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Abstract. A bicriterion problem of scheduling jobs on a single machine is studied. The pro-
cessing time of each job is a linear decreasing function of the amount of a common discrete resource
allocated to the job. A solution is specified by a sequence of the jobs and a resource allocation.
The quality of a solution is measured by two criteria, F1 and F2. The first criterion is the maximal
or total (weighted) resource consumption, and the second criterion is a regular scheduling criterion
depending on the job completion times. Both criteria have to be minimized. General schemes for
the construction of the Pareto set and the Pareto set ε-approximation are presented. Computational
complexities of problems to minimize F1 subject to F2 ≤ K and to minimize F2 subject to F1 ≤ K,
where K is any number, are studied for various functions F1 and F2. Algorithms for solving these
problems and for the construction of the Pareto set and the Pareto set ε-approximation for the
corresponding bicriterion problems are presented.
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1. Introduction. Scheduling problems with resource dependent job parameters
could be found in many practical settings (see, for example, Williams (1985) and
Janiak (1991)). The study of single machine scheduling problems with resource de-
pendent job processing times was initiated by Vickson (1980a), (1980b). A survey of
the results for this class of problems was provided by Nowicki and Zdrzalka (1990).
Most research in this area has focussed on single criterion problems. In practice,
however, quality is a multidimensional concept (Willborn and Cheng (1994)) and so
it is apposite to study scheduling problems with multicriterion objective functions.
Bicriterion single machine scheduling problems with fixed job parameters have been
well studied in recent years. Some remarkable work in this area has been done by
Hoogeveen (1992) and Lee and Vairaktarakis (1993).

There are many practical scheduling situations in which the effectiveness of a
schedule can be improved through an adequate allocation of resources to the jobs to
be processed by a facility. For example, in project scheduling, the project-completion
time can be compressed if additional resources are allocated to speed up the processing
of the critical tasks. However, in reality, resources are usually costly production factors
limited in supply. Therefore, a firm aims either to minimize the resource consumption
subject to a given level of service or to maximize the service level subject to some
resource constraints. In this paper, we study the bicriterion single machine scheduling
problem with linear resource dependent job processing times.
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618 T. C. E. CHENG, A. JANIAK, AND M. Y. KOVALYOV

The problem may be stated as follows. There are n independent nonpreemptive
jobs to be processed on a single machine and a single discrete resource which can be
allocated to jobs. Each job j becomes available for processing at time zero and has a
due date dj and a resource dependent processing time

pj = bj − ajxj .

Here bj is the normal processing time of job j that can be compressed by an amount
of ajxj if xj units of a resource are allocated to this job; aj is the unit processing
time compression for job j. There is a limit on the amount xj of the resource that
can be allocated to job j:

xj ∈ {0, 1, . . . , τj}.

Due to the nonnegativity of processing times, τj ≤ bj/aj is assumed for j = 1, . . . , n.
A solution is specified by a sequence of the jobs and a resource allocation (x1, . . . ,

xn). For any solution, the completion time Cj of each job j is easily determined. The
quality of a solution is measured by two criteria, F1 and F2. The first criterion F1 is
the maximal or total (weighted) resource consumption, and the second criterion F2 is
a regular scheduling criterion depending on the job completion times. Both criteria
have to be minimized.

Two weights vj and wj are associated with each job j. A weight vj indicates a
relative importance of job j with respect to a resource consumption criterion, while a
weight wj indicates its relative importance with respect to some scheduling criterion.
We consider F1 ∈ {gmax,

∑
xj ,
∑
vjxj} and F2 ∈ {fmax, Cmax,

∑
Uj ,
∑
wjUj ,

∑
Cj ,∑

wjCj}, where Uj = 0 if Cj ≤ dj and Uj = 1 otherwise, gmax = max{gj(xj)} and
fmax = max{fj(Cj)} with nondecreasing functions gj and fj , and Cmax = max{Cj}.
Here and below we assume that each maximum or summation is taken over all j.
All data, decision variables, and values of the functions gj and fj are assumed to be
nonnegative integers.

There are several approaches to attaining optimality in multicriterion optimiza-
tion. In our paper, the criteria are independent; i.e., it is not required to minimize
F1 on the set of solutions minimizing F2 and vice versa. In this case, the aim of
the decision maker is to find a set of nondominated solutions. A solution is said to
be nondominated if it outperforms any other solution on at least one criterion. A
nondominated solution is also called a Pareto optimal solution. We note that there
is no unique nondominated solution for our problem. A solution that performs well
on one criterion may perform poorly on the other criterion. Indeed, if the jobs get
fewer units of the resource, then a resource consumption, i.e., criterion F1, decreases.
However, the job processing times pj increase in this case leading to increasing of job
completion times Cj and, consequently, criterion F2.

We now give formal definitions for the Pareto optimal solution, the Pareto set,
and the Pareto set ε-approximation. Let S be the set of all feasible solutions to our
problem.

DEFINITION 1.1. A feasible solution s ∈ S is Pareto optimal if there is no feasible
solution q ∈ S such that F1(q) ≤ F1(s) and F2(q) ≤ F2(s), where at least one of the
inequalities is strict.

DEFINITION 1.2. The Pareto set P is a set of Pareto optimal solutions such that
there are no two solutions s, q ∈ P with values F1(s) = F1(q) and F2(s) = F2(q).D
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BICRITERION SINGLE MACHINE SCHEDULING 619

DEFINITION 1.3. Given ε > 0, the Pareto set ε-approximation Pε is a set such
that for any Pareto optimal solution s ∈ P , there is a solution q ∈ Pε satisfying

F1(q) ≤ (1 + ε)F1(s) and F2(q) ≤ (1 + ε)F2(s).

The paper is organized as follows. In the next section, we describe general schemes
for the construction of the Pareto set and the Pareto set ε-approximation. In each
iteration of these schemes, a Pareto optimal solution s ∈ P and a solution q ∈ Pε,
respectively, are found. An application of these schemes implies the existence of algo-
rithms for solving the problems of minimizing F1 subject to F2 ≤ K and minimizing
F2 subject to F1 ≤ K, where K is a given number. In the following section, we provide
computational complexity classification of various special cases of latter problems. In
the fourth section, we present several dynamic programming formulations and approx-
imation algorithms for the problems with F1 =

∑
vjxj and F2 ∈ {fmax,

∑
wjUj}.

