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We describe and analyze a subdivision scheme that generalizes bicubic spline subdivision to control
nets with polar structure. Such control nets appear naturally for surfaces with the combinatorial
structure of objects of revolution and at points of high valence in subdivision meshes. The resulting
surfaces are C? except at a finite number of isolated points where the surface is C' and the
curvature is bounded.

Categories and Subject Descriptors: 1.3.5 [: Computati@eometry and Object Modeling; J.6 [J: Computer-Aided iBergring

General Terms: Algorithms
Additional Key Words and Phrases: Subdivision, polar layout, polar net, bicubic, Catmull-Clark,
curvature continuity

1. INTRODUCTION
Polar control nets (Figure 1) capture the combinatorialcttre
of objects of revolution and are therefore more natural attpo / radial circular
of high valence (see e.g. Figure 2) than the all-quads lafsut
vored by Catmull-Clark subdivision [Catmull and Clark 1978
Correspondingly, we define and analyze in the following abjin A »
subdivision scheme that, just like Catmull-Clark subdosis gen-
eralizes the refinement rules of uniform cubic splines —butife 1+l
layout of a polar net. — Ci2

Formally, a control net without boundary is jgolar net rig 1. Polar control net near an extraordinary
[KarCiauskas and Peters 2007]if it consists of extra@tdimesh point (eft) and its refinementright) under sub-
nodes surrounded by triangles, and of quadrilaterals theé hdivision. The control points;;; have subscripts
nodes of valence four. The extraordinary mesh nodes negd gnhdicating (modulo the valence) the direction
be separated by one layer of nodes of valence four as iltestreang subscriptg indicating the radial distance to
in Figure 7 left. Applying quad-tri subdivision [Stam and Looghe extraordinary point;o. Only the radial, not
2003; Peters and Shiue 2004; Schaefer and Warren 2005] tacacircular direction is refined.
polar net is not a good alternative, since Loop subdivisign a
does not cope well with such input meshes (Figure 2). Poladisision differs structurally from tensored univariate
schemes with singularities, e.g. [Morin et al. 2001], inttthee number of neighbors of the extraordinary point does
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Fig. 2. Wrinkle removal on an Easter Island head (valence @@m left to right) Catmull-Clark subdivision, Loop subdivision (quad facete
split), control net, color-coded rings of the polar subsion surface, polar subdivision surface.

not double with each polar subdivision step but stays fixedadpilaterals in a polar net are not split and the control
net refines only towards the extraordinary point (FigureThHerefore, the polar control net does not, off hand, serve
the function of approximating the surface ever more closgiysmaller facets. However, the resulting surface as a
single B-spline mesh growing towards the extraordinarypaie. the surface does not have the cascading sequence
of T-corners intrinsic to Catmull-Clark surfaces. SectyiControl Nets explains this in detail.

Compared to [KarCiauskas et al. 2006], the more localizmdputation of bicubic polar subdivision results in a
more localized curvature distribution. At the extraorainaoint, the curvature of surfaces generated by bicubiarpol
subdivision is only bounded but need not be continuous whéealgorithm in [Kariauskas et al. 2006] generatés
surfaces. The present scheme has, however, the advantsiggotér rules without visibly sacrificing good shape.

2. POLAR REFINEMENT RULES

Apart from the extraordinary mesh nodes, the polar net défimtéhe introduction, is atandard bicubic B-spline con-
trol net. For the layer of quadrilaterals adjacent to the trianglesinterpret the triangles as degenerate quadrilaterals
with one edge collapsed. It is easy to check, for example loyasion to Bézier form, that this interpretation does
not result in singularities in the quadrilateral layer. hder to map a polar net to a refined polar net, we will refine the
bicubic spline net only in the radial direction (cf. Figure 1
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Fig. 3. Refinement stencils for binary polar subdivision.

As is typical for subdivision algorithms, we need only explaow to refine the polar net immediately connected
to extraordinary mesh nodes. To obtain leading eigenvalugss, 1, 1, 1, it suffices to have special rules only at
the extraordinary mesh node and its direct neighbors (Eiglr The two regular rules are the subdivision rules for
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univariate uniform cubic splines. The extraordinary rulase the weights

a:=f- i, 8= %, Vi = %(ﬁ - % + gcﬁ + (cﬁ)2 + %(cﬁ)?’), sz ‘= COS (QLnk) (1)
Here, we chos@ = 1/2 to emphasize convexity at the extraordinary point, sineeithlikely the dominant scenario
for polar meshes. This choice is also reasonable for sa@igsre 9). Section 4Convexity and Valencgiscusses
the role of3 in more detail.

