some genes have multiple functions and experimental conditions

are diverse. Cheng and Church have introduced a measure called mean squared residue score to

evaluate the quality of a bicluster and has become one of the most popular measures to search for

biclusters. In this paper, we review basic concepts of the metaheuristics Greedy Randomized Adaptive

Search Procedure (GRASP)-construction and local search phases and propose a new method which

is a variant of GRASP called Reactive Greedy Randomized Adaptive Search Procedure (Reactive GRASP)

to detect significant biclusters from large microarray datasets. The method has two major steps.

First, high quality bicluster seeds are generated by means of k-means clustering. In the second step,

these seeds are grown using the Reactive GRASP, in which the basic parameter that defines the

restrictiveness of the candidate list is self-adjusted, depending on the quality of the solutions found

previously.

Results: We performed statistical and biological validations of the biclusters obtained and

evaluated the method against the results of basic GRASP and as well as with the classic work of

Cheng and Church. The experimental results indicate that the Reactive GRASP approach

outperforms the basic GRASP algorithm and Cheng and Church approach.

Conclusion: The Reactive GRASP approach for the detection of significant biclusters is robust and

does not require calibration efforts.

Background
Gene expression microarray is a highly popular technol-
ogy that allows genome-wide measurement of RNA
expression levels in a highly quantitative manner. Gene

expression data is typically arranged as an m × n data
matrix, with rows corresponding to genes and columns
corresponding to experimental conditions. Conditions
can be different environmental conditions or different
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time points corresponding to one or more environmental
conditions. The (m, n)th entry of the gene expression
matrix represents the expression level of the gene corre-
sponding to row m under the specific condition corre-
sponding to column n. The numerical value of the entry is
usually the logarithm of the relative amount of the mRNA
of the gene under the specific condition. By analyzing the
gene expression data, we can potentially determine which
genes behave in similar ways, how genes interact, which
genes contribute to the same pathway, and so on. The sim-
ilarity between the genes can be analyzed by clustering the
gene expression data. Cluster analysis plays an important
role in the microarray data analysis through the grouping
of genes into subsets with similar expression patterns or
similar function. However, clustering has its limitations.
Mainly, clustering works on the assumption that related
genes behave similarly across all measured conditions.
But a general understanding of cellular processes expects
subsets of genes to be co-regulated and co-expressed only
under certain experimental conditions, but behaves
almost independently under other conditions [1]. In
order to overcome the above shortcoming of clustering,
the concept of biclustering is applied to gene expression
data.

Biclustering was first described in the literature by Harti-
gan [2]. It refers to a distinct class of clustering algorithms
that perform simultaneous row column clustering. Cheng
and Church [3] were the first to apply it to gene expression
data. Biclustering identifies subsets of genes and subsets of
conditions that shares similar expression patterns, by per-
forming simultaneous clustering of both rows and col-
umns of the gene expression matrix. As a result,
homogeneous sub matrices of the gene expression matrix
are obtained and they are known as biclusters. In [3],
Cheng and Church proposed a similarity score called
mean squared residue score as a measure of coherence of the
rows and columns in the bicluster. When all the elements
in a bicluster are similar, the mean squared residue score
is low. The lower the score, stronger the coherence exhib-
ited by the bicluster, and better is the quality of the biclus-
ter. However, from a biological point of view, the interest
resides in biclusters with subset of genes showing similar
behaviour and not with similar values. Hence the method
aims at finding large and maximal biclusters with mean
squared residue score below a certain threshold, δ, and the
biclusters thus obtained are called δ-biclusters. The value
of δ has to be estimated in advance, and it is different for
every dataset [4].

In [3], Cheng and Church identified the problem of find-
ing significant biclusters as being NP-Hard and employed
a greedy node deletion algorithm in their search. Greedy
search algorithms start with an initial solution and find a
locally optimal solution by successive transformations

that improve some cost function. The survey of bicluster-
ing algorithms for biological data analysis by Madeira and
Oliveira [1] also identifies greedy search algorithms as a
promising area. But greedy algorithms always make a
choice that maximizes the local gain in the hope that this
choice will lead to a globally good solution. It may make
wrong decisions, gets stuck into local optima and thereby
loose good biclusters. Metaheuristics technique such as
Greedy Randomized Adaptive Search Procedure (GRASP)
improves on pure greedy search due to their potential to
escape from local minima.

