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Abstract 

We show that the K-deformed Poincare quantum algebra proposed for elementary particle physics has the structure of a 

Hopf algebra bicrossproduct U(so(l, 3) )C><lllT. The algebra is a semidirect product of the classical Lorentz group so(l, 3) 

acting in a deformed way on the momentum sector T. The novel feature is that the coalgebra is also semidirect, with a 

backreaction of the momentum sector on the Lorentz rotations. Using this, we show that the K-Poincare acts covariantly on 

a K-Minkowski space, which we introduce. It turns out necessarily to be deformed and non-commutative. We also connect 

this algebra with a previous approach to Planck scale physics. 

1. This is a note on the K-Poincare algebra as intro

duced in [ 1,2] and studied extensively with a view to 

applications in elementary particle physics [ 3-7] . The 

idea behind this particular deformation, which is ob

tained by contraction [ 8], is that it is one of the weak

est possible deformations of the usual Poincare group 

as a Hopf algebra. Hence it provides an ideal testing

ground for possible applications in particle physics. 

The momenta remain commutative 

[Pµ.,P11 ]=0 (1) 

and the rotation part of the Lorentz sector is also not 

deformed. Because of the mildness of the deforma

tion, many particle constructions and predictions can 

be obtained easily. 
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Here we want to argue that in spite of this success, 

any application of the K-Poincare group to physics 

leads necessarily into non-commutative geometry. 

This is because until now it has not been possible to 

define an algebra of Minkowski space co-ordinates 

{ xµ.} on which the K-Poincare acts as a Hopf algebra. 

Recall that when usual groups act on algebras, one has 

gt>(ab) = (gt>a)(gt>b), gt>l = 1 (2) 

and the natural analogue of this for Hopf algebras is 

hr>(ab) = (h" 1M)(h(2)r>b), hr>l = E(h)l (3) 

where l::.h = h, 11 0 h, 21 = L,i ho )i 0 hc2)i is the co

product. Without such a covariant action, one cannot 

make any products of the space-time generators Xµ. 

in a K-Poincare invariant way. This affects not only 

the many-particle theory but any expressions involv

ing, for example, x2
. It means that until now, the ac

tual coproduct structure has only been applied in con-
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nection with momentum space and not spacetime it

self . Since the coproduct of the K-Poincare is non

cocommutative, one cannot expect that it acts on the 

usual commutative algebra of functions on Minkowski 

space: it needs to be non-commutative or 'quantum'. 

Here we provide the correct notion of K-Minkowski 

space and the action of K-Poincare on it. We also un

derstand the structure of the K-Poincare as a defor

mation of the usual semi direct product structure. This 

then makes tractable the problem of representing it 

covariantly on the K-Minkowski. 

The abstract structure of the K-Poincare turns out 

to be an example of a class of non-commutative non

cocommutative Hopf algebras (quantum groups) in

troduced some years ago by the first author in an alge

braic approach to Planck-scale physics [ 9-11]. The 

context here was quite different, namely the Hopf al

gebra of observables of a quantum system rather than 

as a symmetry object. Thus we find in fact that the 

K-Poincare algebra PK has two different physical in

terpretations, one as a quantum symmetry group and 

the other as a quantised phase space. Thus, we find 

PK= U(so(l,3) )~T = U(so(l ,3) )~C(X) (4) 

where in the first picture Tis the K-deformed envelop

ing algebra of the momentum sector of the Poincare. 

In the second picture it is the algebra of functions of 

a classical but curved position part X of phase space. 

This second point of view is recalled briefly in the last 

section of this note. 

2. The K-Poincare algebra PK, (generators of trans

lations Pµ,, rotations M; and boosts N;; K real; i, j, k = 

1,2,3;µ,v=0,1,2,3) is [2]: 

(5) 

(6) 

(7) 

[N;, Po] = P;, 
- . Po 

[N;, Pj] = OijK smh -, 
. K 

(8) 

_ _ Po 1 p PM) 
[N;,N1·] = -E;1·k(Mkcosh- - -

2 
k · 

. K 4K 
(9) 

The coproducts are given by: 

/::;.Po= Po® 1+1 ®Po, 

t:;.M; = M;® I+ 1 ®M;, 

- - ED. ED. -
/::;.N; = N;® ez< + e-zK ®N; 