We derive a new dynamic rounding technique to develop (1 + ε)-approximation algo-
rithms. This technique not only rounds the problem parameters, as it is usually done
in rounded dynamic programming (see Sahni (1977), Lawler (1982), Hansen (1980),
Gens and Levner (1981), etc.), it also modifies the corresponding dynamic program.

2. General schemes. In this section, we describe general schemes for the con-
struction of the Pareto set P and the Pareto set ε-approximation Pε for our general
problem.

It is convenient to adopt the three field notation of Graham et al. (1979) to
denote our type of problems. In this notation, 1/β/γ, the first field denotes the single
machine processing system. The second field, β ⊂ {bj = b, aj = a, τj = τ, dj = d},
specifies some job characteristics (equal bj , aj , τj , or dj , respectively). The third field
is γ ∈ {(F1, F2), (F1 ≤ K,F2), (F1, F2 ≤ K)}, where (F1, F2) indicates the problem
of finding the Pareto set, while (F1 ≤ K,F2) and (F1, F2 ≤ K) indicate the problem
of minimizing F2 subject to F1 ≤ K and the problem of minimizing F1 subject to
F2 ≤ K, respectively. Our general problem is represented by 1//(F1, F2).

Let s1 and s2 be optimal solutions for the criteria F1 and F2, respectively:

F1(s1) = min{F1(s)|s ∈ S} and F2(s2) = min{F2(s)|s ∈ S}.

It is apparent that for each Pareto optimal solution s ∈ P we have

F1(s1) ≤ F1(s) ≤ F1(s2) and F2(s2) ≤ F2(s) ≤ F2(s1).

We now present a straightforward algorithm B for the construction of the Pareto
set P for the general problem 1//(F1, F2). Set K1 = F2(s1). In each iteration
i = 1, . . . , l of this algorithm, we first solve the problem 1//(F1, F2 ≤ Ki). Let
F

(i)
1 be the minimal solution value for this problem. Then we solve the problem

1//(F1 ≤ F (i)
1 , F2). If s(i) is an optimal solution to the latter problem, then s(i) ∈ P .

We set Ki+1 = F2(s(i))− 1 and go to the next iteration. Algorithm B is terminated
when F1(s(i)) = F1(s2). A formal description of Algorithm B is given below.

Algorithm B.
Step 1. Compute F2(s1) and F1(s2). Set P = ∅, i = 1, and Ki = F2(s1).
Step 2. Find the minimal solution value F (i)

1 to the problem 1//(F1, F2 ≤ Ki). Find
the optimal solution s(i) to the problem 1//(F1 ≤ F (i)

1 , F2). Set P = P ∪ s(i).
If F (i)

1 = F1(s2), then stop: the Pareto set P is constructed. Otherwise, set
Ki+1 = F2(s(i))− 1, i = i+ 1, and repeat Step 2.D
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620 T. C. E. CHENG, A. JANIAK, AND M. Y. KOVALYOV

THEOREM 2.1. Algorithm B constructs the Pareto set P for the problem 1//(F1,
F2) in O(|P |(T1 + T2)) time, assuming that the problems 1//(F1, F2 ≤ K) and
1//(F1 ≤ K,F2) are solved in O(T1) and O(T2) time, respectively, for any K.

Proof. It is evident that s(1) ∈ P and, for every s ∈ P − {s(1)}, we have F2(s) <
F2(s(1)). Our inductive assumption is that in each iteration i of the algorithm B
we have s(i) ∈ P and inequality F2(s) < F2(s(i)) is satisfied for every s ∈ P −
{s(1), . . . , s(i)}. If this assumption is correct for all i used in the algorithm, then the
algorithm is also correct. Indeed, it follows from the description of the algorithm
that F2(s(1)) > F2(s(2)) > · · · > F2(s(i)). Furthermore, according to our assumption
we have F2(s(i)) > F2(s) for every s ∈ P − {s(1), . . . , s(i)}. We then deduce that
s(i+1) 6= s(j), j = 1, . . . , i,; i.e., a solution found in iteration i + 1 is a new element
from P . Since F2(s) ≥ F2(s2) for all s ∈ P and algorithm B is terminated when a
solution with value F2(s2) is found, all elements s ∈ P will be found and no element
s′ 6∈ P can be found by Algorithm B.

Let our inductive assumption be satisfied for j = i. We show that it is also
satisfied for j = i+ 1.

Consider the problem 1//(F1, F2 ≤ Ki+1), where Ki+1 = F2(s(i))−1. Due to the
integrality of all parameters, F2 ≤ Ki+1 is equivalent to F2 < F2(s(i)). Since F (i+1)

1 is
the minimal solution value for this problem, there is no feasible solution s ∈ S, F2(s) <
F2(s(i)) such that F1(s) < F

(i+1)
1 = F1(s(i+1)). Moreover, s(i+1) minimizes F2 subject

to F1(s) = F1(s(i+1)). Therefore, due to the definition of the Pareto set P , there is
only one solution s ∈ P satisfying F2(s(i+1)) ≤ F2(s) < F2(s(i)). Clearly, such a
solution can be s(i+1). Thus, s(i+1) ∈ P and for every s ∈ P − {s(1), . . . , s(i+1)} we
have F2(s) < F2(s(i+1)).

We now establish the time complexity of Algorithm B. In each iteration of Step 2,
one new solution s ∈ P is found. Therefore, the number of these iterations is exactly
|P |. Each iteration requires O(T1 + T2) time. Thus, Step 2 requires O(|P |(T1 + T2))
time, which is the overall time complexity of Algorithm B as well.

We note that the criteria can be switched when constructing Algorithm B. Also,
for the bicriterion problem 1//(F1, F2), at least |P | operations are required to obtain
a solution. Therefore, if problems 1//(F1, F2 ≤ K) and 1//(F1 ≤ K,F2) are poly-
nomially solvable, then Algorithm B is efficient even if |P | is not polynomial in the
problem instance length.

We now present an algorithm for the construction of the Pareto set ε-approximation
Pε for the problem 1//(F1, F2). Assume that lower and upper bounds for the values
F1(s1), F1(s2), F2(s1), and F2(s2) are known such that

0 < L1 ≤ F1(s1) ≤ F1(s2) ≤ U1 and 0 < L2 ≤ F2(s2) ≤ F2(s1) ≤ U2.