In this work, we address the biclustering problem with a
variant of the GRASP metaheuristics, Reactive GRASP,
which is a combination of a semi-greedy heuristics and a
local search procedure [5-7]. The approach starts from
small high quality bicluster seeds, which are tightly co-
regulated submatrices of the gene expression matrix.
These seeds are further enlarged by adding more rows and
columns to them. The seed generation phase is imple-
mented using one-dimensional k-means clustering and
the seeds are enlarged using the Reactive GRASP method.
The algorithm makes use of mean squared residue score as
the cost function to evaluate the quality of the obtained
biclusters. To avoid getting stuck at local optima, Reactive
GRASP is equipped with the heuristics for randomizing
the search and thereby allows the search process to go
beyond local optima. We evaluated our work against the
classic work of Cheng and Church and also with our own
work based on basic GRASP [8]. The results show that the
Reactive GRASP method can generate larger and better
biclusters than the others.

Methods
Model of a bicluster

A bicluster is defined on a gene expression matrix. A gene
expression matrix is an m × n matrix, whose rows repre-
sents the genes, columns the experimental conditions and
(i, j)th element is a real number that represents the expres-
sion level of gene i under experimental condition j. Each
row corresponds to the expression levels of a particular
gene over all experimental conditions and each column
corresponds to the expression levels of m genes under a
specific experimental condition.

Let G = {g1, g2 ..., gm} and C = {c1, c2,....., cn} represent a
set of genes and a set of experimental conditions involved
in a gene expression matrix, respectively. A bicluster is
defined to be a subset of genes that exhibit similar behav-
iour under a subset of experimental conditions, and vice
versa. Thus, in the gene expression matrix, a bicluster will
appear as a sub matrix of it and represented as a pair A =
(I, J) or simply as AIJ, where I ⊆ G and J ⊆ C. The rows and
columns of the bicluster need not be contiguous as in the
expression matrix.
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A group of genes are said to be coherent if their level of
expression reacts in parallel or correlates across a set of
conditions. Similarly, a set of conditions may also have
coherent levels of expression across a set of genes. The
degree of coherence of a bicluster is measured using the
concept of mean squared residue score, HScore, which repre-
sents the variance of a particular subset of genes under a
particular subset of conditions with respect to the coher-
ence. In [3], Cheng and Church defined the mean squared
residue score as follows: It is defined for bicluster AIJ as the
sum of the squared residues. R(aij), the residue of an ele-
ment aij in the bicluster AIJ, i ∈ I and j ∈ J, is a measure of
how well the element fits into that bicluster. It is defined
to be:

R(aij) = aij - aIj - aiJ + aIj (1)

Now, HScore is defined as in (2):

A bicluster is defined to be a δ-bicluster if HScore (I, J) ≤ δ,
for some δ ≥ 0, where δ is the maximum acceptable mean
squared residue score. The value of δ has to be estimated in
advance, and it is different for every dataset [4]. The
HScore gives an indication of how the data is correlated in
the sub matrix – whether it has some coherence or is ran-
dom. A matrix of equally spread random values over a
range [a, b] has an expected HScore of (b-a)2/12 and it is
independent of the size of the matrix. A high HScore indi-
cates that the data is uncorrelated and a low HScore means
that there is correlation in the matrix.

Formulation of the biclustering problem

The biclustering problem is NP-hard as proven by Cheng
and Church (2000) [3]. Thus no polynomial time algo-
rithm exists and they might require exponential computa-
tion time in the worst-case. In this work, a heuristics based
search method is adopted for finding the δ-biclusters in
reasonable time. The problem is formulated as an optimi-
zation problem, which aims at minimizing the HScore.
The algorithm has two major phases. In the first phase, an

initial set of tightly co-regulated seed biclusters are gener-
ated. The second is the heuristics based seed growing
phase, in which the seeds are further refined and enlarged
by adding more genes and conditions until their HScore
reaches a certain predetermined threshold.

