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We describe and analyze a subdivision scheme that generalizes bicubic spline subdivision to control
nets with polar structure. Such control nets appear naturally for surfaces with the combinatorial
structure of objects of revolution and at points of high valence in subdivision meshes. The resulting
surfaces are C2 except at a finite number of isolated points where the surface is C1 and the
curvature is bounded.
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1. INTRODUCTION
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Fig. 1. Polar control net near an extraordinary
point (left) and its refinement (right) under sub-
division. The control pointscij have subscripts
i indicating (modulo the valencen) the direction
and subscriptsj indicating the radial distance to
the extraordinary pointci0. Only the radial, not
the circular direction is refined.

Polar control nets (Figure 1) capture the combinatorial structure
of objects of revolution and are therefore more natural at points
of high valence (see e.g. Figure 2) than the all-quads layoutfa-
vored by Catmull-Clark subdivision [Catmull and Clark 1978].
Correspondingly, we define and analyze in the following a binary
subdivision scheme that, just like Catmull-Clark subdivision, gen-
eralizes the refinement rules of uniform cubic splines – but for the
layout of a polar net.

Formally, a control net without boundary is apolar net
[Karčiauskas and Peters 2007] if it consists of extraordinary mesh
nodes surrounded by triangles, and of quadrilaterals that have
nodes of valence four. The extraordinary mesh nodes need only
be separated by one layer of nodes of valence four as illustrated
in Figure 7,left. Applying quad-tri subdivision [Stam and Loop
2003; Peters and Shiue 2004; Schaefer and Warren 2005] to a
polar net is not a good alternative, since Loop subdivision also
does not cope well with such input meshes (Figure 2). Polar subdivision differs structurally from tensored univariate
schemes with singularities, e.g. [Morin et al. 2001], in that the number of neighbors of the extraordinary point does
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Fig. 2. Wrinkle removal on an Easter Island head (valence 20). (from left to right) Catmull-Clark subdivision, Loop subdivision (quad facets are
split), control net, color-coded rings of the polar subdivision surface, polar subdivision surface.

not double with each polar subdivision step but stays fixed. Quadrilaterals in a polar net are not split and the control
net refines only towards the extraordinary point (Figure 1).Therefore, the polar control net does not, off hand, serve
the function of approximating the surface ever more closelyby smaller facets. However, the resulting surface as a
single B-spline mesh growing towards the extraordinary point, i.e. the surface does not have the cascading sequence
of T-corners intrinsic to Catmull-Clark surfaces. Section4, Control Nets, explains this in detail.

Compared to [Karčiauskas et al. 2006], the more localized computation of bicubic polar subdivision results in a
more localized curvature distribution. At the extraordinary point, the curvature of surfaces generated by bicubic polar
subdivision is only bounded but need not be continuous whilethe algorithm in [Karčiauskas et al. 2006] generatesC2

surfaces. The present scheme has, however, the advantage ofsimpler rules without visibly sacrificing good shape.

2. POLAR REFINEMENT RULES

Apart from the extraordinary mesh nodes, the polar net defined in the introduction, is astandard bicubic B-spline con-
trol net. For the layer of quadrilaterals adjacent to the triangles,we interpret the triangles as degenerate quadrilaterals
with one edge collapsed. It is easy to check, for example by conversion to Bézier form, that this interpretation does
not result in singularities in the quadrilateral layer. In order to map a polar net to a refined polar net, we will refine the
bicubic spline net only in the radial direction (cf. Figure 1).
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Fig. 3. Refinement stencils for binary polar subdivision.

As is typical for subdivision algorithms, we need only explain how to refine the polar net immediately connected
to extraordinary mesh nodes. To obtain leading eigenvalues1, 1
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4
, it suffices to have special rules only at

the extraordinary mesh node and its direct neighbors (Figure 3). The two regular rules are the subdivision rules for
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univariate uniform cubic splines. The extraordinary ruleshave the weights
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Here, we choseβ = 1/2 to emphasize convexity at the extraordinary point, since this is likely the dominant scenario
for polar meshes. This choice is also reasonable for saddles(Figure 9). Section 4,Convexity and Valencediscusses
the role ofβ in more detail.
A useful property of polar surfaces is that the valence can bechanged by interpreting eachcircular ring of coefficients
as the control polygon of a cubic spline curve. To avoid a special discussion of low valences, we uniformly insert
knots in the circular spline curves and double the valence whenn ∈ {3, 4, 5}. That is, we may assumen ≥ 6 in the
following.

3. PROPERTIES BY CONSTRUCTION

Let cm
i,j be the control point of theith sector and thejth layer as indicated in Figure 1. The central node is considered

split inton copiescm
i0 , each weighted by1/n. Then the vector of control points

c
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is refined by a subdivision matrix with block-circulant structure:cm+1 = Ac
m,
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 , i = 1, . . . , n − 1,

that can be block-diagonalized by Discrete Fourier Transform Âi :=
∑n−1

k=0
ωik

n Ak, ωℓ
n := exp

(

2πℓ
√
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)

, so that
the eigen-analysis is pleasantly simple.