It is apparent that for each Pareto optimal solution s ∈ P , we have

L1 ≤ F1(s) ≤ U1 and L2 ≤ F2(s) ≤ U2.(1)

In our Algorithm Bε for finding the Pareto set ε-approximation Pε, the interval
[L2, U2] is divided into subintervals by the points al, l = 0, 1, . . . , k, so that al =
(1 + ε/2)lL2 for l = 0, 1, . . . , k − 1 and ak = U2. The number of these points k is
defined so that ak ≤ (1 + ε/2)ak−1; i.e., k ≤ 1 + log(1+ε/2)(U2/L2).

For each l, l = 1, . . . , k, a procedure B(l) is applied. It is assumed that B(l) has
the following property. If there exists a Pareto optimal solution s ∈ P with a value
F2(s) ≤ al, then B(l) finds a solution s(l) ∈ S such that

F2(s(l)) ≤ al + εal−1/2, F1(s(l)) ≤ (1 + ε) min{F1(q)|q ∈ P, F2(q) ≤ al}.(2)
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BICRITERION SINGLE MACHINE SCHEDULING 621

The set Pε is the set of all solutions s(l) found by B(l) for l = 1, . . . , k. Below
we present an approach to constructing the procedure B(l). We now give a formal
description of the algorithm Bε, assuming that the procedure B(l) is determined.

Algorithm Bε.
Step 1. Set Pε = ∅, a0 = L2, and l = 1.
Step 2. If (1 + ε/2)al−1 < U2, then set al = (1 + ε/2)al−1; otherwise, set al = U2.

Apply the procedure B(l). If it finds a solution s(l) ∈ S satisfying (2), then
set Pε = Pε ∪ s(l). If (1 + ε/2)al−1 < U2, then set l = l + 1 and repeat Step
2; otherwise, stop: the Pareto set ε-approximation Pε is constructed.

THEOREM 2.2. Algorithm Bε constructs the Pareto set ε-approximation for the
problem 1//(F1, F2) in O(T log(1+ε/2)(U2/L2)) time, assuming that for l = 1, . . . , k,
the procedure B(l) finds a solution s(l) ∈ S satisfying (2) in O(T ) time if there exists
a Pareto optimal solution s with a value F2(s) ≤ al.

Proof. Consider any Pareto optimal solution s ∈ P . Due to the inequalities (1),
there exists a number l, 1 ≤ l ≤ k, such that al−1 ≤ F2(s) ≤ al. Hence, the procedure
B(l) finds a solution s(l) ∈ S such that

F2(s(l)) ≤ al + εal−1/2 ≤ (1 + ε)al−1 ≤ (1 + ε)F2(s),

F1(s(l)) ≤ (1 + ε) min{F1(q)|q ∈ P, F2(q) ≤ al} ≤ (1 + ε)F1(s).

Thus, the Pareto set ε-approximation Pε is constructed by Algorithm Bε.
The number of iterations of Step 2 is at most 1 + blog(1+ε/2)(U2/L2)c, and each

iteration requires O(T ) time. Therefore, the time complexity of the algorithm Bε is
O(T log(1+ε/2)(U2/L2)).

We now give a definition of a (ε, ρ)-approximation algorithm for the problems
1//(F1, F2 ≤ K) and 1//(F1 ≤ K,F2). Let F ∗1 and F ∗2 be the optimal solution values
for these problems, respectively.

DEFINITION 2.3. An approximation algorithm for the problem 1//(F1, F2 ≤ K)
(problem 1//(F1 ≤ K,F2)) is called a (ε, ρ)-approximation algorithm if, for any ε >
0, ρ > 0 and an arbitrary problem instance, it delivers a solution with values F2 ≤
(1 + ρ)K (F1 ≤ (1 + ρ)K) and F1 ≤ (1 + ε)F ∗1 (F2 ≤ (1 + ε)F ∗2 ).

We note that a (ε, ρ)-approximation algorithm for the problem 1//(F1, F2 ≤ al)
can be used as the procedure B(l) in the algorithm Bε if ρ ≤ ε/(2 + ε). Indeed, if
s is a solution delivered by this algorithm, then, using inequality al ≤ (1 + ε/2)al−1
and Definition 2.3, we have F2(s) ≤ (1 + ρ)al ≤ (1 + ε/(2 + ε))al ≤ al + εal−1/2
and F1(s) ≤ (1 + ε) min{F1(q)|q ∈ S, F2(q) ≤ al} ≤ (1 + ε) min{F1(q)|q ∈ P, F2(q) ≤
al}; i.e., (2) is satisfied. In the following section, we give an example of a (ε, 0)-
approximation algorithm for the problem 1//(

∑
vjxj , fmax ≤ K) and a (ε, ρ)-ap-

proximation algorithm for the problem 1//(
∑
vjxj ≤ K,

∑
wjUj).

3. Computational complexity. In this section, we study the computational
complexities of various special cases of the problems 1//(F1, F2 ≤ K) and 1//(F1 ≤
K,F2).

3.1. Problems with F1 = gmax. We first note that for the problem 1//(gmax ≤
K,F2), we can define the optimal resource allocation (x∗1, . . . , x

∗
n) as follows. The

inequality max{gj(xj)} ≤ K is satisfied if and only if xj ≤ g−1
j (K) for all j, where

gj(g−1
j (K)) ≤ K and gj(g−1

j (K) + 1) > K. Clearly, there exists an optimal solution
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622 T. C. E. CHENG, A. JANIAK, AND M. Y. KOVALYOV

to the problem 1//(gmax ≤ K,F2) in which x∗j = min{g−1
j (K), τj} for j = 1, . . . , n.

Hence, this problem reduces to one of finding a sequence of jobs with externally
given processing times pj = bj − ajx∗j to minimize F2. If F2 = max{f(Cj − dj)},
where f is an arbitrary nondecreasing function, then the earliest due date (EDD)
sequence is optimal, where jobs are sequenced in nondecreasing order of their due
dates. If F2 =

∑
wjCj , then the shortest weighted processing time (SWPT) sequence

is optimal, where jobs are sequenced in nondecreasing order of the values pj/wj . If
F2 = fmax or F2 =

∑
Uj , then an optimal sequence can be found in O(n log n) time

using Lawler’s (1973) algorithm or Moore’s (1968) algorithm, respectively. As for the
problem 1//(gmax ≤ K,

∑
wjUj), an evident transformation from the NP-complete

problem Partition (Garey and Johnson (1979)) shows that the decision version of
this problem is NP-complete. Thus, the following theorem holds.

