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Abstract

The problem of optimizing a biconvex function over a given (bi)convex or compact
set frequently occurs in theory as well as in industrial applications, for example, in
the field of multifacility location or medical image registration. Thereby, a function
f : X×Y → R is called biconvex, if f(x, y) is convex in y for fixed x ∈ X, and f(x, y)
is convex in x for fixed y ∈ Y . This paper presents a survey of existing results con-
cerning the theory of biconvex sets and biconvex functions and gives some extensions.
In particular, we focus on biconvex minimization problems and survey methods and
algorithms for the constrained as well as for the unconstrained case. Furthermore, we
state new theoretical results for the maximum of a biconvex function over biconvex
sets.

Key Words: biconvex functions, biconvex sets, biconvex optimization, biconcave
optimization, non-convex optimization, generalized convexity

1 Introduction

In practice, biconvex optimization problems frequently occur in industrial applications,
for example, in the field of multifacility location or medical image registration. We review
theoretical results for biconvex sets and biconvex functions and survey existing methods
and results for general biconvex optimization problems.
We recall that a set S ⊆ Rk is said to be convex if for any two points s1, s2 ∈ S the line
segment joining s1 and s2 is completely contained in S. A function f : S → R on a convex
set S is called convex, if

f(λs1 + (1− λ)s2) ≤ λf(s1) + (1− λ)f(s2)

is valid for all λ ∈ [0, 1] and s1, s2 ∈ S.

∗The authors were partially supported by a grant of the German Research Foundation (DFG)

1



1 INTRODUCTION 2

For the definition of biconvex sets and biconvex functions, let X ⊆ Rn and Y ⊆ Rm be
two non-empty, convex sets, and let B ⊆ X × Y . We define x- and y-sections of B as
follows:

Bx := {y ∈ Y : (x, y) ∈ B},
By := {x ∈ X : (x, y) ∈ B}.

Definition 1.1 The set B ⊆ X × Y is called a biconvex set on X × Y or biconvex
for short, if Bx is convex for every x ∈ X and By is convex for every y ∈ Y .

The most important results on biconvex sets are summarized in Section 2.

Definition 1.2 A function f : B → R on a biconvex set B ⊆ X×Y is called a biconvex
function on B or biconvex for short, if

fx(•) := f(x, •) : Bx → R

is a convex function on Bx for every fixed x ∈ X and

fy(•) := f(•, y) : By → R

is a convex function on By for every fixed y ∈ Y .

From this definition, the definitions of biconcave, bilinear and biaffine functions are
obtained by replacing the property of being convex for fx and fy by the property of being
concave, linear, or affine, respectively. Since for a biconvex function f : B → R, the
function g := −f is biconcave on B, i.e., g(x, y) is concave on Bx in y for fixed x ∈ X and
g(x, y) is concave on By in x for fixed y ∈ Y , most of the results and methods mentioned
in this paper can directly be transferred to the biconcave case, too.
In the first part of Section 3, we survey general properties of biconvex functions, like
arithmetical properties or results on the continuity of such functions, which mostly result
from the convex substructures of a biconvex function. In the second part, we discuss results
on biconvex maximization problems and show that a biconvex function which attains its
maximum in the relative interior of a given biconvex set B must be constant throughout
B, assuming rather weak topological properties on B. Furthermore, we survey separation
theorems for biconvex functions which are mostly applied in probability theory.

Definition 1.3 An optimization problem of the form

min {f(x, y) : (x, y) ∈ B} (1)

is said to be a biconvex optimization problem or biconvex for short, if the feasible
set B is biconvex on X × Y , and the objective function f is biconvex on B.

Different from convex optimization problems, biconvex problems are in general global
optimization problems which may have a large number of local minima. However, the
question arises whether the convex substructures of a biconvex optimization problem can
be utilized more efficiently for the solution of such problems than in the case of general
non-convex optimization problems. For this purpose, we discuss existing methods and al-
gorithms, specially designed for biconvex minimization problems which primarily exploit
the convex substructures of the problem and give examples for practical applications in
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Section 4. We only briefly mention bilinear problems as there exist plenty of literature
and methods, see, e.g., Horst and Tuy (1990) for a survey. We rather concentrate on
minimization methods and algorithms which can be applied to general constrained as well
as unconstrained biconvex minimization problems. In particular, we review the Alternate
Convex Search method, stated, e.g., in Wendell and Hurter Jr. (1976), the Global Opti-
mization Algorithm, developed by Floudas and Visweswaran (1990), and an algorithm for
a special class of jointly constrained biconvex programming problems, given in Al-Khayyal
and Falk (1983). Note that the above mentioned methods and algorithms can be and are
applied to bilinear problems in practice, too (cf. Visweswaran and Floudas, 1993).

2 Biconvex Sets

The goal of this section is to recall the main definitions and results obtained for biconvex
sets. Only a few papers exist in the literature where biconvex sets are investigated. The
results presented here can be found in the papers of Aumann and Hart (1986) and Goh
et al. (1994). In addition we give a short comparison between convex and biconvex sets.

2.1 Elementary Properties

In this first subsection we recall elementary properties of biconvex sets. We start with a
characterization.

Theorem 2.1 (Aumann and Hart (1986)) A set B ⊆ X × Y is biconvex if and only
if for all quadruples (x1, y1), (x1, y2), (x2, y1), (x2, y2) ∈ B it holds that for every (λ, µ) ∈
[0, 1]× [0, 1]

(xλ, yµ) := ((1− λ)x1 + λx2, (1− µ)y1 + µy2) ∈ B.

Obviously, a biconvex set is not convex in general. As an example we consider the letters
“L” or “T” as a subset of R × R, which are biconvex but not convex. Even worse, a
biconvex set does not have to be connected in general, as the example

B2 = {(x, y) ∈ R2 : x, y > 0} ∪ {(x, y) ∈ R2 : (−x), (−y) > 0} (2)

shows (see Figure 1). If in contrast B is convex, we derive the following result, which can
easily be proven:

Theorem 2.2 Let k > 1, let B ⊂ Rk be a convex set, and let (V1, V2) be an arbitrary
partition of the variable set V := {x1, . . . , xk} into two non-empty subsets. Then B is
biconvex on span(V1)× span(V2), where span(Vi) denotes the linear space generated by Vi

(i = 1, 2).

The converse of the last theorem is obviously false. For a counter-example in R2 consider
again the letters “L” or “T”. For a more general counter-example in Rn, we generalize the
set B given in (2).

Example 2.1 Let k ≥ 2, and let the set B ⊂ Rk be given by

B = {z ∈ Rk : zi > 0, i = 1, . . . , k} ∪ {z ∈ Rk : zi < 0, i = 1, . . . , k}.
Since B is not connected, it cannot be convex. Now let (V1, V2) be an arbitrary, but fixed
partition of the variable set V := {x1, . . . , xk} into two non-empty subsets. The given
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Figure 1: Examples of biconvex sets which are non-convex (B1) and non-convex and non-
connected (B2), respectively.

set B is symmetric in all variables, thus we can rearrange the variables such that we can
suppose without loss of generality that the partition of V is given by V1 = {x1, . . . , xν} and
V2 = {xν+1, . . . , xk} with 1 ≤ ν ≤ k − 1, i.e., X := span(V1) = Rν and Y := span(V2) =
Rk−ν . Now choose x̂ ∈ X arbitrary, but fixed. Then

Bx̂ =





{y ∈ Y : yj > 0, j = 1 . . . , k − ν} : x̂i > 0, i = 1, . . . , ν.

∅ : ∃ i, j ∈ {1 . . . , ν}, i 6= j : xi · xj ≤ 0

{y ∈ Y : yj < 0, j = 1 . . . , k − ν} : x̂i < 0, i = 1, . . . , ν.

Obviously, in all the three cases, Bx̂ is convex. Similarly, it can be shown that Bŷ is
convex for every fixed ŷ ∈ Y . Hence, B is biconvex for the chosen partitioning of V .

2.2 Biconvex Combinations and the Biconvex Hull

In convex analysis, the concept of convex combinations of k given points in Rn and their
convex hull is well known and straight forward (see, e.g., Rockafellar, 1997, Section 2).
In Aumann and Hart (1986) the concept of biconvex combinations as a special case of a
convex combination of k given points is introduced and investigated. We recall the main
ideas and results here.

Definition 2.1 Let (xi, yi) ∈ X × Y for i = 1, . . . , k. A convex combination

(x, y) =
k∑

i=1

λi(xi, yi),

(with
k∑

i=1
λi = 1, λi ≥ 0 for i = 1, . . . , k) is called biconvex combination or biconvex

for short, if x1 = · · · = xm = x or y1 = · · · = yk = y holds.

With the help of biconvex combinations another characterization for biconvex sets can be
formulated:

Theorem 2.3 (Aumann and Hart (1986)) A set B ⊆ X × Y is biconvex if and only
if B contains all biconvex combinations of its elements.
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As in the convex case, it is possible to define the biconvex hull of a given set A ⊆ X × Y .
To do this, we proceed as in the convex case and denote by H the intersection of all
biconvex sets that contain A.

Definition 2.2 Let A ⊆ X × Y be a given set. The set

H :=
⋂
{AI : A ⊆ AI , AI is biconvex}

is called biconvex hull of A and is denoted by biconv(A).

Theorem 2.4 (Aumann and Hart (1986)) The above defined set H is biconvex. Fur-
thermore, H is the smallest biconvex set (in the sense of set inclusion), which contains
A.

As biconvex combinations are, by definition, a special case of convex combinations and
the convex hull conv(A) of a given set A consists of all convex combinations of the elements
of A (see, e.g., Rockafellar, 1997, Theorem 2.3), we have:

Lemma 2.5 Let A ⊆ X × Y be a given set. Then

biconv(A) ⊆ conv(A)

Aumann and Hart proposed in their paper another way to construct the biconvex hull of
a given set A. They defined an inductively given sequence {An}n∈N as follows:

A1 := A

An+1 := {(x, y) ∈ An : (x, y) is a biconvex combination of elements of An}.

Let H ′ :=
∞⋃

n=1
An denote the limit of this sequence.