E;·k ED. !:Ji +-·-' (Pj®Mke2K +e-Z<Mj®Pk)· 
2K 

(10) 

(11) 

(12) 

The starting point of our structure theorem is the 

observation that PK contains T = {Pµ,} as a sub-Hopf 

algebra and projects onto U (so( 1, 3)) also as a Hopf 

algebra map: 

(13) 

The map 7T consists of setting P µ, = 0 and mapping M; 

and N; to their classical counterparts in the Lorentz 

group. It is easy to see that i, 7T are classical counter

parts as 

(14) 

To this, we add now the maps 

p j 
T+-PK+->U(so(l, 3)), 

7T 0 j = id, p 0 i = id (15) 

where j is an algebra homomorphism and p is a linear 

map which is a coalgebra homomorphism 

(p@p) o/::;.=/::;.op, EOp=E. (16) 

Moreover, 

(id®j) o/::;. = (7r®id) o/::;. oj (17) 

which says that j intertwines the coaction of 

U(so( 1, 3)) on itself by/::;. and its coaction on PK by 

( 7T ®id) o /::;..Likewise 

p(a)t=p(ai(t)), aEPK, tET (18) 

which says that p intertwines the action of T on itself 

by right-multiplication, with its action on PK by i and 

multiplication in PK. 

Indeed, we define 

- ED. Eijk _ED. 
j(N;) =Ni= N;e-z< - 2K MjPke ZK, 

j(M;) = M; (19) 



350 S. Majid, H. Ruegg I Physics Letters B 334 ( 1994) 348-354 

which one can show to be an algebra homomorphism. 

The new generators N; have coproducts 

!JJ. E··k !JJ. 
/::,.Af;=Af;&;il+e-K @N;+-1:LPje-2K@Mk (20) 

K 

after which ( 17) is clear. We also define p as the map 

that sets M; = N; = 0 and the properties (16), (18) 

are then clear. 

Now, the data (13)-(18) say precisely that PK is a 

Hopf algebra extension of U(so(l, 3)) by T. The gen

eral theory of Hopf algebra extensions has been intro

duced in [ 11-13] (the latter two covered the general 

case) and one knows that such extensions are semidi

rect products. There is also the possibility of cocycles 

but these vanish when j is an algebra homomorphism 

and p a coalgebra one, as in our case. We deduce from 

this theory that (a) the classical Lorentz algebra acts 

on T from the right by 

t<ih = j (Sh(!) ) t j ( h<2J) , 

Vt ET, h E U(so(l, 3)) (21) 

and ( b) T coacts back on U (so (1, 3) ) from the left 

by 

f3(7T(a)) = p(a(l))Sp(a< 3J) @7T(a(2)), 

\/7T(a) E U(so(l,3)). (22) 

In both formulae S denotes the appropriate antipode 

while /::,. 2 a = a0) @ a(2) @ a(3) in the second formula. 

In both cases, the formulae are not obviously well

defined, but t<Jh as stated necessarily lies in (the image 

under i of) T, while f3 does not depend on a E PK but 

only its image 7T(a). 

In our case we have 

Po<JM; = 0, P;<JMj = EiJkpk> 
_!'.o. 

P0<JN; = -P;e 2K =: -P;, (23) 

!'.o. 
the generators P; = P;e- 2K are quite natural here, and 

in terms of these the action becomes 

P;<JMj = Cijkpk> 

K -~ 1 2 
P;<JNj = -o;.i ( 

2 
(1 - e K ) + 

2
K P ) 

1 
+ -P;PJ (24) 

K 

as computed for other reasons in [ 14]. Our present 

point of view is not that this is the quantum adjoint 

action in PK but simply that the classical U (so( 1, 3)) 

acts on the Hopf algebra T in this way. Meanwhile, 

the coaction comes out as 

(25) 

on the generators. Here f3 is not an algebra homomor

phism but its values on products of generators can be 

computed too from (22). 

Finally, the general extension theory says that 

our PK is built up in its structure from this data 

(T,U(so(l,3)),<J,{3). Namely, its algebra is a 

semidirect product defined abstractly by i(T) and 

j ( U (so (1, 3) ) as subalgebras and cross relations 

i(t)j(h) = j(h 01 )i(t<ihC21), 

VhEU(so(l,3)), tET. 