THEOREM 3.1. The problem 1//(gmax ≤ K,F2) is solved in O(n log n) time for
F2 ∈ {fmax,

∑
Uj ,
∑
wjCj} and NP -hard for F2 =

∑
wjUj.

We now show that the problem 1//(gmax, F2 ≤ K) can also be solved in polyno-
mial time for any F2 ∈ {fmax,

∑
Uj ,
∑
wjCj}.

Let F2(x) be the minimal solution value for the criterion F2 subject to the
resource allocation x = (x1, . . . , xn). As it is shown above, the value of F2(x)
and the corresponding job sequence can be found in O(n log n) time for any x and
F2 ∈ {fmax,

∑
Uj ,
∑
wjCj}. Define 0 = (0, . . . , 0) and τ = (τ1, . . . , τn). If F2(0) ≤ K,

then (0, . . . , 0) is an optimal resource allocation to the problem 1//(gmax, F2 ≤ K).
If F2(τ) > K, then there is no solution to this problem. Assume that F2(0) > K
and F2(τ) ≤ K. Define G(x) = max{gj(xj)}, and perform a bisection search in
the range G(0), G(0) + 1, . . . , G(τ) as follows. Set L = G(0) ≥ 0 and R = G(τ).
In each iteration of our search, we calculate M = (L + R)/2 and find the maxi-
mal values xMj , j = 1, . . . , n, for which gmax ≤ M is satisfied. As is shown above,
xMj = min{g−1

j (M), τj} for j = 1, . . . , n. If F2(xM ) > K, set L = M ; if F2(xM ) ≤ K,
setR = M , then go to the next iteration. The procedure is terminated whenR−L < 1.
In this case, xR is an optimal resource allocation to the problem 1//(gmax, F2 ≤ K).
Note that the corresponding optimal job sequence is already found. The number of
iterations of the above procedure is no greater than logG(τ). Thus, we have the
following theorem.

THEOREM 3.2. For F2 ∈ {fmax,
∑
Uj ,
∑
wjCj}, the problem 1//(gmax, F2 ≤ K)

is solved in O(n log n log(max{gj(τj)})) time.
It should be noted that the above bisection search procedure can be generalized to

solve an arbitrary problem 1/β/(F1, F2 ≤ K) if there is an algorithm for the problem
1/β/(F1 ≤ K,F2). This generalized bisection search procedure BS is as follows.

Procedure BS.
Step 1. Define lower and upper bounds for the minimal solution value F ∗1 to the

criterion F1: L ≤ F ∗1 ≤ R. Let F2(M) be the minimal solution value to
the problem 1/β/(F1 ≤ M,F2). If F2(L) ≤ K, then stop: a solution to the
problem 1/β/(F1 ≤ L,F2) is a solution to the problem 1/β/(F1, F2 ≤ K).
If F2(R) > K, then stop: there is no solution to the latter problem. If
F2(L) > K and F2(R) ≤ K, then set E = L,H = R and go to Step 2.

Step 2. If H − E < 1, then stop: a solution to the problem 1/β/(F1 ≤ H,F2) is
a solution to the problem 1/β/(F1, F2 ≤ K). Otherwise, calculate M =
(E + H)/2 and solve the problem 1/β/(F1 ≤ M,F2). If F2(M) > K, set
E = M . If F2(M) ≤ K, set H = M . In either case, repeat Step 2.D
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BICRITERION SINGLE MACHINE SCHEDULING 623

It is evident that the number of iterations of Step 2 does not exceed log(R− L).
If the problem 1/β/(F1 ≤ K,F2) is solved in O(T ) time, then Procedure BS runs in
O(T log(R− L)) time.

Since the criteria F1 and F2 are independent, the same procedure can be employed
to solve the problem 1/β/(F1 ≤ K,F2) if there is an algorithm for the problem
1/β/(F1, F2 ≤ K). Let F ∗2 be the minimal solution value to the problem 1/β/(F1 ≤
K,F2). Then, the following theorem holds.

THEOREM 3.3. If the problem 1/β/(F1 ≤ K,F2) (problem 1/β/(F1, F2 ≤ K))
can be solved in O(T ) time and L ≤ F ∗1 ≤ R (L ≤ F ∗2 ≤ R), then the problem
1/β/(F1, F2 ≤ K) (problem 1/β/(F1 ≤ K,F2)) can be solved in O(T log(R−L)) time
using Procedure BS.

3.2. Problems with F1 =
∑
vjxj. It is evident that the problem 1//(

∑
vjxj ,

fmax ≤ K) is equivalent to one of minimizing
∑
vjxj subject to each job j meeting the

deadline f−1
j (K), which is defined in the same way as g−1

j (K). The latter problem has
been studied by Janiak and Kovalyov (1993). It follows from their research that the
problem 1/bj = b, τj = 1/(

∑
vjxj , Cmax ≤ K) is NP-hard and the problems 1/aj =

a/(
∑
vjxj , fmax ≤ K) and 1//(

∑
xj , fmax ≤ K) are both solvable in O(n log n) time

by a modification of Moore’s (1968) algorithm.
Since for the minimal solution value f∗max for the criterion fmax we have 0 ≤ f∗max

≤ max{fj(
∑n
i=1 bi)}, Theorem 3.3 shows that the problems 1/aj = a/(

∑
vjxj ≤ K,

fmax) and 1//(
∑
xj ≤ K, fmax) can both be solved inO(n log n log(max{fj(

∑n
i=1 bi)}))

time by applying Procedure BS.
The problem with F1 =

∑
vjxj and F2 =

∑
wjUj has been studied by Cheng,

Chen, and Li (1996). They proved that the problem 1/aj = 1, dj = d/(
∑
xj ,
∑
Uj ≤

K) is NP-hard.
We now begin to study the problem with F1 =

∑
vjxj and F2 =

∑
wjCj . As far

as we know, this problem has not been considered in the literature.
THEOREM 3.4. The problem 1/τj = 1/(

∑
vjxj ≤ K,

∑
wjCj) is NP -hard.