Theorem 2.6 (Aumann and Hart (1986)) The above constructed set H ′ is biconvex
and equals H, the biconvex hull of A.

It is important to mention that when applying the above procedure to the convex case
(i.e., for the construction of the convex hull of A), one iteration is sufficient as the convex
hull consists exactly of all convex combinations of its elements. In general, there does not
necessarily exist a finite number of sets An such that the union of these sets build the
biconvex hull of the given set A. To see this, consider the following example.

Example 2.2 (Aumann and Hart (1986)) Let X = Y = [0, 1]. For m ∈ N we define

z1 = (0, 0), w1 = (0, 0)

z2m = (1− 1
2m−1

, 1− 3
2m+2

), w2m = (1− 1
2m−1

, 1− 1
2m

),

z2m+1 = (1− 3
2m+2

, 1− 1
2m

), w2m+1 = (1− 1
2m

, 1− 1
2m

).

For n ≥ 2, wn is a biconvex combination of the points zn and wn−1, namely

wn =
4
5

zn +
1
5

wn−1.

Now, let the set A be given by {zn}n∈N. Then it is easy to see that wn ∈ An, but
wn 6∈ An−1 for every n ≥ 2 (see also Figure 2).
By adding the point (1, 1) to the set A, we obtain a closed and bounded set A with
An ( biconv(A) for all n ∈ N.
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Figure 2: Illustration of Example 2.2.

3 Biconvex Functions

In this section we present important properties of biconvex functions. As these types of
functions regularly appear in practice, biconvex functions and optimization problems are
widely discussed in the literature. Since we are interested in optimization with biconvex
functions f on subsets of Rn+m here, we focus on properties which are related to these
optimization problems.
Note that biconvex functions are of importance in other mathematical contexts, too. For
example, biconvex functions can be used to derive results on robust stability of control
systems in practical control engineering. For further details see Geng and Huang (2000a)
and Geng and Huang (2000b). Furthermore, biconvex functions play an important role in
martingale theory and can be used to characterize whether a Banach space B is UMD (i.e.,
the space B has the unconditionality property for martingale differences), or whether B
is a Hilbert space or not. Here, we refer to Burkholder (1981), Aumann and Hart (1986),
Burkholder (1986) and Lee (1993). Finally, Thibault (1984), Jouak and Thibault (1985)
and Borwein (1986) published results concerning the continuity and differentiability of
(measurable) biconvex operators in topological vector spaces.
This section is organized as follows: The first subsection briefly reviews elementary prop-
erties of biconvex functions. We extend these properties by a comparison to convex func-
tions. The next subsection summarizes results concerning continuity of biconvex functions
given in Aumann and Hart (1986, Section 3). The last subsection deals with the maxi-
mization of biconvex functions. Several known and some new results are presented.

3.1 Elementary Properties

We start our summary with the most important elementary properties of biconvex func-
tions. Note that as mentioned in Section 1, it is possible to transform a biconvex function
to a biconcave one, and vice versa, by multiplying the given function by (−1). Similar to
convex functions, biconvex functions can be characterized by an interpolation property:

Theorem 3.1 (Goh et al. (1994)) Let X ⊆ Rn and Y ⊆ Rm be two non-empty, convex
sets, and let f be a real-valued function on X × Y . f is biconvex if and only if for all
quadruples (x1, y1), (x1, y2), (x2, y1), (x2, y2) ∈ X × Y it holds, that for every (λ, µ) ∈
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[0, 1]× [0, 1]

f(xλ, yµ) ≤ (1− λ) (1− µ) f(x1, y1) + (1− λ) µ f(x1, y2) +
+λ (1− µ) f(x2, y1) + λµ f(x2, y2),

where (xλ, yµ) := ((1− λ)x1 + λx2, (1− µ)y1 + µy2).

So, as one-dimensional interpolation always overestimates a convex function, two-dimen-
sional interpolation always overestimates a biconvex function.
As convex functions have convex level sets, we state for the biconvex case:

Theorem 3.2 (Goh et al. (1994)) Let X ⊆ Rn and Y ⊆ Rm be two non-empty, convex
sets, and let f be a real-valued function on X × Y . If f is biconvex on X × Y , then its
level sets

Lc := {(x, y) ∈ X × Y : f(x, y) ≤ c}
are biconvex for every c ∈ R.

Like in the convex case, the converse of the last theorem is not true in general:

Example 3.1 Let the function f : R×R→ R, f(x, y) = x3 + y3 be given, and let c ∈ R.
Then,

(Lc)x̄ = {y ∈ Y : y3 ≤ c− x̄3} = ]−∞, sign(c− x̄3) 3
√
|c− x̄3|]

(Lc)ȳ = {x ∈ X : x3 ≤ c− ȳ3} = ]−∞, sign(c− ȳ3) 3
√
|c− ȳ3|]

are convex sets and hence, the level set Lc of f is biconvex. But obviously f is not biconvex
on R× R, since f0(x) = f(x, 0) = x3 is not a convex function on R.

Also many arithmetic properties that are valid for convex functions can be transferred
to the biconvex case.

Lemma 3.3 Let X ⊆ Rn and Y ⊆ Rm be two non-empty, convex sets, let µ ∈ R+ be
a non-negative scalar, and let f, g : X × Y → R be two biconvex functions. Then the
functions h, t : X × Y → R with h(x, y) := f(x, y) + g(x, y) and t(x, y) := µf(x, y) are
biconvex.

Proof: The biconvexity of h and t follows immediately from Definition 1.2 for biconvex
functions and the fact that the above stated lemma is valid for convex functions, hence for
fx and gx (fy and gy, respectively), too, as they are convex for every fixed x ∈ X (y ∈ Y )
by definition. ¤

For the composition of convex and biconvex functions we have:

Lemma 3.4 Let X ⊆ Rn and Y ⊆ Rm be two non-empty, convex sets, let f : X×Y → R
be a biconvex function, and let ϕ : R → R be a convex, non-decreasing function. Then
h(x, y) := ϕ(f(x, y)) is biconvex on X × Y .

Proof: For fixed x ∈ X and fixed y ∈ Y we consider the functions hx(y) := ϕ(fx(y)) and
hy(x) := ϕ(fy(x)), respectively. Since Lemma 3.4 is valid for f convex (cf. Rockafellar,
1997, Theorem 5.1), fx and fy are both convex functions by definition and ϕ is convex
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and non-decreasing, hx and hy are convex, too. Hence, h is a biconvex function on X×Y .
¤

Finally, we state a lemma concerning the pointwise supremum of biconvex functions.

Lemma 3.5 The pointwise supremum of an arbitrary collection of biconvex functions is
biconvex.

Proof: Let I be an arbitrary index set, let f i : X × Y → R be biconvex for all i ∈ I,
and let f(x, y) := sup{f i(x, y), i ∈ I} be the pointwise supremum of these functions. For
fixed ȳ ∈ Y and arbitrary x ∈ X we have:

fȳ(x) = f(x, ȳ) = sup
i∈I
{f i(x, ȳ)} = sup

i∈I
{f i

ȳ(x)}.

Since the functions f i
ȳ are convex for all i ∈ I by assumption, fȳ, as pointwise supremum

of convex functions, is convex by Rockafellar (1997, Theorem 5.5), too. Similarly it can
be shown that fx̄ is convex on Y for every fixed x̄ ∈ X. Hence, f is biconvex. ¤

We close this subsection by a comparison between convex and biconvex functions. Ob-
viously:

Theorem 3.6 Let f : Rk → R (k > 1) be a convex function, and let (V1, V2) be an
arbitrary partition of the variable set V := {x1, . . . , xk} into two non-empty subsets. Then
f is biconvex on span(V1)× span(V2).

As in the case of biconvex sets, if a given function f is biconvex for every arbitrary
partition of the variable set, it has not to be convex in general. To see this, consider the
following example:

Example 3.2 Let n ≥ 2, let b :=
√

2n−1
2n(n−1) , and let f : Rn+1 → R be defined by

f(x1, . . . , xn+1) =
1
2
(x2

1 + · · ·+ x2
n + x2

n+1) + b · xn+1 · (x1 + · · ·+ xn).

The partial derivatives of f are given by

∂f

∂xi
(x1, . . . , xn) =

{
xi + b · xn+1 , if i 6= n + 1

xn+1 + b · (x1 + · · ·+ xn) , if i = n + 1

and the Hessian matrix of f is

H(x) := Hess(f)(x) =




1 0 . . . 0 b

0 1 . . . 0 b
...

...
. . .

...
...

0 0 . . . 1 b

b b . . . b 1




∈ M((n + 1)× (n + 1),R).

First, we show that f is biconvex for any partition of the variable set {x1, . . . , xn+1} into
two non-empty disjoint subsets. So let (V1, V2) be such a partition and let Y i = span(Vi),
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i = 1, 2. We assume that xn+1 ∈ V2. Let Ii denote the index set of the variables of Vi,
and let ci := |Ii| be the cardinality of Ii (i = 1, 2). Then the Hessian matrix of fY i is
given by

Hess(fY 2)(y1) =




1 0 . . . 0 0

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . 0 1




and Hess(fY 1)(y2) =




1 0 . . . 0 b

0 1 . . . 0 b
...

...
. . .

...
...

0 0 . . . 1 b

b b . . . b 1




,

where
y1 =(xi11

, . . . , xi1c1
) ∈ Y 1, i1j ∈ I1 ∀ j = 1, . . . , c1,

y2 =(xi21
, . . . , xi2c2−1

, xn+1) ∈ Y 2, i2k ∈ I2 ∀ k = 1, . . . , c2 − 1,

and Hess(fY 1) ∈ M(c2 × c2,R) and Hess(fY 2) ∈ M(c1 × c1,R). Obviously, Hess(fY 2) is
positive definite for all y1 ∈ Y 1 = Rc1 and hence, fY 2 is convex (cf. Floudas, 2000).
To show the convexity of fY 1 , we calculate the eigenvalues of Hess(fY 1). They are given
by λ1 = 1 and λ2,3 = 1± b

√
c2 − 1. Since c2 ≤ n, it holds that λ2 > 0 and

λ3 = 1− b
√

c2 − 1 ≥ 1− b
√

n− 1 = 1−
√

1− 1
2n

> 0.