Its coalgebra is defined in a dual way as 

M(t) = i(t01 ) @i(t121 ), 

/::,.j(h) =j(hm)(i@j) of3(hf21). 

In our case the cross relations become 

[Po,M;] =Po<JM;, [P;,MJ] =P;<JM.i, 

(26) 

(27) 

[Po, Al/] = Po<JN;, [P;,J\Jj] = P;<JNj (28) 

which, combined with i, j above being algebra homo

morphisms, gives our K-Poincare algebra as 

[Po, P;] = 0, [M;, MJ] = EiJkMk. 

[J\f;,J\Jj] = -EijkMk 

[Po,AI/] = -P;, 

K ~ 1 2 
[P;,Ni] =-O;j("2(1-e- K )+

2
Kp) 

(29) 

(30) 

1 
+ -P;P.i (31) 

K 

which is analagous to [ 14]. The coproducts become 

In terms of P; the coproduct structure of T itself is 
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11Po =Po® 1+1 ®Po, 
_!:sl 

11 P; = P; ® I + e K ® P;. (33) 

Thus the new generators {Po, P;, Ni, M;} provide 

a natural description of PK as a Hopf algebra bi

crossproduct U(so(l,3))~T according to the gen

eral construction introduced in [ 11]. The symbol 

~ denotes that one factor acts on the other and the 

other coacts back on the first. Usually in the theory 

of groups and Hopf algebras one considers only an 

action or coaction, but it was argued in [ 11] that in 

physics actions tend to have 'reactions' and this turns 

out to be the case here when K < oo. 

Indeed, in [9,15] one finds an example of the form 

U(su(2) )~T where Tis the Hopf algebra of func

tions on JR.3 with a deformed coproduct corresponding 

to curvature from the point of view there, and the ac

tion is a deformation of the usual rotations of JR.3 . This 

was one of the first non-trivial non-commutative non

cocommutative Hopf algebras, though not as widely 

known as the celebrated Hopf algebras of Drinfeld and 

Jimbo. The PK is quite similar to this but deformed in 

the action of the boosts rather than of rotations. 

3. We are now in a position to introduce a natural 

notion of K-Minkowski space on which our PK acts 

covariantly. Indeed, since Tis the enveloping algebra 

of translations, it is natural to take for K-Minkowski its 

dual T* which will also be an algebra and on which T 

necessarily acts covariantly as quantum vector fields. 

We then show that the whole of PK acts on it. 

The structure of T* is completely determined by the 

axioms of a Hopf algebra duality 

< t,xy >=< t(l),x >< t(2),y >, 

< ts,x >=< t,Xco >< s,x(2) >, 

Vt,s ET, x,y ET* (34) 

Indeed, Tis the (commutative limit) of the bore! sub

algebra Uq ( b_) of Uq ( su2 ) and, as is well-known in 

that context, its dual is of the same form [ 16]. Thus, 

we take for T* the generators xµ, and relations and 

coproduct 

X; 
[x;,xo] = -, 

K 

!ixµ, = xµ, ® I + I ® Xµ,- (35) 

For T we again prefer the generators P;, Po and then 

the duality pairing can be written compactly as 

< f(P;,Po),: lf;(x;,xo) :> 

a a 
= f(-, -)lf;(O,O) 

ax; axo 
(36) 

where: lf;(x;,xo) : denotes a function lf; of the gen

erators with all powers of x0 to the right. One can see 

[ 17] for the usefulness of this way of working with 

this kind of Hopf algebra. Apart from this ordering, 

we see that the pairing is completely along the clas

sical lines of the pairing of the enveloping algebra of 

JR.4 with the Hopf algebra of functions on JR.4 , which is 

by letting the translation generators act and evaluating 

at zero. 

Now the canonical action of T on T* is 

tl>x = < Xrn, t > Xm, Vx E T*, t E T (37) 

which in our case works out as 

a 
P;1>: lf;(x;,xo) :=:-a lf;(x;,xo) :, 

X; 

a 
Pol>: lf;(x;,xo) :=:-a lf;(x;,xo): 

Xo 
(38) 

i.e. by the classical way but remembering the Wick

ordering. 