A useful property of polar surfaces is that the valence cachla@ged by interpreting eaclrcular ring of coefficients
as the control polygon of a cubic spline curve. To avoid a igpeliscussion of low valences, we uniformly insert
knots in the circular spline curves and double the valencenwhe {3, 4,5}. Thatis, we may assume> 6 in the
following.

3. PROPERTIES BY CONSTRUCTION

Letc;”; be the control point of théth sector and thgth layer as indicated in Figure 1. The central node is comeitie
split inton copiescyy, each weighted by/n. Then the vector of control points

m m . m _m _m

— 4Anx4n
c" = (...,cjg,ch,cih,ch,..) ER ,

is refined by a subdivision matrix with block-circulant stture:c™t! = Ac™,

Ao A1 ... Apa loa a g9 1-a a g
Ap_1 Ao i Am_s L 6 .
A= ) . ) € RN Ag = i?gg y A= | 00 =1, n -1,
: . : 8n 4 8 s 000
Ay ... An1 A 0o 330 0 000
that can be block-diagonalized by Discrete Fourier Tramsfd; := S} wikA;,  w’ = exp(2Z2/=1) | so that

the eigen-analysis is pleasantly simple.

LEMMA 1. For generic input data, the limit surface of bicubic polatslivision isC? except at isolated extraor-
dinary points where the surface' and the curvature bounded.

PROOF As illustrated in Figure 4, control point layetsthrough5 definetwo rings of bicubic splines (Figure 4
middle). This double-ring i$"? since it corresponds to a regular (periodic) tensor-prospiine. As in Catmull-Clark
subdivision, consecutive double-rings jaiff. Forn > 5,

3, ifie{l,n—-1}
1o ifie{2,n—2) 1=55 00 69 00
=1 Tresn anddo = 7500 ), Ai={o0¥10]. @)
Vi 1 if i € {3,n—3) ) 0 i1 310, 0210
16> ¢ 1 0 110 0i4io0
0, if ¢ >3andi <n— 3.
The eigenvalues o, arel, 1. 3,0 and the eigenvalues of fori=1,...,n—1,arey; := ZZ;S wik, £,0,0.1n

particular\; = 4; and(\)? = /\% = 49 as is required fobounded curvature
Since the eigenvector of matri for A; = % is (0,1, 2,3)*, the subdominant eigenvectors4fre the coordinates
of

v:(...,r?l,ré,ri,ré,ré,rgﬂ,...), ri ::k[c?szjjz:}, i=1,...,n, k=0,1,2,3. 3)
The control netv defines the characteristic map(Figure 4, middle [Reif 1995], whose regularity and injectivity
are easily verified [Peters and Reif 1998; Umlauf 1999]. Tigere/ectors corresponding to the eigenvalyé are

from Fourier block9), 2 andn — 2 and they are not generalized eigenvectors. Explicitly,uee in Section 4, the
ACM Transactions on Graphics, Vol. V, No. N, Month 20YY.
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Fig. 4. (eft) Layers0 through5 (generated by one subdivision of lay@rshrough3) define (niddlg one piecewise bicubic double-ringright)
Consecutive double-rings join smoothly and, unlike Catr@ldrk subdivision, without T-corners.

eigenvectorsyy to the eigenvalué of A,, for Fourier indexk € {0,2} are
1
= (1+4+3b,1,7+3b,16 +6b)*, b:= —
V20 ( + s Ly + ) + ) ) 46 — 17
Together with the curvature bounded spectrum, this imgligsature boundedness as claimed]

Vo2 ‘= (1,4, 6, 14)t (4)

LEMMA 2. The limit extraordinary point is

1 — 41—
ncoo + (1 —77)% Zcil U (T)
i=1

PROOF. We choose the representatidnc R3"+1x37+1 of the subdivision operator where we do not replicate the
central nodeg:

l—-a a, ... a,
ac A() An71 . [« Y 00

- a, :=|>,0,0 = = 7 00

A= . . . .r [n7 11] . Ay = 310 A; :(000)7121’ ,n—1
: S ac:=[1-p,3,0] 11 000

a. ... Apn—1 Ao

We can directly check that the left eigenvectorbivith respect to the dominant eigenvalue 1 is
1-06 !

T hra Wi-F+a)

The claim follows (see [DeRose et al. 1998], Appendix A) sittee entries sum to 1.0

00, 0, 0= ,0,0].

