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1. Introduction. In finite element solutions of partial differential equations,
triangular elements are introduced naturally when curved boundaries are
approximated by polygons, [5, 6]. The purpose of this paper is to present cubic
and bicubic interpolation formulae for triangles. Three interpolation schemes
are presented, in §2, for partitionings involving both rectangular and triangular
elements. An interpolation formula is also presented, in §3, for a complete
triangulation of the polygon. The order of approximation of each of these
interpolating polynomials is established in §4.

Consider a function f of two variables having continuous derivatives through
order four on a domain ® of the 2—y plane, 7.e., f ¢ C*[®]. Assume that the bound-
ary of ® is a polygon whose vertices are grid-points of a rectangular network
of lines 7. Thus ® is partitioned into a union of rectangles and right triangles
by the mesh = (Figure 1). We will denote by (®, =) the region ® or polygon ®
with associated mesh .
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If the mesh 7 is determined by X, =z, < 2, < -+ < 2, = X,and Y, =
Yo <Y1 < +++ < Ym = Y,, then define & = min; (z; — 2;_,), A = min; (y; —
Yi-1) and b = max,; (T; — Tio1, Yi — Yi-1)-

Let (®, 7) be a partitioned polygon and ®*(®, =) be the space of piecewise
polynomials w, such that in each finite element of (®, 7), w(z, y) is a bicubic
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polynomial. For rectangular polygons the smooth Hermite Space H*(®, ) =
®*(®, ) N C'[®R] has been investigated by Birkhoff, Schultz and Varga [1].
If ® is a non-rectangular polygon, then the space ®*(®, =) M C'[®] is still well
defined. Interpolation Schemes A and B in §2 resulted from an attempt to
determine good approximations to f from H®(®, =). Interpolation Scheme C
in §2 relaxes the continuity requirement to w ¢ C[®], but involves a more simple
cubic polynomial. Finally interpolation Scheme D in §3 resulted from an attempt
to determine good approximations to f from H*(®, =) where = consists only of
triangular elements, (Figure 3).

2. Interpolation formulae. TFor a rectangle R, with vertices P;;:(x;, ¥:);
1 24,7 £ 2 (Figure 2), define the bicubic polynomial
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O ulz,y) = 2 2 AH@GW . + Hia@G@)f5

i=1 j=1
+ Hi(x)Gi+2(y)f§‘,?’1’ + H,~+2(x)G,»+2(y)ff~}'”}
where
G0 = 0" /et y' (i s )

and

H,(x) = (1/a>)(22® — 3az® + ),  Gi(y) = (1/6°)(2y° — 3by” + b%),

H,y(x) = (—1/a°)2® — 3az®), Goy) = (—1/6%)(2y° — 3by),
Hy(x) = (1/a")(&® — 2a2” + a’2),  Giy) = A/0)@° — 2by” + %),
H,@) = (1/a®)@" — az?), Giy) = 1/ — by’).
|
Pi2 [ P22
b \\\\\
a ~. P
Py P2 X
Figure 2. R:022=2¢,0=5y=sbT:0=2=54q0=y §—gx+b.

It is known [4] that u is the unique bicubic polynomial such that
) wdh = &0, 0=kIsS1 1S4js2

Further, if w e ®*(®, ), for a rectangular polygon ®, is defined in each rectangular
element as in (1), then w e H*(®, =), [1, 4]. In fact w™*'P ¢ C[®] for 0 < k, ! < 1.
When such is the case we say that the functions w*'?, 0 £ k, I < 1 are com-
patible between finite elements.
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The fact that discontinuities (or non-compatibilities) in functional values
and/or derivatives between elements can lead to “‘erratic performance” of
finite element methods using triangular elements has been demonstrated for
structural mechanies problems by R. Clough, [5, p. 112].

We now seek interpolation formulae for the triangular elements of a general
polygon (®, =), (Figure 1). There are two motivating factors: (i) we desire such
polynomials (and certain derivatives) to be compatible with (1) in adjoining
rectangular elements, 7.e., the resulting w ¢ H*(®, =), and (ii) we desire such
formulae, when restricted to a boundary segment of ®, to be independent of
values of f and its derivatives at interior mesh points. This latter factor will
allow us to match exactly certain boundary conditions in the applications to
finite element methods. In particular, if f is cubic in a linear parameter along a
boundary segment, then w = f on that segment.