Generally pure greedy algorithms make good local
choices in the hope that they result in an optimal solu-
tion. But in case of situations like local minima, ridges
and plateaus, they may make wrong decisions and thereby
loose optimal biclusters [9,10]. It is thus unlikely that a
global maximum or maximal δ-bicluster will be found.
Metaheuristic algorithms incorporate mechanisms to pre-
vent getting trapped in such confined areas of the search
space. So here we use the Reactive Greedy Randomized
Adaptive Search procedure (Reactive GRASP), which is a
variant of the GRASP metaheuristics is used for the extrac-
tion of δ-biclusters.

A good seed of a possible bicluster is actually a small
bicluster whose HScore has reached the requirement but
the volume may not be maximal. The simplest ways to
generate quality bicluster seeds is to perform standard
one-dimensional clustering on both rows and columns of
the expression matrix separately and then combine them
to generate different seeds [9,11]. We have used k-means
algorithm with cosine angle distance as the distance meas-
ure.

During seed generation, the gene expression matrix is par-
titioned into p gene clusters and q condition clusters. As
the number of genes per each gene cluster is too high, each
gene cluster is further divided into subclusters. As a result
we get x geneclusters and q condition clusters. By combin-
ing these gene and condition clusters, we get x*q disjoint
submatrices. Finally, the HScore values of the entire x*q
submatrices are calculated and those having HScore value
less than a threshold are selected as the seeds.

Greedy randomized adaptive search procedure: a review

GRASP is implemented as a multistart procedure, where
each iteration is made up of a construction phase, where
a randomized greedy solution is constructed, and a local
search phase. The local search phase starts at the con-
structed solution and applies iterative improvement until
a locally optimal solution is found. The GRASP algorithm
is summarized in Table 1.

During the construction phase, the set of candidate ele-
ments are formed by all elements that can be incorporated
to the partial solution under construction without
destroying feasibility. The quality of a candidate element
is determined by its contribution, at that point, to the cost
of the solution being constructed. A greedy evaluation
function measures this contribution for each candidate
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element. Accordingly a restricted candidate list (RCL) is
constructed of high quality candidate elements. The
number of elements in RCL can be limited either by rank
or by quality relative to other candidates. In rank based
RCL, r candidates with smallest greedy function value are
selected from the candidate list and r determines how
greedy or random the construction will be. The quality
based RCL uses a greedy function cutoff value and only
considers candidates with a greedy function value no
greater than the cutoff. To implement this, a real-valued
RCL parameter α ∈ [0..1] is used and it determines which
elements are to be placed in the RCL at each iteration of
the construction phase. Since in the case of a minimiza-
tion problem, the case α = 0 corresponds to a pure greedy
algorithm, while α = 1 is equivalent to a pure random con-
struction. Thus, the parameter 'α' controls the amount of
greediness and randomness in the algorithm. In basic
GRASP implementation, the same α is used along all iter-
ations and it is usually determined through experimenta-
tion. In our earlier work based on GRASP, we used a
quality-based implementation of RCL for the extraction of
biclusters [8]. The element to be incorporated into the
partial solution is randomly selected from those in the
RCL. Once the selected element is incorporated to the par-
tial solution, the candidate list is updated and the incre-
mental costs are re-evaluated. The description of the
construction phase is given in Table 2.

The solution generated by a greedy randomized construc-
tion is not necessarily optimal. The local search phase usu-
ally improves the constructed solution. A local search

algorithm works in an iterative fashion by successively
replacing the current solution by a better solution in the
neighbourhood of the current solution. It terminates
when no better solution is found in the neighbourhood.
In [6], Resende and Ribeiro reported that in most cases
both first-improving and best-improving local search
strategies lead to the same final solution, but in case of
smaller computation times, the former outperforms the
latter. Hence in our algorithm, a first improving strategy is
used for the implementation of the local search. The
description of the algorithm is given in Table 3. In the
algorithm N (solution) represents the neighbourhood of
the solution and f represents the cost function corre-
sponding to the problem.