Next, U(so(l,3) also acts on T*. This is because 

it acts from the right on T and this action therefore 

dualises to an action from the left on T*: 

< t,h1>x >=< t<Jh,x >, 

Vt ET, h E U(so(l,3)), x ET* (39) 

which computes in our case as 

M;l>Xj = EijkXk. M;1>xo = 0, 

N;1>x_; = -8;,;xo, N;1>xo = -x;. (40) 

It is not obvious, but the general theory of bi

crossproduct Hopf algebras ensures that the canon

ical action of T on itself by multiplication and 

U(so(l,3)) by <l generates an action of the semidi

rect product algebra PK on T. This therefore dualises 

to an action on T* generated by the actions of these 

subalgebras. So Po, P; as above and M;,N; acting 

like M;, N; in (40). are a canonical representation of 

the PK on K-Minkowski. Their extension to products 
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of the spacetime co-ordinates is via the covariance 

condition (3) using the coproducts b,.M;, D,.Nj etc. 

from (32)-(33). Thus, 

M;r>xj = E;jkXb M;r>xo = 0, 

N;r>xo = -X;, N;r>x.i = -O;jXO, 

N;r>(XjXo) = -O;jx6 - XjX;, 

2 I 
N;r>(xoXj) = -O;jXo - X;Xj + -o;iXO, 

K . 

N;r>(XjXk) = -O;jXOXk - o;kXjXO 

I 
+ -(o;kxj - ojkx;), 

K 

2 1 
N;r>(x0) = -x;xo - xox; + -x;. 

K 

The Lorentz-invariant metric turns out as 

? 2 3 
Xo - X + -Xo 

K 

( 41) 

(42) 

(43) 

(44) 

(45) 

(46) 

This covariant action of PK on K-Minkowski space 

T* is our main result of this section. It appears to be 

rather non-trivial to verify it directly. Note that co

variance is always true for T on T* and since T is a 

subhopf algebra of PK, it remains true as its transla

tion sector. The classical boosts do not act covariantly 

on T* but their coproduct is different in PK due to the 

coaction {3. This modification of the coproduct is just 

what is needed for the construction to work. The proof 

is straightforward using the abstract Hopf algebra the

ory of Section 2. 

We therefore have the correct basis for wave

functions I.fl on K-Minkowski space and can proceed 

with various constructions, retaining at all time co

variance under PK. This will be explored elsewhere. 

4. Our structure theorem for the PK has many other 

consequences for the theory. The first of them is that 

the theory of bicrossproducts is completely symmetric 

under the process of taking duals (reversing the roles 

of products and coproducts). This remarkable 'input

output' symmetry was the main physical motivation 

for the introduction of the bicrossproduct construction 

in [ 11,9] and several other papers by the first author. 

Thus we can compute the function algebra dual to 

PK at once. It is the bicrossproduct 

C( SO (1, 3) ) '--+ T* 11><1(('.( SO (1, 3) ) .-.., T* (47) 

where C(SO( I, 3)) is the usual commutative algebra 

of functions on the Lorentz group, and T* is our al

gebra of functions on K-Minkowski. Thus, this Hopf 
algebra is a deformation of the algebra of functions on 

the Poincare group. The maps and action/ coaction for 

this dual construction are given in [ 11] by dualising 

the above {3, <1 respectively according to 

< h,xr>A >=< f3(h),x@A >, 

V h E U(so(l,3)), x ET*, 

A E C(SO(l, 3)) 

< t@h,f3(x) >=< t<1h,x >, 

Vt ET, x ET*, h E U(so(l,3)). 

(48) 

(49) 

The resulting K-Poincare function Hopf algebra will 

be developed in detail elsewhere. It can perhaps be 

compared with a K-Poincare Hopf algebra proposed 

in another context in [ 18, 19]. In our approach it nec

essarily comes with a duality pairing with PK given 

by (36), the usual pairing between C(SO(l, 3)) and 

U (so( I, 3)), and the trivial pairing (provided by the 

counits) between translation and Lorentz sectors. 

We conclude with some remarks about the physical 

interpretation of bicrossproducts in [9] as quantum 

systems. Returning to our enveloping algebra PK we 

can develop quite a different physical picture. Namely, 

we think of T not as the enveloping algebra of de

formed translations but as the perfectly classical Hopf 

algebra of functions on a classical nonAbelian group 

X, 

T = C(X) (50) 

where X is the group given by exponentiating the Lie 

algebra :S defined by 

X; 
[x;,xo] = -, [x;,Xj] = 0. 