Proof. We show that the decision version of the above problem is NP -complete
by a transformation from the NP-complete problem Partition (Garey and Johnson
(1979)). Given positive integers r1, . . . , rn, is there a set Q ⊆ N = {1, . . . , n} such that∑
j∈Q rj = R, where

∑
j∈N rj = 2R? Given any instance of Partition, we construct

an instance of our problem in which there are n+1 jobs with vj = bj = aj = rj , wj = 1
for j ∈ N , bn+1 = an+1 = n3R2, wn+1 = n2R, vn+1 = R + 1, and xj ∈ {0, 1} for all
j. We set K = R and show that there exists a set Q ⊆ N for which

∑
j∈Q rj = R

if and only if there exists a solution to our problem for which
∑n+1
j=1 vjxj ≤ K and∑n+1

j=1 wjCj ≤ L = nR+ n2R(R+ n3R2).
If there is a set Q ⊆ N for which

∑
j∈Q rj = R, then we allocate the resource

so that xj = 1, j ∈ Q, xj = 0, j ∈ N − Q, and xn+1 = 0. We assign job n + 1
to be scheduled last, jobs j ∈ Q to be scheduled first in an arbitrary order, and
jobs j ∈ N − Q to be scheduled after the last job j ∈ Q in an arbitrary order.
For this solution, we have

∑n+1
j=1 vjxj =

∑
j∈Q vj = R = K and

∑n+1
j=1 wjCj =∑

j∈N−Q wjCj+wn+1Cn+1 =
∑
j∈N−Q Cj+n

2R(
∑
j∈N−Q bj+n

3R2) ≤ nR+n2R(R+
n3R2) = L.

Conversely, suppose there is a solution to our problem for which
∑n+1
j=1 vjxj ≤ K

and
∑n+1
j=1 wjCj ≤ L. We note that xn+1 = 0, since otherwise

∑n+1
j=1 vjxj ≥ vn+1 =

K+ 1. Therefore, we have
∑
j∈N vjxj ≤ R and

∑
j∈N,xj=0 rj ≥ R. Furthermore, dueD
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624 T. C. E. CHENG, A. JANIAK, AND M. Y. KOVALYOV

to Smith’s (1956) rule, there exists a schedule for which
∑n+1
j=1 wjCj ≤ L and jobs are

sequenced in nondecreasing order of the values (bj − ajxj)/wj . We have

(bj − ajxj)/wj =

 0 if xj = 1,
rj if j ∈ N,xj = 0,
nR if j = n+ 1.

Thus, we can assume that jobs with xj = 1 are scheduled first, then jobs with
xj = 0 are scheduled, and job n+ 1 is scheduled last. For this schedule we have

L = nR+ n2R(R+ n3R2) ≥
n+1∑
j=1

wjCj =
∑

j∈N,xj=0

Cj + wn+1Cn+1

≥
∑

j∈N,xj=0

rj + n2R

 ∑
j∈N,xj=0

rj + n3R2

 ,

whence it follows that
∑
j∈N,xj=0 rj ≤ R. We deduce that

∑
j∈N,xj=0 rj = R. There-

fore, Partition has a solution.
We now derive a polynomial-time algorithm for the problem 1/aj = a, bj =

b/(
∑
xj ≤ K,

∑
Cj). We first note that, for any resource allocation (x1, . . . , xn),

it is optimal to sequence the jobs in the shortest processing time (SPT) order so as
b− axi1 ≤ b− axi2 ≤ · · · ≤ b− axin ; i.e., xi1 ≥ xi2 ≥ · · · ≥ xin . Since the jobs differ
only with the values τj , we deduce that the sequence of jobs in nonincreasing order
of τj is optimal.

Number the jobs so that τ1 ≥ · · · ≥ τn.
Set t = min{K, τ1}. We show that in any optimal solution x1 = t. Assume

t − x1 = δ > 0. Note that
∑n
j=1 xj = K. If

∑n
j=1 xj < K, then the value of the

objective function can be decreased by allocating K−
∑n
j=1 xj additional units of the

resource. Thus,
∑n
j=2 xj = K−x1 = K− t+δ ≥ δ. Move δ units of the resource from

x2, . . . , xn to x1. For the new solution, we have x1 = t and the objective function
value is decreased. Therefore, x1 = min{K, τ1} in any optimal solution and the
original problem reduces to one of minimizing

∑n
j=2 Cj subject to

∑n
j=2 xj ≤ K1,

where K1 = K − x1. Recursively, the latter problem reduces to one of minimizing∑n
j=3 Cj subject to

∑n
j=3 xj ≤ K2, where K2 = K1 − x2, x2 = min{K1, τ2}, and so

on.
We now describe Algorithm G, in which the jobs are assigned to the end of the

current sequence in nonincreasing order of the values τj and each current job gets as
much allocation of the resource as possible. Thus, Algorithm G is a greedy algorithm.
A formal description of this algorithm is as follows.

Algorithm G.
Step 1. Number jobs so that τ1 ≥ · · · ≥ τn. Set j = 1.
Step 2. Compute xj = min{K, τj}. If j = n, then stop: the job sequence (1, . . . , n)

and the resource allocation (x1, . . . , xn) constitute an optimal solution. Oth-
erwise, set K = K − xj , j = j + 1 and repeat Step 2.

THEOREM 3.5. Algorithm G solves the problem 1/aj = a, bj = b/(
∑
xj ≤ K,∑

Cj) in O(n log n) time.
Theorems 3.3 and 3.5 show that the problem 1/aj = a, bj = b/(

∑
xj ,
∑
Cj ≤ K)

can be solved in O(n log n log(
∑
τj)) time by applying Procedure BS.
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BICRITERION SINGLE MACHINE SCHEDULING 625

TABLE 1
Complexities of the problems 1//(F1, F2 ≤ K) and 1//(F1 ≤ K,F2).