So, all eigenvalues of Hess(fY 1) are positive, i.e., Hess(fY 1) is positive definite, and hence,
fY 1 is convex, too.
Finally, we calculate the eigenvalues of H(x). They are given by λ1 = 1 and λ2,3 = 1±b

√
n.

Since

λ3 = 1− b
√

n = 1−
√

1 +
1

2 (n− 1)
< 0,

H(x) has a negative eigenvalue. Hence, H(x) is indefinite for all x ∈ Rn+1 and f is not
convex on every open, convex set X ⊆ Rn+1.
Note that for a counter-example for a function from R2 to R, one can use the above given
function with b := 2.

3.2 Continuity of Biconvex Functions

One of the central results in convex analysis is the fact that a finite, real-valued, convex
function f is continuous throughout the interior of its domain C ⊆ Rn (cf. Rockafellar,
1997). Aumann and Hart (1986) transferred this result to the biconvex case.

Definition 3.1 Let B ⊆ X × Y and let z = (x, y) ∈ B. The point z is called a bi-
relatively interior point of B, if z is in the interior of B relative to aff(projX(B)) ×
aff(projY (B)), where projX(B) and projY (B) denote the projection of B into the X- and
Y -space, respectively, and aff(C) is the affine space, generated by the set C.

From Rockafellar (1997) we recall that an m-dimensional simplex is the convex hull of
m affinely independent vectors b1 . . . , bm ∈ Rn. A set S ⊆ Rn is called locally simplicial,
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if for each x ∈ S there exists a finite collection of simplices S1, . . . , Sm such that, for some
neighborhood U of x,

U ∩ (S1 ∪ · · · ∪ Sm) = U ∩ S.

Examples of locally simplicial sets are line segments, polyhedral convex sets, or relatively
open, convex sets. Note that a locally simplicial set does not need to be convex or closed
in general.

Definition 3.2 Let B ⊆ X × Y and let z = (x, y) ∈ B. We say that B is locally bi-
simplicial at z, if there exists a neighborhood U of x in X and a neighborhood V of y in
Y , a collection of simplices S1, . . . , Sk in X and a collection of simplices T1, . . . , Tl such
that for S :=

⋃k
i=1 Si and T :=

⋃l
i=1 Ti, S×T ⊆ B and (U ×V )∩B = (U ×V )∩ (S×T ).

It holds:

Theorem 3.7 (Aumann and Hart (1986)) Let f be a biconvex function on a biconvex
set B and let z ∈ B.

1. If z is a bi-relatively interior point of B then f is lower-semi-continuous at z.

2. If B is locally bi-simplicial at z then f is upper-semi-continuous at z.

Since for all bi-relatively interior points z of B, B is locally bi-simplicial at z as well, it
holds:

Corollary 3.8 Let f be a biconvex function on a biconvex set B. Then f is continuous
at all bi-relatively interior points z ∈ B.

Note that only “directional continuity” (i.e., f(x, •) : Y → R and f(•, y) : x → R are
continuous for all x ∈ X and y ∈ Y ) is not sufficient for a function f to be continuous on
an open set B ⊆ X × Y . A counter-example to this is given, for example, in the book of
Gelbaum and Olmsted (2003, Chapter 9).

3.3 The Maximum of a Biconvex Function

This subsection deals with the problem of finding the maximum of a biconvex function
over a given set contained in X×Y . We recall known results for this problem and present
a new result for the case that the maximum of a biconvex function is attained in the
interior of a biconvex set B when B has some additional topological properties.
In the convex case, it is well-known that the set of all points where the supremum of a
convex function relative to a given convex set C is attained, is given by a union of faces
of C (cf. Rockafellar, 1997, Corollary 32.1.1), i.e., that the supremum of a convex function
over a convex set C is attained at a boundary point of C if it exists. Al-Khayyal and Falk
(1983) showed that this result is also valid for a continuous, biconvex function f over a
compact and convex set K ⊆ X × Y . (Actually, the result was proven for the minimum
of a biconcave function, which is equivalent.)

Theorem 3.9 (Al-Khayyal and Falk (1983)) Let X ⊆ Rn and Y ⊆ Rm be two non-
empty sets, let K ⊆ X × Y be compact and convex, and let f : K → R be a continuous,
biconvex function. Then the problem

max {f(x, y) : (x, y) ∈ K} (3)

has always a solution on ∂K, the boundary of K.
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If the given set K is a product of two polytopes in X and Y , respectively, Geng and
Huang (2000b) stated:

Theorem 3.10 (Geng and Huang (2000b)) Let f : Rn × Rm → R be biconvex and
let S ⊂ Rn, T ⊂ Rm be polytopes with vertex sets S∗ and T ∗, respectively. Then

max
(x,y)∈S×T

f(x, y) = max
(x,y)∈S∗×T ∗

f(x, y). (4)

Note that in Geng and Huang (2000a) and Geng and Huang (2000b) the authors referred
to a proof of the above theorem given in Barmish (1994). Another proof and an outer
approximation algorithm for problem (4), based on the above theorem, can be found in
Gao and Xu (2002).
Horst and Thoai (1996) presented a decomposition approach for the minimization of a
biconcave function over a polytope P ⊂ Rn+m where P is not separable in the sense
that it cannot be written as a product of two polytopes in Rn and Rm, respectively.
The authors used a combination of global optimization techniques such as branch and
bound, polyhedral outer approximation and projection of polyhedral sets onto a subspace
to design an algorithm for problems of the form

min {f(x, y) : x ∈ X, y ∈ Y, (x, y) ∈ D}, (5)

where X ⊂ Rn and Y ⊂ Rm are polytopes, D ⊂ Rn+m is a polyhedral set and f is
biconcave. As special cases of problem (5), jointly constrained bilinear programming
problems and separated jointly constrained biconcave programming problems of the form
f(x, y) = f1(x) + f2(y) are considered, among others.

Next we consider problems where the maximum of a biconvex function over a biconvex
set B lies in the relative interior ri(B) of the set B. For the convex case we recall:

Theorem 3.11 (Rockafellar (1997)) Let f be a convex function and let C be a convex
set. If f attains its supremum relative to C at some point of the relative interior of C,
then f is constant throughout C.

Our aim is to prove that this result is also valid for the biconvex case if we make some
more topological assumptions on the given biconvex set B. In order to derive a proof for
this result we need some preliminary lemmas and definitions.

Definition 3.3 Let I = [a, b] ⊆ R be an interval and let γ : I → M be a continuous
function. Then γ is called a path with initial point γ(a) and terminal point γ(b).

Definition 3.4 Let M ⊆ Rn be a non-empty set. M is called path-connected if for
any two points m1, m2 ∈ M there exists a path γ : [a, b] → M with γ(a) = m1, γ(b) = m2

and γ(t) ∈ M for all t ∈ [a, b].

Definition 3.5 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets, let M ⊆ X × Y , let
m1 := (x1, y1) ∈ M and m2 := (x2, y2) ∈ M , and let γ be a path in M joining m1 and
m2. We call γ L-shaped if we can partition γ into two subpaths γ1 and γ2 such that γ
restricted to γ1 consists of the line segment joining m1 and the point h1 := (x1, y2) (or
h2 := (x2, y1)) and γ restricted to γ2 consists of the line segment joining h1 (or h2)and
m2. The intermediate point h1 (or h2) is called inflection point of γ. An L-shaped path
is said to be degenerate if x1 = x2 or y1 = y2.
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Figure 3: Example of two L-shaped paths γ1 and γ2 joining m1 and m2 with inflection
points h1 and h2, respectively.

If X, Y ⊆ R, an L-shaped path is a path of the form “L” or “¬” (cf. Figure 3). Furthermore,
we define:

Definition 3.6 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets, let M ⊆ X×Y , and let
m1,m2 ∈ M . If there exists a (finite) sequence of L-shaped paths joining m1 and m2 which
is completely contained in M , we say that m1 and m2 are (finitely) L-connectable or
(finitely) L-connected in M . The set M is (finitely) L-connected if any two points
in M are (finitely) L-connectable.

Due to the last definition it is obvious that every finitely L-connected set is path-connected,
whereas the converse is not true in general. If we consider, for example, the line segment

M := {(x, y) ∈ [0; 1]× [0; 1] : (x, y) = λ (1, 0) + (1− λ) (0, 1), λ ∈ [0; 1]}

in [0; 1] × [0; 1], then M is path-connected, but any two points of M are not finitely
L-connectable in M . Now, for ε > 0 and x ∈ Rn, let

Kε(x) := {y ∈ Rn : ‖x− y‖ < ε}

denote the open ball around x with radius ε. Then the following lemma can easily be
proven by induction:
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Figure 4: Example of a sequence of L-shaped paths in Lemma 3.12.
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Lemma 3.12 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets and let I := {1 . . . , k} be
an index set. Furthermore, let k points mi ∈ X × Y be given and k positive numbers εi

such that Kεi
(mi) ⊆ X×Y for all i ∈ I and the intersection Kεi

(mi)∩Kεi+1
(mi+1) is not

empty for all i = 1, . . . , k−1. Then m1 and mk are finitely L-connectable in
⋃

i∈I Kεi
(mi)

such that the resulting path contains the points mi, i ∈ I.

The proof of this lemma is obvious and can be performed as indicated in Figure 4.

Theorem 3.13 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets and let M ⊆ X × Y be
a non-empty, open, and path-connected set. Then M is finitely L-connected.

Proof: Let m1,m2 ∈ M ⊆ X × Y be two arbitrary chosen points in M . Since by
assumption M is path-connected, there exist a, b ∈ R and a path γ : [a, b] → M with
γ(a) = m1, γ(b) = m2, and γ(t) ∈ M for every t ∈ I := [a, b].
Since M is an open set, for every point γ(t) ∈ M on the curve there exists εt > 0 such
that Kεt

(γ(t)) is completely contained in M . Hence, {⋃t∈I Kεt
(γ(t))} builds an open

covering of the image set γ(I) of γ in M . Since γ(I) is known to be compact, there exists
t1, . . . , tn ∈ I, such that γ(I) is already covered by {⋃n

t=1 Kεti
(γ(ti))}.