LEMMA 1. For generic input data, the limit surface of bicubic polar subdivision isC2 except at isolated extraor-
dinary points where the surface isC1 and the curvature bounded.

PROOF. As illustrated in Figure 4, control point layers1 through5 definetwo rings of bicubic splines (Figure 4
middle). This double-ring isC2 since it corresponds to a regular (periodic) tensor-product spline. As in Catmull-Clark
subdivision, consecutive double-rings joinC2. Forn > 5,
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( 1−α α 0 0

1−β β 0 0
1

8

3

4

1

8
0

0 1

2

1

2
0

)

, Âi =
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The eigenvalues of̂A0 are1, 1

4
, 1

8
, 0 and the eigenvalues of̂Ai for i = 1, . . . , n− 1, areγ̂i :=

∑n−1

k=0
ωik

n γk, 1

8
, 0, 0. In

particular,λ1 = γ̂1 and(λ1)
2 = λ2 = γ̂2 as is required forbounded curvature.

Since the eigenvector of matrix̂A1 for λ1 = 1

2
is (0, 1, 2, 3)t, the subdominant eigenvectors ofA are the coordinates

of

v = (. . . , ri−1
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0 , . . .), r
i
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[

cos i 2π
n

sin i 2π
n

]

, i = 1, . . . , n, k = 0, 1, 2, 3. (3)

The control netv defines the characteristic map(Figure 4,middle) [Reif 1995], whose regularity and injectivity
are easily verified [Peters and Reif 1998; Umlauf 1999]. The eigenvectors corresponding to the eigenvalue1/4 are
from Fourier blocks0, 2 andn − 2 and they are not generalized eigenvectors. Explicitly, foruse in Section 4, the
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Fig. 4. (left) Layers0 through5 (generated by one subdivision of layers0 through3) define (middle) one piecewise bicubic double-ring. (right)
Consecutive double-rings join smoothly and, unlike Catmull-Clark subdivision, without T-corners.

eigenvectorsv2k to the eigenvalue1
4

of Âk for Fourier indexk ∈ {0, 2} are

v20 := (1 + 3b, 1, 7 + 3b, 16 + 6b)t, b :=
1

4β − 1
, v22 := (1, 4, 6, 14)t. (4)

Together with the curvature bounded spectrum, this impliescurvature boundedness as claimed.

LEMMA 2. The limit extraordinary point is

ηc00 + (1 − η)
1

n

n
∑

i=1

ci1 η :=
4(1 − β)

3
.

PROOF. We choose the representationĀ ∈ R
3n+1×3n+1 of the subdivision operator where we do not replicate the

central nodec00:

Ā :=


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Ā0 :=

(

γ0 0 0
3

4

1

8
0

1

2

1

2
0

)
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, i = 1, . . . , n − 1 .

We can directly check that the left eigenvector ofĀ with respect to the dominant eigenvalue 1 is

[
1 − β

1 − β + α
,ℓℓℓ, ℓℓℓ, . . . , ℓℓℓ]t, ℓℓℓ := [

α

n(1 − β + α)
, 0, 0].

The claim follows (see [DeRose et al. 1998], Appendix A) since the entries sum to 1.

Since[0, 1, 0, 0] is a left eigenvector tôA1, the normal direction at the extraordinary point is simply
(
∑n

i=1
cos i 2π

n
ci0) × (

∑n
i=1

sin i 2π
n

ci0).

4. DISCUSSION

This section discusses some alternative schemes, the meaning of control polyhedra and adjustment of valence and
convexity.

Alternative Schemes.
The bicubic polar subdivision algorithm has special rules for both the new central node and its direct neighbors.
Choosing symmetric special rules only for the central node does not yield appropriate degrees of freedom for smooth-
ness. Specifically, forcing a double subdominant eigenvalue by tuning only the rules for the central node, leads
to one single subdominant eigenvector forn > 3; only for n = 3, do there exist rules to generateC1 surfaces
with a spectrum suitable for bounded curvature. So, a directpolar analogue of Catmull-Clark subdivision fails
and the question arises whether aternary polar subdivision scheme, analogous to [Loop 2002], is advantageous.
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Fig. 5. Refinement stencils for a ternary polar subdivision (splitting into three in the radial direction) whereβ := 38
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We derived such a variant for comparison (see Figure 5). The weightsγk are non-negative and the scheme sat-
isfies all the constraints on the leading eigenvalues (1, 1

3
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3
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9
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9
) and eigenvectors for curvature boundedness.

patches

control
facets

polarCatmull-Clark

Fig. 6. Layout of patches and control
polyhedron for Catmull-Clark subdivision
(left) and polar subdivision (right). The T-
corners in Catmull-Clark (left top) are in-
trinsic (the coarser patch isC∞ at the T-
corner). The T-corners in the refined poly-
hderon (right bottom) are optional and not
part of the polar net.