Let {f&" :0 <k 1=<1,2 <74 j = 3} be given and define
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(3) v(x, y) = Z Z {oii(x, Wi + &, YIS

i=1 §=1
(254+758)

+ 7];’:’(37, y)ﬁ?.l) + ‘l/ii(x) y) ﬁ:"l)}

0<2=a0=y= —bzx/a+ b. Wenow present three interpolation schemes,
denoted Schemes A, B, and C, where the appropriate polynomial coefficients
for (3) are given in Table 1.

2.1 Interpolation Scheme A. Using the A-coefficients in (3) we have:

Theorem 1. Let w e ®*(®, w) be defined on each rectangular element as in (1)
discarding the interpolation of fi}'", and on each triangular element by Scheme A.
Then w ¢ H*(®, w) and v, the restriction of w to the triangle T, satisfies

@ *,u) =0, 0Sk+lSL 25i+j53

Finally, if f is a cubic polynomial in a linear parameter along P,,Ps; , then v =
f on P 12P 21

Proof. Conditions (4) can be verified directly. Since

Gl(—g:c + b) = Hy@), G2<—--Zx + b> - H\@)

Gs(—gx + b) = —g H (), G4("‘3 r + b) = “g Hy(2)

0 < 2 £ a, it follows directly that v(xz, —bx/a + b) depends only on fi'¥,
0=<k+1=1fori+ j = 3. Further, v(z, —bz/a + b) is cubic in x, and thus
cubic in a linear parameter ¢ along P,,P5; . Since v and 9v/9t agree with f and
of/dt respectively at Py, and P, , if f is also cubic in ¢, we must have v = f

along P,,P2;: .
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TABLE 1
A B C ABC
eulr, y) = 1 — Ga(y) — Ha(x) * ox e, y) =Gy | * * *
en(z, y) = Hy(x) | * * *
Eulr, y) = He(x)Gi(y) + (a/D)Ho(x)Gu(y) | * * Ea(z,y) = Hy(x) | * * *
= Hs(z) — (1/b%)xy? *
£13(7, ¥) = Ha(x)Ga(y) — (a/D)Ha(z)Guly) | * *
= (1/b%)zy? *
m, y) = Hi(@)G:(y) + O/a)H(x)Ga(y) | * * ez, ¥) = Guly) | * * *
= Gs(y) — (1/a*)aty *
(e, y) = Ho(@)Ga(y) — (0/a)H(x)Ga(y) | * *
= (1/a*)z%y *
ABC
Yu(z, y) = Ha(x)Ga(y) — Ha(x)G4(y) *
= (1/ab)zy(ab — bz — ay) *
=0 *
Yz, y) = 2Gu(y) + (a/2)H(2)[Ga(y) + bG2(y)] + (b/2)H «(2)G2(y) . * .
=0
Yalz, ¥) = yHa(z) + (b/2)G:(y)[Ha(x) + aH:(2)] + (a/2)H:(x)G4(y) . * .
=0
Next, note that
e 0 =utP0y, 0sk+ls1l; 0=y=h
v V(00 =u*P,0, O0=Zk+1=<1 O0=z=a,

where u**" is computed using (1), discarding the £’ terms. Thus the piecewise
bicubic polynomial w ¢ C'[®] and the proof is complete.

Note that v*'”(x, —bx/a + b) and »°'"(x, —bxr/a + b) depend on fi, ,
1'? and f$'Y. The following corollary establishes that Scheme A cannot be
modified so as to have the restriction of ' to the hypotenuse independent
of fi; .

Corollary 1. The bicubic v(z, y) in Scheme A cannot be modified so thai
v (x, —bx/a + b) depends only on &P, 0 £k +1=<1;4 44 = 3.

Proof. Assume the contrary and let the coefficient of f;; be the bicubic
polynomial

pla,y) = 2 2 By’

=0 7=0
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From (4) and w & C'[®] we must have
p(x; y) =1- Hz(x) - Gz(y) + .322152’!/2 + Bzaw2y3 + Bazxayz + }3333981/*-

Further, p(x, —bz/a + b) = 0for 0 £ z < a implies (by equating the coefficient
of z° to zero)

(6) B2z + BBz = 0.

But p*”(z, —bz/a + b) = 0 for 0 < z < a implies (by equating the coeffi-
cient of x to zero)
(7) Baz -+ bB2s = (3/a2b2)-

Equations (6) and (7) are inconsistent. Thus the desired coefficient p(z, y)
does not exist.

We can modify interpolation Scheme A however so as to interpolate f*'*
at the three vertices.

2.2 Interpolation Scheme B. Using the B-coefficients in (3) one can prove:

Theorem 2. Let w & ®*(®, ) be defined on each rectangular element as in (1)
and on each triangular element by Scheme B. Then w ¢ H*(®, 7), and v, the restric-
tion of w to the triangle T, salisfies

® 0"V, =80, 0sklsSl 2sSi+j<8

Finally, if f s a cubic polynomial in a linear parameter along P,,P2, , then v =
f on P12P21 .