Without loss of generality we suppose that t1 = a and tn = b, otherwise we add the two
balls Kεa

(γ(a)) and Kεb
(γ(b)) to the finite open covering of γ(I). By eventually deleting

and rearranging the order of the open balls Kεti
(γ(ti)) we can reorder the given finite

covering in the way that the intersection of two consecutive open balls Kεti
(γ(ti)) and

Kεti+1
(γ(ti+1)) is not empty.

Let the resulting covering be denoted again by {⋃n
t=1 Kεti

(γ(ti))}. Then this covering
satisfies all the assumptions made in Lemma 3.12. Hence, γ(t1) = m1 and γ(tn) = m2 are
finitely L-connectable, which completes the proof. ¤

Now we can prove our main result:

Theorem 3.14 Let X ⊆ Rn and Y ⊆ Rm be two non-empty sets and let B ⊆ X×Y be a
biconvex set such that the interior of B is non-empty and path-connected with ∂(int(B)) =
∂B. Furthermore, let f : B → R be a continuous, biconvex function. If the problem

max {f(x, y) : (x, y) ∈ B} (6)

has an optimal solution z∗ := (x∗, y∗) ∈ int(B), then f is constant throughout B.

Proof: We prove the theorem in two steps. First, we concentrate on points z ∈ B lying
in the interior of B and we show that f(z∗) = f(z) holds for all points z ∈ int(B). In the
second step we extend our results to points situated in B \ int(B).
So, let z∗ = (x∗, y∗) ∈ int(B) denote the optimal solution of problem (6). First, consider
the two functions

fx∗ : Bx∗ → R and fy∗ : By∗ → R,

where Bx∗ := {y ∈ Y : (x∗, y) ∈ B} and By∗ := {x ∈ X : (x, y∗) ∈ B}, respectively. Since
B is biconvex by assumption, the sets Bx∗ and By∗ are convex. Obviously, y∗ ∈ Bx∗ and
x∗ ∈ By∗ hold. But since (x∗, y∗) is a point in int(B), y∗ and x∗ are elements of ri(Bx∗)
and ri(By∗), respectively. Hence, by Theorem 3.11, fx∗ and fy∗ are constant on Bx∗ and
By∗ , respectively. So we have that

f(z) = f(z∗) ∀ z ∈ Bz∗ := {(x∗, y) : y ∈ Bx∗} ∪ {(x, y∗) : x ∈ By∗}.
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Figure 5: Illustration of the proof of Theorem 3.14 with two intermediate points z1 and
z2.

Next, consider a point z1 = (x1, y1) ∈ int(B) which is L-connectable to z∗ throughout
int(B) by exactly one L-shaped path γ, and let h1 := (x∗, y1) ∈ int(B) denote the inflection
point of γ. Since h1 ∈ Bz∗ , f(h1) = f(z∗). Since B is biconvex, the set By1

:= {x ∈ X :
(x, y1) ∈ B} is convex. Since h1 ∈ int(B), x∗ ∈ ri(By1

). Hence, fy1
(x∗) ≥ fy1

(x) holds for
all x ∈ By1

, and fy1
is constant on By1

by Theorem 3.11. Since x1 ∈ By1
, f(z1) = f(z∗).

So we have proven that f(z) = f(z∗) for all z which are L-connectable to z∗ by exactly
one L-shaped path.
Finally, let z = (x, y) ∈ int(B) be arbitrarily chosen in int(B). Since int(B) is open
by definition and non-empty and path-connected by assumption, z∗ and z are finitely
L-connectable in int(B) by k L-shaped paths γk by Theorem 3.13 (see Figure 5).
Now, let m0 := z∗, mk = z, and let mi := (xi, yi) ∈ int(B) and hi := (xi−1, yi) ∈ int(B)
(i = 1, . . . , k) denote the finite sequence of initial points and inflection points, respectively,
obtained by the sequence of L-shaped paths from z∗ to z.
Since Bxi := {y ∈ Y : (xi, y) ∈ B} and Byi

:= {x ∈ X : (x, yi) ∈ B} are convex sets by
assumption and yi−1, yi ∈ ri(Bxi−1) and xi−1, xi ∈ ri(Byi

) for i = 1, . . . , k, respectively, we
have, following the same argumentation as above, that f is subsequently constant on the
L-shaped path γi joining mi−1 and mi with inflection point hi for i = 1, . . . , k, i.e.,

f(z∗) = f(m0) = f(m1) = . . . = f(mk−1) = f(mk) = f(z).

Hence, f is constant throughout int(B). This completes the first step of the proof.
Now suppose that the point z ∈ B is an element of B \ int(B), i.e., z ∈ ∂B ∩B. Since, by
assumption, ∂(int(B)) = ∂B, z ∈ ∂int(B), i.e., there exists a sequence {zn}n∈N converging
to z such that zn ∈ int(B) for all n ∈ N. Since f is continuous on B and equal to the
constant f(z∗) on int(B), we get that

f(z) = f( lim
n→∞ zn) = lim

n→∞ f(zn) = lim
n→∞ f(z∗) = f(z∗).

Hence, f is constant throughout B. ¤
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Figure 6: Discussion of the assumptions made in Theorem 3.14.

Before we conclude this subsection by reflecting on the assumptions made in Theorem
3.14, we remark that for a set A ⊆ Rn it holds that

∂(int(A)) = ∂A ⇐⇒ cl(int(A)) = cl(A).

So, the assumption ∂(int(A)) = ∂A in the last theorem could be replaced by cl(int(A)) =
cl(A). Note that in set-theoretical topology a set which equals the closure of its interior
is called a regular (closed) set.
Now consider Figure 6. Figure 6(i) shows a set B where the assumption ∂(int(B)) = ∂B
is not valid since the point ẑ is an element of ∂B \ ∂(int(B)), and f(ẑ) can be chosen
arbitrarily without effecting the biconvexity of f . In this case, a biconvex function having
a global maximum in z∗ ∈ int(B) does not need to be constant throughout B since the
point ẑ is not L-connectable to z∗ within B.
Figure 6(ii) shows the biconvex set B := R2

+ ∪ (−R2
+) where the interior of B is not

path-connected any more. If a biconvex function f takes its maximum in z∗ ∈ int(B2)
(B2 := −R2

+), then f has to be constant on B2∪∂B1, where B1 := R2
+, but not necessarily

on int(B1). For a counter-example consider the function f given on B as follows:

f(z) =





1 , if z ∈ B2 ∪ ∂B1,

1−min{x, y}, if x ∈ [0, 1] or y ∈ [0, 1],

0 , if x > 1 and y > 1.

Obviously, f is continuous and biconvex on B but not constant throughout B, although
B (but not int(B)) is path-connected, using z̃ passing from B1 to B2 and the other way
round.
Figure 6(iii) shows a set B which is not biconvex since the y∗-cut By∗ is not convex. Hence,
Theorem 3.14 is not applicable directly. Nevertheless, a biconvex function f taking its
global maximum in z∗ ∈ int(B) is constant throughout the given set since every point z̄ ∈
int(B) is still L-connectable to z∗. Hence, the line of argumentation of Theorem 3.14 is still
valid, provided that the given set B can be partitioned into appropriate biconvex subsets
such that Theorem 3.14 is applicable in these subsets. So, the biconvexity-assumption for
the set B might be weakened.
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3.4 Biconvexity and Separation

Aumann and Hart (1986) stated several separation theorems for biconvex functions. In
this context, separation does not mean that we separate two biconvex sets by a biconvex
or bilinear function, but we determine the set of all points z ∈ B, B biconvex, which
cannot be separated from a subset A ⊂ B of B by a biconvex function f . We give the
main results and ideas here. For further details, we refer to the original paper. The results
for the convex case, which we state next, can also be found there.

Definition 3.7 Let C ⊆ Rn be a convex set and A ⊆ C. Then a point z ∈ C is convex
separated from A with respect to C if there exists a bounded convex function f on
C such that f(z) > sup f(A) := sup{f(a) : a ∈ A}. Furthermore, let ncs(C) (= ncsA(C))
denote the set of all points z ∈ C that cannot be convex separated from A.

For the set ncsA(C) we have:

Theorem 3.15 (Aumann and Hart (1986)) Let C ⊆ Rn be a convex set and let A ⊆
C, then ncsA(C) is a convex set and

conv(A) ⊆ ncsA(C) ⊆ conv(A),

where conv(A) denotes the closure of the convex hull of A.

For biconvex sets this is as follows:

Definition 3.8 Let B ⊆ Rn × Rm be a biconvex set and A ⊆ B. Then a point z ∈ B
is biconvex separated from A with respect to B if there exists a bounded biconvex
function f on B such that f(z) > sup f(A) := sup{f(a) : a ∈ A}. Furthermore, let
nbs(B) (= nbsA(B)) denote the set of all points z ∈ B that cannot be biconvex separated
from A.

Obviously we have:

Lemma 3.16 (Aumann and Hart (1986)) Let B ⊆ Rn × Rm be a biconvex set and
let A ⊆ B. Then z ∈ nbsA(B) if and only if z ∈ B and, for all biconvex functions f
defined on B, we have f(z) ≤ sup f(A).

As level sets of biconvex functions are biconvex by Theorem 3.2, for the set nbsA(B) we
have:

Theorem 3.17 (Aumann and Hart (1986)) Let B be a biconvex set and let A ⊆ B.
Then the set nbsA(B) is biconvex and

biconv(A) ⊆ nbsA(B).