However, the resulting surfaces did not look better than those of the pro-
posed binary subdivision.

Control Nets and Surface Rings.
Subdivision surfaces can either be viewed as refining a control net or as
generating a sequence of surface rings converging to the extraordinary
point [Reif 1995]. The first serves intuition if the control net outlines the
shape, the second is preferred for exact evaluation, computing and analy-
sis. Both Catmull-Clark subdivision and polar subdivisionadmit the two
views but differ in their bias. To see this, define aT-corner to be the
location where an edge between two distinct polynomial patches meets
the midpoint of an edge of a third. With each refinement, Catmull-Clark
subdivision generates T-corners between the patches of adjacent surface
rings (Figure 6,left top). Polar subdivision does not generate T-corners
(Figure 6,right top) since the control net refines only towards the extraor-
dinary point (Figure 1). One approach for generating a faceted approxi-
mation converging to the underlying surface is to split the quadrilaterals
of the polar net at each refinement into four and leave the triangles un-
touched. This yields T-corners in the faceted approximation (Figure 6,
right bottom). Reflecting the bias towards presenting a mesh without T-
corners versus obtaining a surface without T-corners, Catmull-Clark sub-
division is usually illustrated by a sequence of control nets (Figure 1,left
bottom), hiding the surface T-corners, while polar surfaces are preferably
introduced as a sequence of surface rings.

Convexity and Valence.
Decreasing the parameterβ in (1) pulls the surface closer to the extraor-
dinary mesh node. Recently [Ginkel and Umlauf 2006] documented how
such straightforward manipulation results in a limit surface in the desir-
able region of a ‘shape chart’ [Karciauskas et al. 2004]: decreasingβ emphasizes convexity. We therefore choseβ :=
1/2 (see Figure 10) overβ := 5/8 even though the latter yields non-negative weightsγk = 1

8n
(1+ck

n)(1+2ck
n)2 ≥ 0.

Table I shows the effect ofβ on the subsubdominant eigenvectorv20 of (4), that determines the shape in the convex
setting, and its second difference∆v20. Forβ = 1/2, the sector partition curves are quadratic and have a more pro-
nounced curvature than forβ = 5/8. We also observed that increasing the valence by knot insertion improves the
curvature distribution for convex neighborhoods (see e.g.Figure 10). This is due to the increased symmetry ofv20 and
the fact that, if a curve isC1 at the central point and opposite curve segments are mirror images, then the curve isC2.
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β 3/8 4/8 5/8 6/8

v20 (−1, 5, 29, 68)t (−1, 2, 11, 26)t (−1, 1, 5, 12)t (−1, 1/2, 2, 5)t

∆2v20 (18, 15)t (6, 6)t (2, 3)t (0, 3/2)t

Table I. Coefficients ofv20, the eigenvector of the zeroth Fourier mode to the eigenvalue 1/4.

5. CONCLUSION

The algorithm just defined and analyzed is a polar cousin of Catmull-Clark subdivision. Its curvatures are bounded
just as [Sabin 1991]. Its simplicity and the fact that the output consists of bicubic patches recommend bicubic polar
subdivision as a useful addition to Catmull-Clark subdivision. This addition gives the designer more freedom just
where Catmull-Clark subdivision encounters shape deficiencies, the valence is high or polar layout is natural. The
paper [Myles et al. 2007] explains in detail how bicubic Catmull-Clark and bicubic polar subdivision can be combined
for smooth object design such as in Figure 12.
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Fig. 7. Mirrored16-sided pyramid. (left) control net; (middleandright) subdivision surfaces (three light sources) using (middle) Catmull-Clark
subdivision, (right) polar bicubic subdivision (with Gauss-curvature shaded inset).

Fig. 8. Intended ripples: (left) Control net (middle) Catmull-Clark subdivision (note additional micro-ripples); (right) polar subdivision.

Fig. 9. Nonconvex polar net, nested surface rings of polar subdivision, shaded surface and reflection lines on the saddle.

control net n = 6, β = 5

8
n = 12, β = 5

8
n = 6, β = 1

2
n = 12, β = 1

2

Fig. 10. The effect of changing the parametersβ andn of bicubic polar subdivision on the everywhere positive Gauss-curvature of a capped
cylinder.
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Fig. 11. (left) Sample meshes; (middle) bicubic surface rings; (right) Polar subdivision surfaces.

Fig. 12. Bicubic subdivision with Catmull-Clark rules applied wheren 6= 4 quadrilaterals meet and polar rules where triangles meet (greysurfaces).
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