An especially appealing characteristic of GRASP is the ease
with which it can be implemented. Few parameters need
to be set and tuned. Basic implementation of GRASP relies
exclusively on two parameters. The first controls the
number of construction/local search iterations that will be
applied and the second, the RCL parameter α, controls the
blend of randomness and greediness in the solution con-
struction procedure. But in [12], Prais and Ribeiro showed
that using a single fixed value for α often hinders finding
a high quality solution, which eventually could be found
if another value was used. They proposed an extension of
the basic GRASP called Reactive GRASP, in which the
parameter α is not fixed, but instead is selected at each
iteration from a discrete set of possible values. The solu-
tion values used along the previous iterations serve as a
guide for the selection process. Reactive GRASP includes a
memory mechanism that enables good solutions found in
earlier iterations of the search to influence the search later.

Biclustering using GRASP

Biclustering using GRASP is implemented as a two-step
procedure. In the first, the GRASP iterations are performed
over the seed bicluster to enlarge it column wise and dur-
ing the second step, another set of GRASP iterations add
more rows while keeping the HScore below a certain pre-
determined threshold. During the construction phase of

Table 1: Algorithm of greedy randomized search procedure

Algorithm GRASP (Seed)

Current = Seed;

While <termination condition not met> do

Solution ← Greedy_Randomized_ Construction (Current);

Solution ← Local_Search (Solution);

Current ← Solution;

End

Table 2: Algorithm of greedy randomized construction phase

Algorithm Greedy_Randomized_Construction(Seed)

Solution ← Seed

Calculate the incremental costs of the elements not included in the current solution

Build the candidate list

While <termination condition not met> do

Build the restricted candidate list (RCL)

Select an element s at random from RCL

Solution ← Solution ∪ s

Recalculate the incremental costs and candidate list

End

Return Solution

End
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each GRASP iteration, a restricted candidate list (RCL) is
made from the candidate list according to the greedy eval-
uation function as shown in (3).

RCL ← {s ∈ C or G|HScore (Solution ∪ s) ≤ Smin + α 
(Smax-Smin)} (3)

where

Smin ← min {HScore (Solution ∪ t)|∀ t ∈ C or G}

Smax ← max {HScore (Solution ∪ t)|∀ t ∈ C or G}

C is the candidate list of conditions

G is the candidate list of genes

α is the RCL threshold parameter, α ∈ [0..1]

The element to be incorporated into the partial solution is
randomly selected from those in the RCL. Once the
selected element is incorporated to the partial solution,
the candidate list is updated and the incremental costs are
reevaluated. The quality of elements in the RCL depends
greatly on the threshold parameter α. α = 1 corresponds to
pure random construction, as α → 0; the algorithm
behaves more or less like greedy algorithms. Hence for
better results, proper tuning on the value of α is required
and usually it is determined through experimentation.
Since the solution constructed during the construction
phase is not necessarily optimal, the local search is per-
formed over the constructed solution for further improve-
ments.

Biclustering using Reactive GRASP

In Reactive GRASP, instead of using a fixed value for the
parameter α, it uses different values in different iterations.
During each iteration the value of α is selected from a dis-
crete set of possible values, say R = {α1,.....,αm}. The solu-
tion values found along the previous iterations serve as a
guide for the selection process. Let pi be the selection
probability associated with the choice of αi, for i = 1,.....,
m. Initially all pi's are made equal to 1/m. The selection
probabilities are periodically reevaluated using informa-
tion collected during the search. After each iteration, with
a particular αi, the difference in the current solution value
and the value of the solution obtained in the previous iter-

ation is calculated. Let Ai be the average value of such dif-
ferences obtained taking α = αi in the construction phase.
The probability distribution is updated after each GRASP
iteration by taking

with qi = 1/Ai for i = 1,..., m. The value of qi will be larger
for values of α = αi leading to the best solutions on the
average. Larger values of qi correspond to more suitable
values for the parameter α. The probabilities associated
with these more appropriate values will then increase
when they are reevaluated.