Different to the convex case, for biconvex separation we have nbsA(B) 6⊂ biconv(A) in
general. For an example see Aumann and Hart (1986), Example 3.3.
Furthermore, the set nbsA(B) depends on the given domain B, i.e., if A ⊂ B∗ ⊂ B and
B and B∗ are biconvex sets, then nbsA(B∗) ( nbsA(B) in general (cf. Aumann and Hart,
1986, Example 3.5).
For more theorems dealing with the concept of biconvex separability of a point z ∈ B
from a given set A ⊆ B, we refer again to Aumann and Hart (1986). For example, one
can find results for the case that the separating biconvex function f additionally has to
be continuous on A.
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4 Biconvex Minimization Problems

In the following we discuss biconvex minimization problems of the form given in Defin-
ition 1.3. As mentioned in Section 1, biconvex optimization problems may have a large
number of local minima as they are global optimization problems in general. Nevertheless,
there exist a couple of methods and algorithms which exploit the convex substructures
of a biconvex optimization problem in order to solve such problems more efficiently than
general global optimization methods do. Of course, such methods can be used to solve
biconvex problems, too, as proposed, for example, in Goh et al. (1994), where subgradient
descent methods or interior point methods were suggested to solve a special class of non-
smooth, biconvex minimization problems. Since we are especially interested in biconvex
optimization methods, we survey only those algorithms and methods which utilize the
biconvex structure of the given problem.
This section is organized as follows: In the first subsection we discuss the notion of partial
optimality and recall a necessary optimality condition for biconvex problems with sepa-
rable constraints while the second subsection gives a review of existing solution methods
for biconvex minimization problems and their practical applications.

4.1 Partial Optimality

In the following let X ⊆ Rn and Y ⊆ Rm be two non-empty sets, let B ⊆ X × Y , and let
Bx and By denote the x-sections and y-sections of B, respectively.

Definition 4.1 Let f : B → R be a given function and let (x∗, y∗) ∈ B. Then, (x∗, y∗) is
called a partial optimum of f on B, if

f(x∗, y∗) ≤ f(x, y∗)∀x ∈ By∗ and f(x∗, y∗) ≤ f(x∗, y)∀ y ∈ Bx∗ .

We recall:

Definition 4.2 Let f : Rn → R be a given function, let ζ ∈ Rn, and let the partial
derivatives of f in ζ exist. If ∇ f(ζ) = 0, then ζ is called a stationary point of f .

Obviously we have:

Theorem 4.1 Let f : B → R be partial differentiable at z∗ ∈ int(B) and let z∗ be a
partial optimum. Then, z∗ is a stationary point of f in B.

Note that the converse of Theorem 4.1 is not true in general.

Example 4.1 Let z∗ := (0, 0) ∈ R2 and let the function f : R2 → R be given by

f(x, y) = x3 · (x− 2) + y2.

Then ∇ f(z∗) = 0 holds true, but for fixed y∗ = 0 we have:

f(1, y∗) = f(1, 0) = −1 < 0 = f(0, 0) = f(z∗)

Hence, z∗ is not a partial optimum.

However, if f is biconvex it is easy to prove that:
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Theorem 4.2 Let B be a biconvex set and let f : B → R be a differentiable, biconvex
function. Then, each stationary point of f is a partial optimum.

Proof: Let z∗ := (x∗, y∗) be a stationary point of f in B. For fixed y∗, the function
fy∗ : By∗ → R is convex, so

fy∗(x) ≥ fy∗(x
∗) +

(
∂

∂x1
fy∗(x

∗), . . . ,
∂

∂xn
fy∗(x

∗)
)t

(x− x∗)

is valid for all x ∈ By∗ (cf. Rockafellar, 1997). Since x∗ is also a stationary point of fy∗ ,
the second summand equals zero and hence

fy∗(x) ≥ fy∗(x
∗) ∀x ∈ By∗ .

By symmetry of the problem we also have that

fx∗(y) ≥ fx∗(y
∗) ∀y ∈ Bx∗

So, z∗ is a partial optimum. ¤

Corollary 4.3 Let f : Rn×Rm → R be a differentiable, biconvex function. Then a point
z ∈ Rn+m is stationary if and only if z is a partial optimum.

Finally, we shortly review a necessary local optimality condition for the biconvex mini-
mization problem with separable constraints

min {f(x, y) : x ∈ X ⊆ Rn, y ∈ Y ⊆ Rm}. (7)

In the case of separable constraints the notion of partial optimality of a point (x∗, y∗) ∈
X × Y simplifies to

f(x∗, y∗) ≤ f(x, y∗)∀x ∈ X and f(x∗, y∗) ≤ f(x∗, y)∀ y ∈ Y.

Theorem 4.4 (Wendell and Hurter Jr. (1976)) Let X ⊆ Rn and Y ⊆ Rm be convex
sets and let f : X × Y → R be a biconvex function with a partial optimum in (x∗, y∗) ∈
X × Y . Furthermore, let U(y∗) denote the set of all optimal solutions to (7) with y = y∗

and let U(x∗) be the set of optimal solutions to (7) with x = x∗. If (x∗, y∗) is a local
optimal solution to (7), then it necessarily holds that

f(x∗, y∗) ≤ f(x, y) ∀x ∈ U(x∗) ∀y ∈ U(y∗). (8)

Note that the given local optimality condition is in general not sufficient.

Example 4.2 (Luenberger (1989), mod.) Consider the biconvex minimization prob-
lem

min {x3 − x2y + 2y2 : x ≥ 4, y ∈ [0; 10]}.
This problem has a partial optimum at (6, 9) that satisfies the condition (8) of the last
theorem, but that is not a local optimum.
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4.2 Algorithms

In this subsection we discuss methods and algorithms for solving biconvex minimization
problems of the form (1) which exploit the biconvex structure of the problem. We give
short algorithmic descriptions for every solution approach and discuss convergence results
and limitations of the considered methods. In detail, we present the Alternate Convex
Search method as a special case of Block-Relaxation Methods, the Global Optimization
Algorithm, developed in Floudas and Visweswaran (1990), and an algorithm for solving
jointly constrained biconvex programming problems using the so called convex envelope
of a function f .

4.2.1 Alternate Convex Search

Alternate Convex Search (ACS) is a minimization method which is a special case of the
Block-Relaxation Methods where the variable set is divided into disjoint blocks (de Leeuw,
1994). In every step, only the variables of an active block are optimized while those of the
other blocks are fixed. For ACS we only consider the two blocks of variables defined by
the convex subproblems that are activated in cycles. Since the resulting subproblems are
convex, efficient convex minimization methods can be used to solve these subproblems.
In the case that n = m = 1, i.e., f : B ⊆ R2 → R, ACS can be seen as a special case of
the Cyclic Coordinate Method (CCM) which is stated, e.g., in Bazaraa et al. (1993). A
survey on the ACS approach for convex as well as for biconvex objective functions can be
found, e.g., in Wendell and Hurter Jr. (1976).
In the following we will show that under weak assumptions the set of all accumulation
points generated by ACS form a connected, compact set C and that each of these points
is a stationary point of f but that no better convergence results (like local or global
optimality properties) can be obtained in general.

Algorithm 4.1 (Alternate Convex Search)
Let a biconvex optimization problem in the sense of Definition 1.3 be given.

Step 1: Choose an arbitrary starting point z0 = (x0, y0) ∈ B and set i = 0.

Step 2: Solve for fixed yi the convex optimization problem

min {f(x, yi), x ∈ Byi
}. (9)

If there exists an optimal solution x∗ ∈ Byi
to this problem, set xi+1 = x∗, otherwise

STOP.

Step 3: Solve for fixed xi+1 the convex optimization problem

min {f(xi+1, y), y ∈ Bxi+1
}. (10)

If there exists an optimal solution y∗ ∈ Bxi+1
to this problem, set yi+1 = y∗, otherwise

STOP.

Step 4: Set zi+1 = (xi+1, yi+1). If a stopping criterion is satisfied, then STOP, otherwise
augment i by 1 and go back to Step 2.

Remarks:

1. The order of the optimization problems in Step 2 and Step 3 can be permuted, i.e.,
it is possible first to optimize in the y-variables, followed by an optimization in the
x-variables.
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2. There are several ways to define the stopping criterion in Step 4 of the algorithm.
For example, one can consider the absolute value of the difference of zi−1 and zi

(or the difference in their function values) or the relative increase in the z-variable
compared to the last iteration. The stopping criterion may also depend on the
special structure of the given biconvex objective function.

The following convergence properties of ACS are motivated by the results of Zangwill
(1969), Meyer (1976) and de Leeuw (1994). The results stated in these papers cannot be
applied directly to ACS, since in these papers it is assumed that the algorithmic map A
(see Definition 4.3 below) is uniformly compact on B (i.e., there exists B0 ⊆ B, compact,
such that A(z) ⊆ B0 for all z ∈ B), which is not true for ACS in general. Note that for
most of the following results only continuity of f is needed.

Theorem 4.5 Let B ⊆ Rn × Rm, let f : B → R be bounded from below, and let the
optimization problems (9) and (10) be solvable. Then the sequence {f(zi)}i∈N generated
by ACS converges monotonically.

Proof: Since the sequence of function values {f(zi)}i∈N, generated by Algorithm 4.1, is
monotonically decreasing and f is bounded from below, the sequence {f(zi)}i∈N converges
to a limit value a ∈ R. ¤

The statement of Theorem 4.5 is relatively weak. The boundedness of the objective
function f only ensures the convergence of the sequence {f(zi)}i∈N but not automatically
the convergence of the sequence {zi}i∈N. Indeed, there exist biconvex functions where the
sequence {f(zi)}i∈N generated by ACS converges while the sequence {zi}i∈N diverges. To
see this, we consider the following example:

Example 4.3 Let the biconvex function f : R× R→ R be given by:

f(x, y) :=

{
(x− y)2 + 1

x+y+1 , if x ≥ −y

(x− y)2 + 1− x− y, if x < −y.

It is easy to check that for any starting point (x0, y0) ∈ R2 the generated sequence
{f(zi)}i∈N converges to 0 while the sequence {zi}i∈N diverges to infinity.

To give convergence results for the generated sequence {zi}i∈N we introduce the algorith-
mic map of the ACS algorithm. For a general definition of algorithmic maps we refer to
Bazaraa et al. (1993).