Problem Complexity Reference
1//(gmax ≤ K,F2),
F2 ∈ {fmax,

∑
Uj ,

∑
wjCj} n logn Theorem 3.1

1//(gmax, F2 ≤ K),
F2 ∈ {fmax,

∑
Uj ,

∑
wjCj} n logn log(max{gj(τj)}) Theorem 3.2

1//(gmax ≤ K,
∑
wjUj) NP-hard Theorem 3.1

1//(gmax,
∑
wjUj ≤ K) NP-hard

1/bj = b, τj = 1/(
∑
vjxj , Cmax ≤ K) NP-hard Janiak and

1/bj = b, τj = 1/(
∑
vjxj ≤ K,Cmax) NP-hard Kovalyov (1993)

1/aj = a/(
∑
vjxj , fmax ≤ K) n logn Janiak and

Kovalyov (1993)
and this section

1/aj = a/(
∑
vjxj ≤ K, fmax) n logn log(max{fj(

∑n
i=1 bi)}) Janiak and

Kovalyov (1993)
and Theorem 3.3

1//(
∑
xj , fmax ≤ K) n logn Janiak and

Kovalyov (1993)
and this section

1//(
∑
xj ≤ K, fmax) n logn log(max{fj(

∑n
i=1 bi)}) Janiak and

Kovalyov (1993)
and Theorem 3.3

1/aj = 1, dj = d/(
∑
xj ,
∑
Uj ≤ K) NP-hard Cheng, Chen, and

1/aj = 1, dj = d/(
∑
xj ≤ K,

∑
Uj) NP-hard Li (1994)

1/τj = 1/(
∑
vjxj ≤ K,

∑
wjCj) NP-hard Theorem 3.4

1/τj = 1/(
∑
vjxj ,

∑
wjCj ≤ K) NP-hard

1/aj = a, bj = b/(
∑
xj ≤ K,

∑
Cj) n logn Theorem 3.5

1/aj = a, bj = b/(
∑
xj ,
∑
Cj ≤ K) n logn log(

∑
τj) Theorem 3.3

Finally, the computational complexities of various special cases of the problems
1//(F1, F2 ≤ K) and 1//(F1 ≤ K,F2) are given in Table 1. Note that the NP-
hardness results for several problems presented in this table are established using the
following evident statement (see also Lee and Vairaktarakis (1993)).

THEOREM 3.6. If the decision version of one of the problems 1/β/(F1, F2 ≤ K)
and 1/β/(F1 ≤ K,F2) is NP-complete, then both problems are NP-hard.

The complexities of all other special cases of the problems 1//(F1, F2 ≤ K) and
1//(F1 ≤ K,F2) which are not covered by those presented in Table 1 are still unknown.
The most interesting open questions are the complexities of the special cases with
F1 =

∑
vjxj and F2 =

∑
wjCj .

As noted in the previous section, if both problems 1/β/(F1, F2 ≤ K) and
1/β/(F1 ≤ K,F2) are polynomially solvable, then the problem 1/β/(F1, F2) can
be efficiently solved using Algorithm B. Thus, the problem 1//(gmax, F2) can be
solved in O(|P |n(log n + log(max{gj(τj)}))) time for F2 ∈ {fmax,

∑
Uj ,
∑
wjCj},

both problems 1/aj = a/(
∑
vjxj , fmax) and 1//(

∑
xj , fmax) in O(|P |n(log n +

log(max{fj(
∑n
i=1 bi)}))) time, and the problem 1/aj = a, bj = b/(

∑
xj ,
∑
Cj) in

O(|P |n(log n+ log(
∑
τj))) time.

4. Dynamic programming and approximation. The time complexities of
Algorithms B and Bε presented in section 2 show that these algorithms are efficient
for the problem 1//(F1, F2) even if the problems 1//(F1, F2 ≤ K) and 1//(F1 ≤ K,F2)
are NP-hard but there are pseudopolynomial algorithms or (ε, ρ)-approximation al-
gorithms to solve them. In this section, we give several examples of such algorithms
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626 T. C. E. CHENG, A. JANIAK, AND M. Y. KOVALYOV

for the problems with F1 =
∑
vjxj and F2 ∈ {fmax,

∑
wjUj}. We first consider the

problem 1//(
∑
vjxj , fmax).

For the problem to minimize
∑
vjxj subject to each job j meeting the deadline

dj , a dynamic programming algorithm and a (ε, 0)-approximation algorithm are pre-
sented by Janiak and Kovalyov (1993). The time complexities of these algorithms are
O(D) and O(E), respectively, where D = n(

∑
wjτj)2 and E = n3/ε2 + n3 log n +

n log(max{wjτj}). As it is shown in the previous section, these algorithms can be
applied to solve the problem 1//(

∑
vjxj , fmax ≤ K) if we set dj = f−1

j (K) for
j = 1, . . . , n. Furthermore, Theorem 3.3 shows that the problem 1//(

∑
vjxj ≤

K, fmax) can be solved in O(D log(max{fj(
∑n
i=1 bi)})) time by applying Procedure

BS. Then, since 0 ≤ fmax ≤ max{fj(
∑n
i=1 bi)} for the value fmax of any feasi-

ble solution, Theorems 2.1 and 2.2 show that, for the problem 1//(
∑
vjxj , fmax),

the Pareto set P can be constructed in O(|P |D log(max{fj(
∑n
i=1 bi)})) time by ap-

plying Algorithm B and the Pareto set ε-approximation Pε can be constructed in
O(E log(1+ε/2)(max{fj(

∑n
i=1 bi)})) time by applying Algorithm Bε.

We now present dynamic programming algorithms for the problems 1//(
∑
vjxj ≤

K,
∑
wjUj) and 1//(

∑
vjxj ,

∑
wjUj ≤ K). We note that dynamic programming al-

gorithms for these problems are already constructed by Cheng et al. (1998). However,
in our algorithms, different definitions of the function values and state variables are
used and so a comparison of the time complexities of our algorithms with those of
Cheng et al. is not possible. Also, we show that our dynamic programming algo-
rithms can be transformed into (ε, ρ)-approximation algorithms that are unlikely for
the algorithms presented in Cheng et al. (1998).