We can simplify our interpolation formula if we relax the condition that
w & C'[®]. The result is the following cubic interpolation scheme which was
related to the author by Garrett Birkhoff.

2.3 Interpolation Scheme C. Using the C-coefficients in (3) one can verify
directly as in the previous schemes:

Theorem 3. Let w e ®*(®, ) be defined on each rectangular element of (®, )
as in (1) and on each triangular element by Scheme C. Then w & C[®R] and v, the
restriction of w to the triangle T, is cubic and satisfies

©) v P, y) =15, 0=k+1=1; 2=i+]
v(l'l)(xl yl) = ]‘ﬁ'l)
, X

Further, if f is a cubic polynomial in a linear parameter along PPy , thenv = f
On P 12P 21

I\

3, and

Corollary 1. There exists one and only one cubic polynomial v(x, y) satisfying

9.

Proof. The existence was established in Theorem 3. As for the uniqueness,
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let v,(z, ) be another cubic polynomial satisfying (9). Then the cubic polynomial
p(x,y) = (0 — v) (2, y) is such that p“'”,0 < 7 + 7 < 1, vanish at all vertices
of T. The restriction of p to each side of T is cubic in any linear parameter ¢
on that side. Hence p must vanish identically on the sides of T, since it is given
by cubie Hermite interpolation in the parameter ¢. Thus from the unique factori-
zation theorem for polynomials, p(z, y) = czy(bxr 4 ay — ab), where ¢ is a con-
stant. But p*'* (0, 0) =0 implies ¢=0. Thus v,=v and the uniqueness is estab-
lished.

Though w"” and w®" may be discontinuous across an interface common
to a rectangular and triangular element, the discontinuity is slight (as will be
shown in Section 4).

3. Complete Triangulations. Suppose that each rectangle of (&, «) has
been refined by triangulation such that the diagonals of adjoining rectangles
coalesce at the same mesh point, (Figure 3).

y

|
Y2 |

Yy +

t t - X

Xy X2

Fiaure 3

We now inquire whether or not we can construct a piecewise bicubic w e
®*(®, =) such that w'? = f*¥ for0 < k, I < 1 at each mesh point (z; , ¥,)
and such that the functions w*'? & C[®], 0 < &, I < 1. First consider:

3.1 Interpolation Scheme D. Consider the polynomial in (3) with coefficients
determined as in Scheme C except
en(e, §) = 1 — Gy(y) — Hy(@) + (6/a’b)wy(bs + ay — ab),
Enlz, y) = Hy(@) + (1/ab’)ay@bs + ay — 2ab),
and
m, ) = Gs(v) + (1/a*b)xy(2ay + bz — 2ab).
We then have:
Theorem 4. Letwe ®*(®, w) be defined on each triangular element by Scheme D.
Then w e C[®R] and v, the restriction of w to the triangle T, is cubic and satisfies

(4). Furthermore, w ¢ H*(®, =) if and only if all triangles of = are congruent to T.

In this case the polynomial coefficients of fi'" in (3) are unique.
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Proof. The continuity of w and properties (4) follow directly from (3)
and the D-coefficients. Since ¢}’ (0, ) depends on “a” and ¢{3'" (z, 0) depends
on “b”’, a necessary condition that w & C'[®] is that all triangles in = be congruent
to T. It follows directly from (3) that this condition is also sufficient. (Note
that even if v(z, y) is taken to be bicubie, this condition is still necessary.)

As in the proof of Corollary 1 to Theorem 3, if v, is another cubic polynomial
satisfying (4), then p(z, ¥) = (v — v)(x, y) = cxylbxr + ay — ab), where ¢
is a constant. Then note that p™'® (0, y) = 0, p©"(x, 0) % 0 and p"*(z,
—bx/a + b) % 0. Thus if w ¢ C'[®], ¢ is necessarily independent of f;'?, 0 <
k+1=<1;2 <1+ 7 £ 3. The constant ¢ could be chosen for instance to inter-
polate f at the centroid of T, in which case v would be uniquely determined.
But then w™'® would be discontinuous on P,,P;, . Thus, in general, ¢ must be
a constant, which can be chosen as 0.

Note that even if all triangles are congruent to T, Schemes A, B and C will
not yield piecewise polynomials of class C'[®] if = consists only of triangular
elements.

We next show that Scheme D cannot be modified to include the interpolation
of f*'V at all three vertices of T, without destroying the compatibility of the
functions w*'?,0 =k +1 = 1.