Definition 4.3 Let B ⊆ Rn × Rm, let zk = (xk, yk) ∈ B for k = 1, 2, and let f : B → R
be given. The map A : B → P(B) from B onto the power set P(B) of B defined by
z2 ∈ A(z1) if and only if

f(x2, y1) ≤ f(x, y1) ∀x ∈ By1
and f(x2, y2) ≤ f(x2, y) ∀y ∈ Bx2

is called the algorithmic map of the ACS algorithm.

Using the algorithmic map, the ACS algorithm can be described as the iterative selection
of a zi+1 ∈ A(zi). This means that zi+1 is a possible outcome of the algorithm with
starting point zi after one complete iteration.
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Lemma 4.6 Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X×Y → R be continuous.
Then the algorithmic map A is closed, i.e., it holds:

zi := (xi, yi)∈X × Y, lim
i→∞

(xi, yi) = (x∗, y∗) =: z∗

z′i := (x′i, y
′
i)∈A(zi), lim

i→∞
(x′i, y

′
i) = (x′, y′) =: z′



 =⇒ z′ ∈ A(z∗).

Proof: Since z′i ∈ A(zi) for all i ∈ N we have that

f(x′i, yi) ≤ f(x, yi)∀x ∈ X and f(x′i, y
′
i) ≤ f(x′i, y)∀y ∈ Y.

Since f is continuous by assumption we get that

f(x′, y∗) = lim
i→∞

f(x′i, yi) ≤ lim
i→∞

f(x, yi) = f(x, y∗) ∀x ∈ X

and
f(x′, y′) = lim

i→∞
f(x′i, y

′
i) ≤ lim

i→∞
f(x′i, y) = f(x′, y) ∀y ∈ Y.

Hence, z′ ∈ A(z∗). ¤

The following theorem states a condition for the limit of the sequence of points generated
by ACS.

Theorem 4.7 Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X × Y → R be
continuous. Let the sequence {zi}i∈N generated by ACS converge to z∗ ∈ X × Y . Then z∗

is a partial optimum.

Proof: The sequence {zi+1}i∈N is convergent with limit point z∗. Since the algorithmic
map A is closed by Lemma 4.6 and zi+1 ∈ A(zi) for all i ∈ N, also z∗ is contained in A(z∗).
Hence,

f(x∗, y∗) ≤ f(x, y∗) ∀x ∈ X and f(x∗, y∗) ≤ f(x∗, y) ∀y ∈ Y

and z∗ is a partial optimum. ¤

Note that a similar result is mentioned in Wendell and Hurter Jr. (1976) for X and Y
being compact sets. The next lemma ensures that, as long the algorithm generates new
points that are no partial optima, a descent in the function values can be achieved during
one iteration.

Lemma 4.8 Let B ⊆ Rn×Rm and f : B → R be given. Let the optimization problems (9)
and (10) be solvable and let z1 := (x1, y1) ∈ B and z2 := (x2, y2) ∈ A(z1).

1. If the optimal solution of (9) with y = y1 is unique, then

z1 is not a partial optimum =⇒ f(z2) < f(z1).

2. If the optimal solution of (10) with x = x2 is unique, then

z2 is not a partial optimum =⇒ f(z2) < f(z1).
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3. If the optimal solutions of both (9) with y = y1 and (10) with x = x2 are unique,
then

z1 6= z2 =⇒ f(z2) < f(z1).

Proof: Obviously, it holds true that

f(z2) = f(x2, y2) ≤ f(x2, y1) ≤ f(x1, y1) = f(z1).

We assume that f(x2, y2) = f(x2, y1) = f(x1, y1) and show the reversed statements. Since
z2 ∈ A(z1),

f(x2, y1) ≤ f(x, y1)∀x ∈ By1
and f(x2, y2) ≤ f(x2, y)∀y ∈ Bx2

.

If the optimal solution of (9) with y = y1 is unique, then x1 = x2 and z1 is a partial
optimum. If the optimal solution of (10) with x = x2 is unique, then y1 = y2 and z2 is a
partial optimum. If the optimal solutions of both (9) with y = y1 and (10) with x = x2

are unique, x1 = x2 and y1 = y2, hence z1 = z2. ¤

Now the following theorem about the convergence of the sequence {zi}i∈N can be stated
and proven.

Theorem 4.9 Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X × Y → R be
continuous. Let the optimization problems (9) and (10) be solvable.

1. If the sequence {zi}i∈N generated by the ACS algorithm is contained in a compact
set, then the sequence has at least one accumulation point.

2. In addition suppose that for each accumulation point z∗ = (x∗, y∗) of the sequence
{zi}i∈N the optimal solution of (9) with y = y∗ or the optimal solution of (10) with
x = x∗ is unique, then all accumulation points are partial optima and have the same
function value.

3. Furthermore, if for each accumulation point z∗ = (x∗, y∗) of the sequence {zi}i∈N
the optimal solutions of both (9) with y = y∗ and (10) with x = x∗ are unique, then

lim
i→∞

‖zi+1 − zi‖ = 0

and the accumulation points form a compact continuum C (i.e., C is a connected,
compact set).

Proof: By condition 1, the sequence {zi}i∈N has at least one accumulation point z∗ :=
(x∗, y∗). Thus we have a convergent subsequence {zk}k∈K with K ⊆ N that converges to
z∗. Similarly, {zk+1}k∈K has an accumulation point z+ := (x+, y+) to which a subsequence
(zl+1)l∈K with L ⊆ K converges. By Lemma 4.6 and Theorem 4.5 it follows that z+ ∈
A(z∗) and f(z+) = f(z∗). In the same manner we see that the sequence {zk−1}k∈K has
an accumulation point z− := (x−, y−) with z∗ ∈ A(z−) and f(z∗) = f(z−).
Now suppose that z∗ is not a partial optimum even though condition 2 is fulfilled. Thus
one of the optimization problems (9) with y = y∗ or (10) with x = x∗ has a unique
solution, and by Lemma 4.8, f(z+) < f(z∗) or f(z∗) < f(z−), which gives a contradiction.
Therefore, z∗ must be a partial optimum. If there exist further accumulation points, their
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function values must equal f(z∗) due to Theorem 4.5.
Suppose that additionally condition 3 is satisfied, but ‖zi+1 − zi‖ > δ for infinitely many
i ∈ N and δ > 0. Then the sequences {zi}i∈N and {zi+1}i∈N again have accumulation
points z∗ and z+ with ‖z+ − z∗‖ ≥ δ. In particular, z+ 6= z∗. As above we see that
z+ ∈ A(z∗) and f(z+) = f(z∗). But by Lemma 4.8 it follows that f(z+) < f(z∗) which
gives a contradiction. Thus the sequence {‖zi+1−zi‖}i∈N converges to 0, and since {zi}i∈N
is bounded the accumulation points form a compact continuum (cf. Ostrowski, 1966, p.
203). ¤

Note that in Theorem 4.9 the problems (9) and (10) must be uniquely solvable only for the
set of accumulation points but not for an arbitrary element of the sequence {zi}i∈N. For
a biconvex function f uniqueness of the solutions is automatically guaranteed in practice
if, for example, f is strictly convex as a function of y for fixed x and vice versa.
Unfortunately, Theorem 4.9 still does not guarantee the convergence of the sequence
{zi}i∈N but is close enough for all practical purposes. Note that statements similar to
Theorem 4.9 can be found in the literature, e.g., for CCM in Bazaraa et al. (1993). But
for ACS the assumptions the Theorem 4.9 are weaker since the biconvex structure is used.

Corollary 4.10 Let X ⊆ Rn and Y ⊆ Rm be closed sets and let f : X × Y → R be
a differentiable function. Furthermore, let the sequence {zi}i∈N generated by the ACS
algorithm be contained in a compact set, and for each accumulation point z∗ = (x∗, y∗)
of the sequence {zi}i∈N let the optimal solutions of both (9) with y = y∗ and (10) with
x = x∗ be unique. Then all accumulation points z∗ which lie in the interior of X × Y are
stationary points of f .

Proof: This is an immediate consequence of Theorem 4.2 and Theorem 4.9. ¤

It is obviously clear that for every stationary point z∗ := (x∗, y∗) ∈ B of a differentiable,
biconvex function f there exists a non-empty set S of starting points such that z∗ is an
outcome of the ACS algorithm when the optimal solutions of both (9) with y = y∗ and
(10) with x = x∗ are unique, since all points of the form (x, y∗) ∈ B will lead to z∗ within
one iteration. So theoretically, all stationary points of f can be generated by ACS.
Furthermore, it can be shown that if the assumptions of Theorem 4.9 are satisfied and X
and Y are subsets of R (i.e., ACS simplifies to CCM), the generated compact continuum
C simplifies to a singleton, i.e., the sequence {zi}i∈N is actually convergent.
Although an accumulation or limit point z∗, generated by Algorithm 4.1, might be a
partial optimum, it neither has to be a global nor a local optimum to the given biconvex
optimization problem even if z∗ is stationary, as stationary points can be saddle points of
the given function. To see this for the case when f is not everywhere differentiable over
its whole domain we consider:

Example 4.4 (Goh et al. (1994)) Let the function f : R× R→ R be given by

f(x, y) := max {y − 2x, x− 2y,
1
4
(x2 + y2 − 16)}.

As the pointwise maximum of three convex functions f is convex and thus also biconvex
(cf. Lemma 3.5 and Theorem 3.6). Let M (1) and M (2) denote the points (−4, 2) and
(2,−4), respectively, and define two sets C(1) and C(2) by

C(1) = {z ∈ R2 : ‖z −M (1)‖ ≤ 6}
C(2) = {z ∈ R2 : ‖z −M (2)‖ ≤ 6}.
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A calculation shows that

f(x, y) =





y − 2x for (x, y) ∈ C(1) ∩ {(x, y) ∈ R2 : x ≤ y}
x− 2y for (x, y) ∈ C(2) ∩ {(x, y) ∈ R2 : x ≥ y}

1
4(x2 + y2 − 16) for (x, y) ∈ R2 \ (C(1) ∪ C(2)).