Significance evaluation

The statistical significance of the biclusters obtained is
evaluated by calculating the p-values, which signify how
well they match with the known gene annotation. A
smaller p-value, close to zero, is indicative of a better
match [13]. Tanay et al. [14] proposed a technique called
correspondence plot to evaluate the biclusters using prior
biological knowledge. It takes advantage of a known clas-
sification of genes or experimental conditions. The plot
depicts the distribution of p-values of the biclusters pro-
duced based on a known classification of conditions or a
given gene annotation. For each value of p on a logarith-
mic scale, the plot presents the fraction of biclusters
whose p-value is at most p out of the, say b, best biclusters.
The p-values of the biclusters are calculated according to
the known classification of genes as follows: It is the prob-
ability of finding at least k genes in a bicluster of n genes,
belonging to a specific functional category comprising f
genes out of total g annotated genes is given by

In the correspondence plot, early departure of the curve
from the x-axis of the plot indicates the existence of biclus-
ters with low p-values. Consequently, area under the curve
shows the approximate degree of statistical significance of
the biclusters used to draw the curve [15]. For statistical
validation, we used the 30 known categories of Yeast
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Table 3: Algorithm of local search phase

Algorithm Local_Search (Solution)

While there exists s ∈ N (Solution) such that f (Solution ∪ s) <f (Solution) do

Solution ← Solution ∪ s

End

Return Solution
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genes reported by Tavazoie et al. [16]. They used an itera-
tive optimization-based partitional clustering to group
3000 genes into 30 expression classes which were highly
enriched for genes of similar function on time-series of
mRNA abundance, measured over two synchronized Sac-
charomyces cerevisiae cell cycles. Also to evaluate the bio-
logical significance of the obtained biclusters, in terms of
the associated biological processes, molecular functions
and cellular components respectively, we have used the
SGD GO gene ontology term finder [17].

Time complexity of the algorithm

To find one bicluster from a seed, the algorithm has to
compute the HScores of all the submatrices that may result
from any row (gene) or column (condition) addition,
before each choice can be made. Since m and n are the
total number of genes and conditions in the gene expres-
sion matrix, the HScore can be calculated in O (mn) time.

Hence in the worst case, the algorithm requires O (mn
(m+n)) time.

Results
Dataset used

The proposed biclustering algorithm is implemented in
Matlab and tested on the Yeast Saccharomyces Cerevisiae cell
cycle expression dataset. The dataset is based on Tavazoie
et al. [16] and is taken from [18]. It is a collection of 2884
genes and 17 experimental conditions (time points), hav-
ing 34 null entries with -1 indicating the missing values.
All entries are integers lying in the range 0 to 595. The
value of δ is used as an upper limit of allowable dissimi-
larity among genes and conditions. A higher δ is indicative
of diminishing homogeneity. Hence in our approach we
used a value of 200 for δ.

Biclusters extracted from the Yeast gene expression data using GRASPFigure 1
Biclusters extracted from the Yeast gene expression data using GRASP. The biclusters are labelled as A, B, C and D. 
The number of genes, number of conditions, HScore, p-value of the biclusters are (A) (20, 12, 198.70, 2.8479e-020) (B) (12, 11, 
197.7, 3.6879e-015) (C) (11, 13, 197.79, 6.0545e-014) (D) (12, 13, 199.9, 2.9778e-009).
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Biclustering using GRASP and Reactive GRASP

The Reactive GRASP and basic GRASP algorithms begin
the search from tightly co-regulated bicluster seeds. These
seeds are enlarged by adding more genes and conditions
until the HScore of the bicluster reaches the given thresh-
old (δ) value. The seed growing is implemented in two
phases-construction and local search. During the con-
struction phase it picks a random move from among a
restricted candidate list (RCL) of possible best moves. In
case of a row or a column addition, RCL contains only top
quality rows or columns whose inclusion to the current
partial solution doesn't affect feasibility of the solution.
The quality of elements in the RCL depends greatly on the
threshold parameter α and in GRASP, the same value for
α is used along all iterations. But it often hinders finding
a high quality solution, which could be found if another
value was used. Hence in reactive GRASP a self-adjustable
α is used. During each iteration, the value of α is selected

from a discrete set of possible values depending on the
selection probabilities. The elements of the discrete set
can be in the range [0..1]. In order to ensure the quality of
solutions, we have completely eliminated the extreme val-
ues. Hence in our implementation of Reactive GRASP, we
have used 10 numbers in the range [0.25 .. 0.60]. After the
construction phase, local search is performed on these
solutions to further improvise them.