Corollary 1. There does not exist a w ¢ H*(®, =) such that w* " (z; , y;) =
f&P,0 £k, 1 = 1 at each mesh point (z; , y;) & =

Proof. Assume the contrary, and suppose the coefficient of fi; in (3) is
the bicubic

3 3
oz, y) = Z Zaiixiyi-

1=0 7=0
Then the conditions ¢(0, 0) = 1, ¢'®(0, 0) = ¢°V(0, 0) = ¢*'(0,0) = 0
imply respectively that ag = 1, 1o = @ = ai; = 0. Also, ¢*'”(0, b) = 0,
¢'7(0, b) = 0 imply that oyz = a3 = 0.

Since ¢V (x, —bz/a + b) = 0 for all 0 £ z £ a, we can equate constant
and linear coefficients to zero to obtain respectively 2aq; + 3bags = 0 and age +
3bays = 0 from which it follows that ags = ag; = 0. But then ¢(0, b)) = 1 which
implies v(0, b) # fis .

Thus for complete triangulations, one must sacrifice the interpolation of
F*V at the mesh points for compatibility of the functions w*'?,0 = k +1 =1,
across diagonal interfaces.

4. Orders of approximation. The orders of approximation to f of the piece-
wise polynomial funetions developed in §2 and §3 are established in the following
theorems. For g defined and suitably differentiable on ®, let ||g*”|| =
max {[g%" (z, 9)|: (%, 9) £ &) and ||g”| = max {[}g* ||k + I = r}. We then
have the following:

Theorem 5. For fe C*®R), let e(x, y) = f(z, y) — w(x, y) be the error in the
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approximation of f by the piecewise polynomial w. Then,
(2) 2 77k N
10 |le*?]] < {;kz 1| B*/R (’f’); 0sk+1=1, Scheme A
e |71 BB 0=k+1=3, Scheme B
where the oy, and B, are constants.

Proof. The Taylor Formula associated with a function g e C"[®] is g(c + b,
d+k)=T.lg;¢,d;c+ h;d + k) + R.(g;¢,d; ¢ + h;d + k) where

Tge diethd 8 = oo, + 5 (b2 4w n]

d a\"
. . = ! - -
R.(g;c,d;c + h,d + k) (l/m)[(h ox Tk 6?/) 9, y)]z=c+b'h,u-d+0k

0 < 0 < 1 and (¢, d) is some fixed point in ®. The formula is valid for all h, k
such that (¢ + h,d + k) £ R.

We now prove (10) for Scheme B. Replace fi:'" in (3) by their appropriate
Taylor Formula representations about some arbitrary, but fixed point (¢, d)
in the triangle T, as follows:

v, y) = 2, 2 feulm, WITuG;e, d; 2, y) + Rufse, d; 24, )]

i=1 j=1
(254+73)

+ Eii(x: ?/)[Ta(fz »Cy d’ Zi, 11/:) + R3(fz 3 Cy d; T, y:)]
+ no’i(x) y)[T:%(fu 3 Cy d; Tiy y:) + R3(f1/ »Cy d; Ty yz)]
+ ‘pif(x) y)[T2(fzv y €y d7 z;, yi) + R2(fzu 3 Cy d; T, y:)]} .

By regrouping the terms on the right, one can verify that v(z, y) = T.(f;
¢, d; z,y) + R(x, y), where

11

(1) .

R(z,y) = Zl Zl {o:ii(@, YRu(f; ¢, d; x5, y;) + Lz, YRz 5¢, d; 70, y;)
(2544+7<3)

+ 10, PRy 56, d5 20, ¥3) + i@, YR(Fay 56, d5 70, ¥3) )
For0 ==, 0=y=<basa—0anddb—0
HO@) = {oa/a) i=1L2 oo o {oa/b) i=1,2
o/a™) 1=3,4 oa/v™ 1=3,4

(7‘ = 0; 1: 2: 3) Since R4(f; () d; Tiy yi)y R3(fz 1 G d; T, yi): RS(fu y G d; Tsy yi)
and R.(f., ; ¢, d; z; , y;) do not depend on (z, y) it follows from (11) that

(12) IRP] £ Bu llf®| 1*/d"', 0=k+1=3

where the 8;; are constants, and (10) is established for a point (¢, d) in T.
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One can prove (10) for a point P in a rectangular element in an analogous
manner using (1). For such points however the result is also given in [1, Theorem
5].