It is convenient to introduce some terminology. Given a solution to the prob-
lem 1//(

∑
vjxj ,

∑
wjUj), job j is late if it is completed after the due date dj :

Cj > dj ; otherwise, it is early. Our algorithms as well as the algorithms presented
in Cheng and Chen (1994) are based on the following evident observation. There
exists an optimal solution to each of the problems 1//(

∑
vjxj ≤ K,

∑
wjUj) and

1//(
∑
vjxj ,

∑
wjUj ≤ K) with the following properties:

• Early jobs are sequenced in EDD order.
• Late jobs are sequenced in an arbitrary order after the last early job and, for

each late job j, we have xj = 0.
Assume that the jobs are numbered in EDD order so that d1 ≤ · · · ≤ dn. In our

algorithms, jobs are considered in natural order 1, . . . , n. The following two possible
scheduling choices for each job j are considered:

• Job j is scheduled as the last early job if it will be completed before the due
date dj . In this case, 0 ≤ xj ≤ τj , the completion time of the last early job
is increased by bj − ajxj and the cost vjxj is incurred in the first criterion.

• Job j is scheduled as a late job. In this case, xj = 0 and the cost wj is
incurred in the second criterion.

Let W ∗ be the optimal solution value for the problem 1//(
∑
vjxj ≤ K,

∑
wjUj),

and let Y be a positive integer. We now describe our first dynamic programming
Algorithm D1(Y ), which either solves the problem 1//(

∑
vjxj ≤ K,

∑
wjUj) or

establishes that W ∗ > Y . In this algorithm, the completion time of the last early
job is a function value and the weighted number of late jobs and the total weighted
resource consumption are state variables. More precisely, we recursively compute the
value of Cj(W,V ), which represents the minimal completion time of the last early job
subject to j jobs having been scheduled, the total weighted number of late jobs equal
to W , and the total weighted resource consumption equal to V . A formal description
of this dynamic programming algorithm is as follows.
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BICRITERION SINGLE MACHINE SCHEDULING 627

Algorithm D1(Y ).
Step 1 (Initialization). Number jobs in EDD order so that d1 ≤ · · · ≤ dn. Set

Cj(W,V ) = 0 for j = 0, W = 0, and V = 0. Set Cj(W,V ) = ∞ otherwise.
Set j = 1.

Step 2 (Recursion). Compute the following for all 0 ≤W ≤ Y and 0 ≤ V ≤ K:

Cj(W,V ) = min
{
Cj−1(W − wj , V ),
min{T (xj)|T (xj) ≤ dj , xj ∈ {0, 1, . . . , τj}},

where

T (xj) = Cj−1(W,V − vjxj) + bj − ajxj .

If j = n, go to Step 3; otherwise, set j = j + 1 and repeat Step 2.
Step 3 (Optimal solution). If Cn(W,V ) = ∞ for all 0 ≤ W ≤ Y and 0 ≤ V ≤ K,

then W ∗ > Y ; otherwise, define

W ∗ = min{W |Cn(W,V ) <∞, 0 ≤W ≤ Y, 0 ≤ V ≤ K}

and use backtracking to find the corresponding optimal solution.
THEOREM 4.1. Algorithm D1(Y ) solves the problem 1//(

∑
vjxj ≤ K,

∑
wjUj)

if and only if W ∗ ≤ Y and has O(nY K
∑
τj) running time.

Proof. Since all possible scheduling choices for each job j and all possible resource
allocations xj are considered in Step 2, the general dynamic programming justification
for scheduling problems (Rothkopf (1966), Lawler and Moore (1969)) shows that in
Step 2, all possible objective values W ≤ Y are obtained. In Step 3, if Cn(W,V ) =∞
for all 0 ≤ W ≤ Y and 0 ≤ V ≤ K, then there is no solution with a value W ≤ Y ,
i.e., W ∗ > Y , which proves the necessity. Alternatively, if Cn(W,V ) < ∞ for some
W and V , then W ∗ is the minimal objective value among those obtained in Step 2.
Thus, the sufficiency is also proved.

Since there are n different values of j, K + 1 different values of V , and Y + 1
different values of W , Steps 1 and 3 require O(nY K) operations. In each iteration
of Step 2, the value of T (xj) is computed for 0 ≤ V ≤ K and 0 ≤ W ≤ Y . Each
calculation of T (xj) requires O(τj) operations. Thus, Step 2 can be performed in
O(nY K

∑
τj) time, which is the overall time complexity of D1(Y ) as well.

It is apparent that D1(
∑
wj) is a pseudopolynomial algorithm for the problem

1//(
∑
vjxj ≤ K,

∑
wjUj).

An analysis of Algorithm D1(Y ) shows that it can easily be modified to solve the
problem 1//(

∑
vjxj ,

∑
wjUj ≤ K). Assume that X is a guess for an upper bound

for the optimal objective value V ∗ of this problem: V ∗ ≤ X. In Algorithm D1(Y ),
we set Y = K and K = X. Besides, in Step 3 of this algorithm, if Cn(W,V ) =∞ for
all 0 ≤W ≤ K and 0 ≤ V ≤ X, then V ∗ > X; otherwise,

V ∗ = min{V |Cn(W,V ) <∞, 0 ≤W ≤ K, 0 ≤ V ≤ X}.

We denote this modified algorithm by D2(X).
THEOREM 4.2. Algorithm D2(X) solves the problem 1//(

∑
vjxj ,

∑
wjUj ≤ K)

if and only if V ∗ ≤ X and has O(nXK
∑
τj) running time.

We note that D2(
∑
vjτj) is a pseudopolynomial algorithm for the problem

1//(
∑
vjxj ,

∑
wjUj ≤ K). Moreover, an analysis of Algorithms D1(Y ) and D2(X)

shows that several special cases of the problems 1//(
∑
xj ≤ K,

∑
Uj) and 1//(

∑
xj ,∑

Uj ≤ K) in which all τj are constant or bounded by a polynomial in n can be solved
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628 T. C. E. CHENG, A. JANIAK, AND M. Y. KOVALYOV

in polynomial time. We also note that, by incorporating Algorithms D1(
∑
wj) and

D2(
∑
vjτj) into Algorithm B, the Pareto set P for the problem 1//(

∑
vjxj ,

∑
wjUj)

can be found in O(|P |nK
∑

(wj + vjτj)
∑
τj) time.

We now show how to construct the Pareto set ε-approximation for this problem.
We first modify the algorithm D1(Y ) to be a (ε, ρ)-approximation algorithm for the
problem 1//(

∑
vjxj ≤ K,

∑
wjUj).