In Figure 1, four of the biclusters found by the GRASP
algorithm on the Yeast dataset are shown. From a visual
inspection of the biclusters presented, one can notice that
the genes present a similar behaviour under a set of con-
ditions only. Figure 2 shows the set of biclusters derived
from the same seeds using the Reactive GRASP. The p-val-
ues of the biclusters show significant change from that of
the GRASP method.

Biclusters extracted from the Yeast geneexpression data using Reactive GRASPFigure 2
Biclusters extracted from the Yeast gene expression data using Reactive GRASP. The biclusters are labelled as 
A_R, B_R, C_R and D_R. The number of genes, number of conditions, HScore, p-value of the biclusters are (A_R) (22, 12, 
198.81, 6.9185e-025) (B_R) (14, 11, 196.08, 1.3464e-017) (C_R) (14, 13, 197.63, 1.3464e-017) (D_R) (17, 13, 199.02, 7.7195e-
019).
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Statistical and biological significance evaluation

The statistical significance of the biclusters obtained is
evaluated by calculating the p-values, which signify how
well they match with the known gene annotation. For a
statistical comparison of the biclusters produced by our
method with that of Cheng and Church, we used the cor-
respondence plot proposed by Tanay et al. [14]. Figure 3
presents the correspondence plot. In the plot, early depar-
ture of the curve from the x-axis of the plot indicates the
existence of biclusters with low p-values. Consequently,
area under the curve shows the approximate degree of sta-
tistical significance of the biclusters used to draw the curve
[15]. It shows that the biclusters generated by the Reactive
GRASP algorithm tend to be more statistically significant

than the basic GRASP and Cheng and Church approach.
While plotting the correspondence plot, we choose those
biclusters in which more than 60% of their annotated
members had the same class. Out of those, we only used
biclusters that were functionally enriched.

We apply the yeast genome gene ontology termfinder [17]
on each discovered biclusters to evaluate their biological
significance in terms of associated biological processes,
molecular functions and cellular components respec-
tively. For a sample set of biclusters in Figure 4, Table 4
describes the top GO terms of the three categories with the
lowest p-values. The GO terms are displayed in the
decreasing order of significance. For the bicluster labelled
B1, the genes RFA1, POL12, POL30, CDC9, MSH6,
RAD27, CDC45, RFA2, and CDC21 are together involved
in the process of DNA-dependent DNA replication, DNA
replication and DNA metabolic process. Each GO term is
associated with a tuple, for example DNA-dependent
DNA replication (9, 1.40e-11) indicates 9 out of the total
16 genes of B1 belong to this process and their statistical
significance is 1.40e-11 i.e. p-value. Also from the table it
is clear that the biclusters extracted are distinct along each
category. Existence of biclusters comprising a significant
proportion of those genes that are considered similar bio-
logically is proof that a specific biclustering technique
produces biologically relevant results. This shows that our
algorithm is capable of identifying a broader range of bio-
logically significant biclusters.

Discussion
In GRASP, an appropriate value of the RCL parameter α is
clearly critical and relevant to achieve a good balance
between computation time and solution quality. But it

Table 4: Top GO terms (process, function, component) of the biclusters in Figure 4.