The proof of (10) for Scheme A is similar and is thus omitted. One can also
establish in the above manner that the bounds in (10) for Scheme B are also
valid for Scheme C, however we will obtain a stronger result in Theorem 7.
Before dismissing Scheme A though, note that the expression for Scheme A
analogous to (11) is actually:

(13) oz, y) = Tu(f; e, ds 2, 9) — {2y — (= — 2°/a)bGa(y)
— (y — ¥*/b)aH,(2)}f* " (c, d) + O(h®)
and the corresponding bicubic in a rectangular element R is
(14 ulz, y) = T:(f; 6, d; 2, 9)
— {(0G.(y) = y)(@ — aH,@)}f " (e, d) + O().

The coefficients of f*** (¢, d) in (13) and (14) are zero for points on the bound-
ary of the triangular element T, and the rectangular element R, respectively.
Thus (10) can be strengthened as follows:

Corollary 1. [Scheme A] For (z, y) on a mesh line of =

Ie(x’ ?/)I = ago ”f(a)“ R,

The bicubic » of Scheme D interpolates the function f(z, ¥) = 1 by the poly-
nomial v(z, ¥) = 1 + (6/a’*)zy(bx + ay — ab). Thus interior to T we can
conclude only that |[v — f]| is bounded. However we do have

Theorem 6. For fe C*[R], let e(x, y) = f(z, y) — w(z, y) be the error in the
approximation of f by the piecewise cubic polynomial w (Scheme D). For (z, y)
on the mesh lines determining ,

le(z, )| = 600 [IFV]] B,
where 8o 18 a constant tndependent of (x, y).
Proof. The expansion analogous to (11) is
w(z, y) = Ts(f; ¢, d; x, y) + zy(be + ay — ab)O(1) + OK?),

from which Theorem 6 follows.

Unfortunately, the error bounds in (10) for ¥ + I > 0 depend on the ratio
(h/k) and (h/R’), thus placing restrictions on the way in which a mesh can
be successively refined. I.e., to be able to conclude from (10) Scheme B, that
lle®]| = O(®) as h — 0, we must guarantee that (h/A) remain bounded as
h — 0. Garrett Birkhoff has related to the author the following result for Scheme
C:

Theorem 7. For f e C'[®), let e(x, y) = f(x, y) — w(x, y) be the error in the
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approximation of f by the piecewise polynomial w(x, y), (Scheme C). Then
(15) ”e(k.l)“ é Vit I{f(4)|| h4-—(lc+l), 0 é k,l é 1
where the vy, are constants independent of (h/k) and (h/R").

Remark. For rectangular elements, the assertions are given in [1, Theorem
10].

Proof. For triangular elements, e.g., T in Figure 2, we first note that
[e*?(x, 0)] = [f“V(z, 0)] = [|f*”||. Hence applying to e**” (z, 0) a standard
theorem of Lagrange interpolation error [7, p. 187-8] we have for 0 £ z = q,

(16) e @, 0)] = [lF**[Ia",  j=10,1,23.
Similarly, for 0 = y = b,
amn le®”©, | = [IF*?10*7,  j=0,1,23.
From [e®V(z, 0)] = [f®(z, 0)] < |If*?|| it follows that for 0 < z < a
(18) ez, 0)] < IF*V)1a’,  j=0,1,2
Similarly, for0 <y < b,
(19) e @, | = IF"?I0°7,  j=0,1,2

To extend these error bounds from the horizontal and vertical sides to the
interior of T, we now recall the four-point partial difference formula

A,,,(e("”) — 6(1'1)(6, d) _ 6(1'1)(0, 0) _ e(l.l)(o’ d) + 6(1'1)(0, 0)

c d c d
=f f e®®(z, y) dv dy =f f 12 (z, y) dz dy,
0 0 0 0

whence |A,, (™) = [I[f*®]|| cd. Transposing, and using (18)—(19), we get

for (c,d) e T

(20) le(l,l)(c,d)l é 6(1,1)(6’ O)l + Ie(1,1)<0’ d)l + ”f(2,2)||cd
=

|
52116 + 5415 4+ 11| ab,
Thus establishing (15) for k¥ = I = 1. Consequently,

@D 1476, d 5 1476 0] + [ 16, )l dy

= |21 a® + 1121 e + (1) ab®/2 + [1f*]] b%/3,
establishing (15) for k¥ = 1, I = 0. Interchanging the roles of z and y one can
establish (15) fork = 0,1 = 1.

Next note that
e, D] < 160, D) + [ 1V, d)] da
)

é Hf(OA)H h4 + Kha.
where K = [|[/“?[l/4 + [If*[I/8 + [l/**ll/4 + [If**]I/3. Q.E.D.
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