Assume that numbers L and R are known such that 0 < L ≤ W ∗ ≤ R. We set
µ = εL/n, δ = ρK/n and modify the algorithm D1(Y ) as follows. Define rj(l) =
max{xj |0 ≤ xj ≤ τj , bvjxj/δc = l} for j = 1, . . . , n and l = 0, 1, . . . , bK/δc. Sub-
stitute bR/µc for Y , bwj/µc for wj , bK/δc for K, bvjxj/δc for vjxj , and xj ∈
{rj(0), rj(1), . . . , rj(bK/δc)} for xj ∈ {0, 1, . . . , τj} in the description of the algo-
rithm D1(Y ). Denote the modified algorithm by Aε,ρ(L,R). Our method to develop
Aε,ρ(L,R) differs from the known techniques “rounding” and “interval partitioning”
(Sahni (1977)) and can be considered as a new dynamic rounding technique to develop
(1 + ε)-approximation algorithms. We now establish the correctness and the running
time of this algorithm.

THEOREM 4.3. The algorithm Aε,ρ(L,R) is a (ε, ρ)-approximation algorithm for
the problem 1//(

∑
vjxj ≤ K,

∑
wjUj) and has O(n5R/(ερ2L)) running time.

Proof. Assume that there exists an optimal solution to the problem 1//(
∑
vjxj ≤

K,
∑
wjUj) with a resource allocation (x∗1, . . . , x

∗
n), job completion times C∗j , j =

1, . . . , n, and the objective function value ofW ∗ =
∑
wjU

∗
j ≤ R. Set x′j = rj(bvjx∗j/δc).

By the definition of rj(l), we have x′j ≥ x∗j for j = 1, . . . , n. Therefore, a solution
with the same job sequence as in the optimal solution and with a resource alloca-
tion (x′1, . . . , x

′
n) will have job completion times C ′j ≤ C∗j for j = 1, . . . , n. For this

solution, define U ′j = 0 if C ′j ≤ dj and U ′j = 1 otherwise. We have∑
bwj/µcU ′j ≤

∑
bwj/µcU∗j ≤ bR/µc,

∑
bvjx′j/δc =

∑
bvjx∗j/δc ≤ bK/δc.

Thus, in Step 3 of Algorithm Aε,ρ(L,R), there will be at least one solution for which
Cn(W,V ) < ∞. Let (x0

1, . . . , x
0
n) and (U0

1 , . . . , U
0
n) be a resource allocation and a

sequence of values Uj , j = 1, . . . , n, respectively, given by Aε,ρ(L,R). Making use of
the inequalities byc ≤ y < byc+ 1, where y is any real number, we have

W 0 =
∑

wjU
0
j ≤ µ

∑
bwj/µcU0

j + nµ,

V 0 =
∑

vjx
0
j ≤ δ

∑
bvjx0

j/δc+ nδ.

According to the description of Aε,ρ(L,R),
∑
bvjx0

j/δc ≤ bK/δc holds. Hence,
V 0 ≤ (1+ρ)K. Furthermore, since the sequence (U0

1 , . . . , U
0
n) minimizes

∑
bwj/µcUj ,

we have
∑
bwj/µcU0

j ≤
∑
bwj/µcU∗j ≤ W ∗/µ. Therefore, W 0 ≤ W ∗ + εL ≤ (1 +

ε)W ∗. Thus, Algorithm Aε,ρ(L,R) is a (ε, ρ)-approximation algorithm for the problem
1//(

∑
vjxj ≤ K,

∑
wjUj).

By substituting R/µ for Y , K/δ for K, and K/δ for each τj in the time re-
quirement of Algorithm D1(Y ), we obtain the time requirement of Aε,ρ(L,R) as
O(n2RK2/(µδ2)) which, on substitution of µ = εL/n and δ = ρK/n, yields the time
bound as indicated in the theorem.
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We note that a similar approach can be applied to modify D2(X) to be a (ε, ρ)-
approximation algorithm for the problem 1//(

∑
vjxj ,

∑
wjUj ≤ K).

Assume that min1≤j≤n{wj} ≤ W ∗. Otherwise, W ∗ = 0 is the optimal solution
value and the problem reduces to one of minimizing

∑
vjxj subject to each job j

meeting deadline dj . As it has already been mentioned, the latter problem has been
studied by Janiak and Kovalyov (1993). Since W ∗ ≤

∑
wj , we can set, without loss

of generality, L = min1≤j≤n wj and R =
∑
wj in Aε,ρ(L,R). We define a (ε, ρ)-

approximation algorithm for the problem 1//(
∑
vjxj ≤ K,

∑
wjUj) as Algorithm

Aε,ρ(L,R) with such values L and R. If wj = w for all j, then the time complexity
of this algorithm is O(n6/(ερ2)).

To construct the Pareto set ε-approximation Pε for the problem 1//(
∑
vjxj ,∑

wjUj), we apply Algorithm Bε presented in section 2. In this algorithm, the
procedure B(l) is our (ε, ρ)-approximation algorithm for the problem 1//(

∑
vjxj ≤

K,
∑
wjUj) with ρ = ε/(2+ ε). It should be noted that, in Bε, a positive lower bound

L1 > 0 for the value of
∑
vjxj is assumed. Therefore, we first consider separately

a Pareto optimal solution with zero resource allocation. This solution is an optimal
solution to the problem of minimizing

∑
wjUj subject to the given processing times

pj = bj , j = 1, . . . , n. For the latter problem, an approximation algorithm is presented
by Gens and Levner (1981), which delivers a solution q with a value at most (1 + ε)
times the optimal solution value in O(n2/ε) time. Then we apply this algorithm,
include q into Pε, and set L1 = min1≤j≤n{vj} > 0 in our general scheme Bε.

It is easy to see that, with these modifications, the time complexity of the algo-
rithm Bε for the problem 1//(

∑
vjxj ,

∑
Uj) is O(n6 log(

∑
vjτj)/ε3). In this time

bound, ε is substituted for ρ following inequalities ρ = ε/(2 + ε) ≥ ε/3 for ε ≤ 1 and
ρ > 1/3 for ε > 1. Since Bε is polynomial in the problem instance length and in 1/ε,
the family of algorithms {Bε} forms a fully polynomial approximation scheme.
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