Furthermore, f is continuous but not everywhere differentiable, since it has non-smooth
transitions between the three regions defined above. Nevertheless, f has a global minimum
at z∗ = (2, 2) and the two convex optimization problems (9) and (10) given by the ACS
algorithm are well-defined and always have unique solutions.
If this procedure is applied to f with a starting-point z0 = (x0, y0) ∈ R × [2,−4], the
algorithm will converge to the point ζ := (y0, y0) within one iteration. But ζ is clearly
not a minimum of f for y0 ∈]2,−4].
Due to the symmetry of the problem, the result remains true if the first optimization in
Step 2 of the algorithm is performed over the y-variables and x0 is given in the interval
[2,−4].

What might happen in the cases when the domain of f is not of the form X × Y or the
set of accumulation points is not a part of the interior of X × Y ? As the next example
shows it is possible that, depending on the starting point, the resulting limit point of the
ACS algorithm need not to be the global or a local minimum in most cases.
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Figure 7: The dashed lines mark the feasible set B of the problem in Example 4.5. The
bold line in the first picture illustrates the set of optimal solutions for varying y ∈ [0; 1.5]
with f optimized in x-direction. The bold line in the second picture shows the optimal
solutions for varying x ∈ [0; 1.5] with f optimized in y-direction, while in the third picture
the bold lines mark the set of possible outcomes M of the ACS algorithm depending on the
chosen starting point.

Example 4.5 (Floudas and Visweswaran (1990), mod.) Consider the biaffine, con-
strained minimization problem

min
x,y

−x + xy − y

s.t. −6x + 8y ≤ 3

3x− y ≤ 3

x, y ∈ [0; 1.5]
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which has a local minimum at the boundary point z(1) = (0.916, 1.062) and a global one
at the boundary point z(2) = (1.167, 0.5). Denote the feasible set by B and the objective
function by f . Since the objective function is affine for fixed x or y in [0; 1.5], the minimal
value of f for fixed x or y is attained in a boundary point of B. If we apply a constrained
version of the ACS method to solve the problem given above, a calculation shows that
every point of the set

M := {(x, y) : 3x− y = 3, y ∈ [0; 1]} ∪ {(x, y) : −6x + 8y = 3, y ∈]1; 1.125]} ∪ {(1.5, 1.5)}

is a possible outcome of the algorithm, depending on the chosen starting point (see Fig-
ure 7). Furthermore, the set of starting points which lead to the global as well as to the
local optimum is a discrete point set, and for a starting point z0 with y0 ∈ [0; 1[, only
the choice y0 = 0.5 results in the global optimum. For y0 ∈ [0; 1[, the local minimum z(1)

is never obtained. Hence the ACS algorithm, applied to the problem given above, can
provide a point which is far away from being a global or local minimum of the problem.

To find the global optimum of a biconvex minimization problem by ACS, a multistart
version of ACS can be used (like, e.g., suggested in Goh et al. (1994)). But as we have seen
in the last example, there is no guarantee to find the global optimum within a reasonable
amount of time or to be sure that the actual best minimum is the global one.

We conclude this subsection with a survey of classes of optimization problems where
variants of the ACS method are frequently used to solve biconvex minimization problems
in practice. One of these classes are the Location-Allocation Problems (LAP) in Loca-
tion Theory. Examples for these types of problems are the Multisource Weber Problem
(MWP), first formally stated by Cooper (1963), or the K-Connection Location Problem
(KCLP) in the plane (see Huang et al., 2005) which can be seen as an extension of the
classical MWP. In these problems, m new facilities (m > 1) have to be placed in the plane
and allocated to a set of n given existing facilities (or demand points) such that given
demands of the existing facilities are satisfied and the total transportation cost between
the existing and the new facilities is minimized. Note that the definition of the total
transportation cost depends on the specific problem. This class of optimization problems
has a biconvex objective function which is neither convex nor concave (cf. Cooper (1963)
for the MWP). A well-known heuristic approach to the classical MWP which can also
be applied to general LAP’s is the alternate location and allocation algorithm developed
by Cooper (1964) that alternates between a location and an allocation phase until no
further improvement can be achieved. This corresponds to the ACS approach applied to
the given LAP. A general survey on the application of Location-Allocation methods in
Location Theory can be found, for example, in Hodgson et al. (1993) and Plastria (1995).
If we apply the above developed convergence results of the ACS algorithm to the special
cases of MWPs and KCLAPs, respectively, we can state that Theorem 4.5 holds true in
both cases since the objective function is always non-negative. So, the generated sequence
of function values always converges. Furthermore, since the m new facilities lie within the
convex hull of all existing facilities if the distance function is chosen appropriately (this
is true, e.g., for Euclidean distances) and the decision variables are restricted to {0, 1},
also item (1.) in Theorem 4.9 applies in both cases. But since neither the position of the
new locations nor the partition of the decision variables need to be unique in general, no
further results in the decision space can be given in general.
In medical image analysis an ACS approach can be used to register two medical images.
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In general, a registration problem is a problem where two given data sets have to be
rendered in a joint coordinate system such that corresponding features of the two data
sets are aligned. In medical image registration the two data sets normally correspond
to 2- or 3-dimensional images, the template image T which has to be mapped onto the
reference image R by an appropriate transformation f which can be a rigid function, i.e.,
a combination of rotations and translations, or a non-rigid function. In practice, rigid
transformations are used for registration when it is known that both images T and R
show the same part of the body but from a different perspective. Furthermore, they are
used to detect morphological changes of an organ (e.g., the growth of a tumor) while
non-rigid transformations are normally applied to compensate those changes.
One way to formulate the described registration problem is to select a set of charac-
teristical points X = {x1, . . . , xI} in the template image T and a set of corresponding
characteristical points Y = {y1, . . . , yJ} in the reference image R. Then the transforma-
tion f : T → R is chosen from a set F of feasible transformations such that the sum of the
distances between each image point f(xi) ∈ R (xi ∈ X) and its closest point yj ∈ Y in
the reference set is minimized. This approach leads to the following generalized biconvex
assignment problem

min
f,z

I∑
i=1

J∑
j=1

zij‖f(xi)− yj‖2

s.t.
J∑

j=1
zij = 1, i = 1, . . . , I,

zij ∈ {0, 1}, i = 1, . . . , I, j = 1, . . . , J,

f ∈ F ,

(11)

where zij equals 1 if the point xi ∈ X is assigned to the point yj ∈ Y , i.e., yj is the
closest point to f(xi) in Y . Otherwise, zij is set to 0. Note that the binary constraints
on the assignment variables zij can be relaxed to zij ∈ [0, 1] since the assignment matrix
is totally unimodular.
A common solution approach to problem (11) is the Iterative Closest Point (ICP) al-
gorithm which was developed by Besl and McKay (1992) and corresponds to the ACS
approach. The algorithm alternates between an assignment step in which the points
f(xi) ∈ R are assigned to their closest neighbor in Y and a step in which a new transfor-
mation function f is chosen until no further improvement is achieved. For further details
we refer to Zitová and Flusser (2003) where a survey on image registration can be found,
and to Besl and McKay (1992) for information on the ICP algorithm. From the theoretical
point of view, we get the same results as in the case of the LAPs. The given objective
function is always non-negative, so the sequence of function values produced by the ICP
algorithm is convergent by Theorem 4.5. Usually, the set of all feasible transformations
F can be restricted such that the transformations are determined by only a finite number
of parameters which are contained in a compact subset of Rn. In this case, the feasi-
ble set of the problem is compact and the sequence generated by the ICP algorithm has
an accumulation point in the decision space by Theorem 4.9. Since neither the chosen
transformation nor the assignment variables need to be unique, no further results can be
obtained in general.
Another field where ACS is frequently used as a standard approach is the field of (robust)
control theory. For example, the Biaffine Matrix Inequality (BMI) Feasibility Problem,
stated, e.g., in Goh et al. (1994), can be solved by the ACS method. But since the BMI
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problem has a non-smooth objective function, in general no global or local minimum
can be determined by using the ACS approach (cf. Example 4.4). So, other non-convex
optimization methods have to be considered to obtain an optimal solution for the BMI
problem. For further details see, e.g., Goh et al. (1994) and Goh et al. (1995).

4.2.2 The Global Optimization Algorithm

In this subsection we review an algorithm for constrained biconvex minimization prob-
lems which exploits the convex substructure of the problem by a primal-relaxed dual
approach. The algorithm is called Global Optimization Algorithm (GOP) and was de-
veloped by Floudas and Visweswaran (1990). The method follows decomposition ideas
introduced by Benders (1962) and Geoffrion (1972). Like in the second step of the ACS
method, the constrained problem is firstly solved for a fixed value of the y-variables which
leads to an upper bound on the solution of the biconvex problem. This problem is called
primal problem. To get a lower bound to the solution, duality theory and linear relaxation
are applied. The resulting relaxed dual problem is solved for every possible combination
of bounds in a subset of the x-variables, the set of connected x-variables. By iterating
between the primal and the relaxed dual problem a finite ε-convergence to the global op-
timum can be shown.
In the following, we focus on the assumptions that have to be satisfied by the given bi-
convex minimization problem so that the GOP algorithm can be applied to this problem.
A deeper description of the mathematical background and a detailed outline of the al-
gorithm are given in Floudas and Visweswaran (1990), Floudas and Visweswaran (1993)
and the books Floudas (1995) and Floudas (2000). We shortly review convergence results
and give a short survey on the optimization fields in which the algorithm is used.
We consider an optimization problem of the form

min
x,y

f(x, y)

s.t. g(x, y) ≤ 0

h(x, y) = 0

x ∈ X, y ∈ Y,

(12)

where X and Y are compact convex sets, and g(x, y) and h(x, y) are vectors of inequality
and equality constraints. The functions must be differentiable and they must be given in
explicit form. Furthermore, the following conditions, denoted by Conditions (A), need to
be satisfied (cf. Floudas, 2000, Chapter 3.1)

1. f is biconvex on X × Y .

2. g is biconvex on X × Y .

3. h is biaffine on X × Y .