Bicluster Process Function Component

B1 DNA-dependent DNA replication (9, 1.40e-
11), DNA replication (9, 3.48e-10), DNA 
metabolic process(11, 5.45e-09), DNA repair 
(8, 4.20e-07)

double-stranded DNA binding (4, 
4.09e-06), structure-specific DNA 
binding (4, 8.45e-05), sequence-specific 
DNA binding(4, 4.5e-04)

replication fork (7,4.10e-11), chromosomal 
part(8, 2.77e-07) Chromosome(8, 7.84e-07)

B2 Translation (32,2.87e-15), Cellular protein 
metabolic process (36, 3.59e-9), Protein 
metabolic process(36, 4.81e-9), Cellular 
macromolecule biosynthetic 
process(36,2.51e-08)

Structural constituent of ribosome 
(28, 3.59e-25) Structural molecule 
activity (28, 4.71e-20) Translation 
elongation factor activity (3, .00213)

Cytosolic ribosome (29, 8.7e-30), Cytosolic part 
(29, 1.2e-26) Ribosome(29, 1.09e-25), 
Ribosomal subunit(32, 1.13e-24), 
Ribonucleoprotein complex(34, 7.48e-18) 
Cytosol (33, 2.05e-17)

B3 Cell cycle process (6, 0.00055), Cell cycle(6, 
0.00109), Mitotic cell cycle(5, 0.00145), Cell 
cycle phase(5, 0.00505)

Kinase regular activity (2, 0.00410) Cellular bud (6, 1.73e-06), Site of polarized 
growth(6, 1.87e-06) Cellular bud neck(5, 2.22e-
05) Incipient cellular bud site(3,0.00129)

B4 Ribonucleoprotein complex biogenesis and 
assembly (10, 2.08e-07) Ribosome 
biogenesis(9, 1.07e-06)

Methyl transferase activity (3,8.56e-03) 
Transferase activity, transferring one-
carbon groups(3,9.17e-03)

Organelle lumen(9,1.2e-04) Intracellular 
organelle lumen(9, 1.2e-04) Nuclear lumen(8, 
2.2e-04) Nucleolus(6, 5.9e-04)

Correspondence plot for the Yeast datasetFigure 3
Correspondence plot for the Yeast dataset.
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requires a lot of experimentation overhead to fix the
value. Hence we proposed Reactive GRASP, which is a var-
iant of GRASP, to tackle the biclustering problem. Reac-
tive GRASP, being self-adjustable, changes the value of the
RCL parameter periodically according with the quality of
the solutions obtained recently. The approach looks more
robust and doesn't require calibration efforts. The experi-
mental results also indicate that the Reactive GRASP
approach outperforms the basic GRASP and Cheng and
Church algorithm.

Conclusion
This paper dealt with the extraction of biclusters in micro-
array gene expression data. We addressed the problem
with a heuristics based seed-growing algorithm – the
Reactive GRASP metaheuristics – which is a variant of the
GRASP approach. The seed biclusters, which are tightly
co-regulated submatrices, are obtained by performing k-
means clustering algorithm to the rows and columns sep-

arately and then by combining them. During seed grow-
ing, these seed biclusters are further refined by adding
more rows and columns to extend their size while keeping
the mean squared residue score below a certain prede-
fined threshold. Since Reactive GRASP being semi-greedy,
it tries to combine the advantages of both random and
greedy solution constructions and thereby gives the possi-
bility to escape from locally optimal solutions. Also it
makes use of a memory mechanism that enables good
solutions found in earlier iterations of the search to influ-
ence the search later. To our knowledge, biclustering using
GRASP techniques has not till been reported before in the
literature. We have conducted and tested our algorithm
on the Yeast dataset. The experimental results show that
the algorithm is successful in finding statistically and bio-
logically verifiable biclusters. Also the correspondence
plot reveals that the algorithm finds biclusters that better
aligned more closely with prior biological knowledge

Sample biclusters obtained from Reactive GRASPFigure 4
Sample biclusters obtained from Reactive GRASP. The biclusters are labelled as B1, B2, B3 and B4. The number of 
genes, number of conditions, HScore are (B1) (16, 16, 199.79) (B2) (61, 14, 143.03) (B3) (12, 14, 198.50 (B4) (14, 12, 125.83).
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than that of basic GRASP and Cheng and Church
approach.
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