K 
(51) 

These are just the relations of T* in Section 3 but we 

think of them no longer as generating the co-ordinates 

of some non-commutative space but as generating a 

Lie algebra. It is easy to exponentiate the Lie algebra 

to a group X described as a subset of JR4 with a K

deformed ( non-Abelian) addition law. In other words, 

K controls now the curvature of our space X. We take 

this X as the position space (configuration space) of 

a quantum system. 
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Next, the Lie algebra S and the Lie algebra so( I, 3) 

fit together to form a 'matched pair' of Lie algebras. 

The concept (due to the first author in [ 11,9] ) is that 

each Lie algebra acts on the other in a matching way. 

In our case so( 1, 3) acts by 1>, say, on S via usual 

infinitesimal Lorentz transformation and S acts back 

from the right by dualising f3 from (25) according to 

the formula 

t<JXµ = < /3(fl, Xµ@ id>, 

'v't E so(l,3), Xµ ES. (52) 

Remember that the output of f3 has its first tensor factor 

in T, which we evaluate against the generators x;, x0 

using the pairing (36). The two actions fit together as 

required for a right-left matched pair: 

t1>[xµ,Xv] = [tt>xµ,Xv] + [xµ,tt>x,,] 

+ (t<Jxµ)t>x,,, - (t<Jx,,,)t>xµ 

[f,7]]<JXµ = [f<JXµ,7]] + [f,7]<JXµ] 

+ f<J( 7]1>Xµ) - 7]<J(fl>Xµ) 

(53) 

(54) 

for all f, 77 E so( 1, 3). In our case, we can compute 

<J explicitly as 

M;<Jx0 = 0, M;<Jx1 = 0, 

1 
N;<Jxo = --N;, 

K 

(55) 

and verify ( 53 )-( 54) directly for these Lie algebra 

representations 1>, <J. The N;, M; here are the classical 

so(l, 3) generators . 

The theory of Lie algebras acting on each other in 

such a way is a rich one [ 11] and tells us among other 

things that there is a Lie algebra double semidirect 

sum SC><lso( 1, 3) containing S, so( 1, 3) and cross re

lations 

(56) 

Moreover, there are theorems that, at least locally, 

the Lie algebra matched pair exponentiates into a Lie 

group matched pair X, SO( 1, 3) acting on each other 

in a suitable way. The procedure and general for

mulae (which are non-linear) have been introduced 

in [ 12]. There is also a double cross product group 

XC><lSO(l, 3), at least locally. 

Now, the action of SO( 1, 3) on X has orbits. Con

sider particles constrained to move on such orbits. The 

position obervables are C(X), the momentum observ

ables are the Lie algebra so( 1, 3) since its elements 

generate the flows. The natural quantisation of par

ticles on such homogeneous spaces according to the 

standard Mackey scheme [20,21] is the cross product 

algebra U(so(l,3))r:x:::C(X). This can be made pre

cise using the theory of C*-algebras. The point is that 

this cross product contains the algebra of so( 1, 3) and 

C(X), with cross-relations which are the natural co

variant form of Heisenberg's commutation relations. 

Our PK is this quantum algebra of observables. 

Moreover, the dual of the bicrossproduct is also a 

bicrossproduct: it is the quantisation of particles mov

ing on the homogeneous spaces which are the orbits 

in SO( I, 3) under the action of X, i.e. precisely with 

the roles of position and momentum reversed. Thus 

models of this class, demonstrated here by PK exhibit 

a quantum version of Born reciprocity and are inter

esting for this reason [ 9, 11] . Moreover, this structure 

generally forces the action to be deformed, often with 

event-horizon-like singularities. For example, it was 

shown in [9] that the extensions of C(l~ x ~) (the 

classical phase-space in one-dimensions) of this bi

crossproduct type had just two free parameters, which 

we identified heuristically as fi and G, the gravitational 

coupling constant. This work was perhaps one of the 

first serious attempts to apply Hopf algebras and non

commutative geometry to Planck scale physics, and 

it is interesting that PK has an interpretation in these 

terms as well as a symmetry in particle physics. This 

picture of the K-Poincare algebra will be developed in 

detail elsewhere. 
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