4. An appropriate first order constraint qualification is satisfied for fixed y.

Note that, for example, in Floudas (2000) partitioning and transformation methods for
the variable set of quadratic programming problems are suggested so that it is possible
to transform this class of problems into a problem of type (12) where Condition (A) is
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satisfied automatically.
Now, let

V := {y : h(x, y) = 0, g(x, y) ≤ 0 for some x ∈ X},
then the following ε-convergence result for the GOP algorithm holds:

Theorem 4.11 (Floudas (2000)) If X and Y are non-empty compact convex sets sat-
isfying that Y ⊂ V , f , g, and h are continuous on X × Y , the set U(y) of optimal
multipliers for the primal problem is non-empty for all y ∈ Y and uniformly bounded
in some neighborhood of each such point and Condition (A) is satisfied, then the GOP
algorithm terminates in a finite number of steps for any given ε > 0.

For the resulting solution it holds:

Corollary 4.12 (Floudas (2000)) If the conditions stated in Theorem 4.11 hold, the
GOP algorithm will terminate at the global optimum of the biconvex minimization problem.

What are the advantages and drawbacks of the GOP algorithm? As mentioned above,
one of the advantages of the algorithm is the fact that the primal problem which has to be
solved in the first step of each iteration is a convex problem. Hence, every local optimum
is the global minimum of the subproblem. Furthermore, the set of constraints for the
convex subproblem often simplifies to linear or quadratic constraints in the x-variables so
that the primal problem can be solved by any conventional non-linear local optimization
solver. As another advantage of this approach can be seen that the relaxed dual problem
has only to be solved in the connected x-variables. This might reduce the number of
variables for which the relaxed dual problem has to be solved. For further details see, e.g.,
Floudas (2000).
The main drawback of the GOP algorithm is the fact that in each iteration of the al-
gorithm, 2|I| in general non-linear subproblems have to be solved to obtain a new lower
bound to the problem, where I denotes the set of the connected x-variables. In fact, in
each iteration a total enumeration of all possible assignments of the connected x-variables
to their lower and upper bounds is done and the relaxed dual problem is solved for every
combination of these bounds. In Floudas (2000), several improvements of the algorithm,
depending on the structure of the given biconvex problem, are given to reduce the number
of relaxed dual problems.
The GOP algorithm is a useful tool for different classes of practical optimization prob-
lems. Visweswaran and Floudas (1990), Visweswaran and Floudas (1993), and Floudas
(2000) discuss, among others, quadratic problems with linear constraints, quadratically
constrained problems, and univariate polynomial problems. Furthermore, an application
to bilevel linear and quadratic problems, a practical approach to phase and chemical equi-
librium problems as well as an implementation and computational studies of the GOP
algorithm can be found there.
In Barmish et al. (1995) a solution algorithm for some open robustness problems includ-
ing matrix polytope stability is stated which was influenced by the ideas of the GOP
approach. There the optimization on the x-variables is carried out in the usual way (i.e.,
for fixed y) to get a valid upper bound. The optimization on the y-variables is done by
a “relaxation” process where the relaxation is refined at each subsequent iteration step.
By an accumulation of the resulting constraints better lower bounds on the problem are
obtained in each step of the iteration and an ε-convergence to the optimum can be proved.
Note that for the problems stated Barmish et al. (1995), only a finite number of linear
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programs have to be solved to get an ε-global optimum.
A convex minimization problem with an additional biconvex constraint is considered in
the paper of Tuyen and Muu (2001). There, a convex criterion function of a multiple
objective affine fractional problem has to be minimized over the set of all weakly efficient
solutions of the fractional problem. As in the GOP algorithm, Lagrangian duality and a
simplicial subdivision is used to develop a branch and bound algorithm which is proven
to converge to a global ε-optimal solution of the problem.

4.2.3 Jointly Constrained Biconvex Programming

In this subsection we concentrate on a special case of a jointly constrained biconvex
programming problem, firstly considered in Al-Khayyal and Falk (1983). The specific
problem is given by

min
(x,y)

Φ(x, y) = f(x) + xty + g(y)

s.t. (x, y) ∈ S ∩ Ω,
(13)

where

1. f and g are convex over S ∩ Ω,

2. S is a closed, convex set, and

3. Ω = {(x, y) : l ≤ x ≤ L, m ≤ y ≤ M}.
Since the functions f and g are convex, the objective function Φ is biconvex on S ∩ Ω.
Problem (13) can be seen as a generalization of an ordinary bilinear programming problem
which is of the form

min
(x,y)

ctx + xtAy + dty

s.t. x ∈ X, y ∈ Y,
(14)

where c ∈ Rn and d ∈ Rn are given vectors, A is an (n × n)-matrix and X and Y are
polytopes in Rn. The above given biconvex problem is more general since it allows joint
constraints in (x, y) and non-linear, convex subfunctions f and g in Φ. The bilinear
problem (14) can be transformed into the biconvex problem (13) by replacing the term
xt (Ay) by xt z and including the linear constraint z = Ay among the constraints defining
the feasible set.
While bilinear problems of the form (14) always have extreme-point solutions in X∗× Y ∗

(cf. Horst and Tuy, 1990), where X∗ and Y ∗ denote the set of extreme-points of the
polytopes X and Y , respectively, this is no longer the case for biconvex problems of the
form (13) (cf. Al-Khayyal and Falk, 1983). Nevertheless, if the objective function Φ is
also a biconcave function which is optimized over a compact, convex set C ⊂ Rn × Rn,
then it can be shown that if the minimum of Φ over C exists, it is achieved in at least one
boundary point of C (cf. Al-Khayyal and Falk, 1983).
Al-Khayyal and Falk (1983) used a pattern of Falk and Soland (1969) to develop a branch
and bound algorithm for solving the jointly constrained biconvex problem (13). The
necessary bounds are obtained by employing convex envelopes.

Definition 4.4 (Floudas (2000)) Let f be a lower semicontinuous function defined on
a non-empty convex set C ⊆ Rn. Then the convex envelope of f on C is a function
ΨC(f) : C → R that satisfies:
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1. ΨC(f) is convex on C.

2. ΨC(f(x)) ≤ f(x) for all x ∈ C.

3. If h is any convex function defined on C such that h(x) ≤ f(x) for all x ∈ C, then
h(x) ≤ ΨC(f(x)) for all x ∈ C.

Note that the convex envelope of f is obtained by taking the pointwise supremum of
all convex (or linear) functions which underestimate f over C (cf. Al-Khayyal and Falk,
1983).
Since

ΨΩ(xty) =
n∑

i=1
ΨΩi

(xiyi) ∀ (x, y) ∈ Ω,

ΨΩ(xty) = xty ∀ (x, y) ∈ ∂Ω,

and ΨΩi
(xiyi) can easily be calculated (cf. Al-Khayyal and Falk, 1983),

F (x, y) := f(x) + ΨΩ(xty) + g(y)

is a convex underestimator of Φ on S ∩ Ω that coincides with Φ on ∂Ω and is used to
calculate lower bounds of the objective functions.
Now the algorithm works as follows: In the first step the minimization problem (13)
is solved with F instead of Φ as objective function which leads to an optimal point
z1 = (x1, y1) ∈ S ∩ Ω and valid lower and upper bounds F (z1) and Φ(z1). If F (z1) =
Φ(z1), then z1 is optimal. Otherwise, there exists at least one i ∈ {1, . . . , n} such that
ΦΩi(xiyi) < xiyi. So, the index i that leads to the largest difference between xiyi and
ΦΩi(xiyi) is chosen, and the ith rectangle Ωi is split up into four subrectangles. Then new
bounds are calculated in each of the resulting four new hyper-rectangles. This leads to a
point z2 and new lower and upper bounds for f which can be shown to be tighter than
the bounds of the last iteration. If F (z2) = Φ(z2) the algorithm stops, otherwise a new
refinement is performed. By iteratively applying this procedure, it can be shown that the
algorithm converges to a global optimum of problem (13).
Horst and Tuy (1990) presented in their book a modified version of the algorithm which
differs from the original one in the choice of the new iterate zk and the subdivision rule
which is based on bisection there. In Al-Khayyal (1990) the author strengthened the
algorithm by also evaluating the concave envelope of the problem. In Audet et al. (2000)
a short overview of papers which concentrate on the application of the algorithm to bilinear
programming problems and quadratically constrained quadratic programming problems
is given.
Another algorithm for a special type of functions f and g of problem (13) is developed
in Sherali et al. (1994) and Sherali et al. (1995) for risk management problems. Instead
of working with the convex envelope, the authors used a specialized implementation of
Geoffrion’s Generalized Benders’ decomposition (see Geoffrion, 1972). With the help of a
projection method and dual theory, an alternative graphical solution scheme is proposed
that enables the decision maker to interact subjectively with the optimization process.

5 Conclusion

In this paper we gave a survey on optimization problems with biconvex sets and biconvex
functions and reviewed properties of these sets and functions given in the literature. We
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stated a new result for the case that the maximum of a biconvex function f is attained
in the relative interior of a biconvex set B by assuming further, rather weak topological
properties on B. We showed that under these assumptions f must be constant throughout
B.
Existing methods and algorithms, specially designed for biconvex minimization problems
which primarily exploit the convex substructures of the problem, were discussed for the
constrained as well as for the unconstrained case. In particular, we showed that an alter-
nating convex search approach, a primal-relaxed dual approach, as well as an approach
that uses the convex envelope of parts of the biconvex objective function are suitable for
solving biconvex optimization problems using the special properties of these problems.
For each of these methods different practical applications as well as applications to the
bilinear and biaffine case were discussed. We recalled that under appropriate assumptions
the primal-relaxed dual approach as well as the approach that uses the convex envelope
lead to a global optimum while the alternating approach in general only finds partial op-
tima and stationary points of the objective function, respectively. The advantage of this
approach is that it can be applied to any biconvex minimization problem while for the
other approaches additional properties for the given objective function as well as for the
feasible set must be satisfied.
Further fields of research related to biconvex sets and functions are separation theorems
of disjoint biconvex sets with biconvex functions (Aumann and Hart, 1986). Also im-
provements of the given minimization algorithms are of interest, especially of the ACS
method.
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Zitová, B. and J. Flusser (2003). Image registration methods: A survey. Image and Vision
Computing 21, 977–1000.