Sincel0, 1,0, 0] is a left eigenvector tol;, the normal direction at the extraordinary point is simply
(3or i cosiZey) x (Do siniZeq).

4. DISCUSSION

This section discusses some alternative schemes, the myeaihcontrol polyhedra and adjustment of valence and
convexity.

Alternative Schemes.

The bicubic polar subdivision algorithm has special rulestoth the new central node and its direct neighbors.
Choosing symmetric special rules only for the central naskssdhot yield appropriate degrees of freedom for smooth-
ness. Specifically, forcing a double subdominant eigemvaly tuning only the rules for the central node, leads
to one single subdominant eigenvector for> 3; only for n = 3, do there exist rules to generaf¢ surfaces
with a spectrum suitable for bounded curvature. So, a dpetdr analogue of Catmull-Clark subdivision fails
and the question arises whetheteanary polar subdivision schemanalogous to [Loop 2002], is advantageous.
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Fig. 5. Refinement ste2ncils for a ternary polar subdivisisplitting into three in the radial direction) where := g—f, a:= 03— %, Ve =
g1 (54 2ck) (14 ck)”.

We derived such a variant for comparison (see Figure 5). Téighs~, are non-negative and the scheme sat-
isfies all the constraints on the leading eigenvalues (3, 5, 5, §) and eigenvectors for curvature boundedness.
However, the resulting surfaces did not look better thasehaf the pro-

posed binary subdivision.

(Figure 6 right top) since the control net refines only towards the extraor-

dinary point (Figure 1). One approach for generating a &tapproxi-

mation converging to the underlying surface is to split thadyilaterals Catmull-Clark polar

of the polar net at each refinement into four and leave thaghis un-

touched. This yields T-corners in the faceted approxinmatitigure 6, Fig. 6. Layout of patches and control
right botton). Reflecting the bias towards presenting a mesh withoutpblyhedron for Catmull-Clark subdivision
corners versus obtaining a surface without T-corners, Gi@lark sub- (left) and polar subdivisionright). The T-
division is usually illustrated by a sequence of controbr(&igure lleft corners in Catmull-Clarkl¢ft top) are in-
botton), hiding the surface T-corners, while polar surfaces agégpably trinsic (the coarser patch i8> at the T-
introduced as a sequence of surface rings. corner). The T-corners in the refined poly-

hderon (ight botton) are optional and not
part of the polar net.

Control Nets and Surface Rings.
Subdivision surfaces can either be viewed as refining a comét or as patches
generating a sequence of surface rings converging to tmacegitnary

point [Reif 1995]. The first serves intuition if the contratoutlines the

shape, the second is preferred for exact evaluation, cangpand analy-

sis. Both Catmull-Clark subdivision and polar subdivisammit the two

views but differ in their bias. To see this, definél&ornerto be the

location where an edge between two distinct polynomiallpeganeets

the midpoint of an edge of a third. With each refinement, Cét@iark
subdivision generates T-corners between the patchesadetjsurface ?aOC”e‘{g !
rings (Figure 6]eft top). Polar subdivision does not generate T-corners

Convexity and Valence.

Decreasing the parametg@iin (1) pulls the surface closer to the extrao
dinary mesh node. Recently [Ginkel and Umlauf 2006] docuedhow
such straightforward manipulation results in a limit sagfdn the desir-
able region of a ‘shape chart’ [Karciauskas et al. 2004]rel@sings emphasizes convexity. We therefore ch@se-

1/2 (see Figure 10) ove? := 5/8 even though the latter yields non-negative weights= 5-(1+ck)(1+2¢%)2 > 0.
Table | shows the effect gf on the subsubdominant eigenvectgg of (4), that determines the shape in the convex
setting, and its second differente,. For 3 = 1/2, the sector partition curves are quadratic and have a more pr
nounced curvature than fgr = 5/8. We also observed that increasing the valence by knot insgrhproves the
curvature distribution for convex neighborhoods (seefgure 10). This is due to the increased symmetry.gfand

the fact that, if a curve i€'! at the central point and opposite curve segments are minages, then the curve @&,
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[é] 3/8 4/8 5/8 6/8
020 (-1,5,29,68) (—1,2,11,26)* (—1,1,5,12)* (—1,1/2,2,5)*
A2y (18,15)* (6,6)* (2,3)t (0,3/2)*

Table I.  Coefficients ofg, the eigenvector of the zeroth Fourier mode to the eigervild.

5. CONCLUSION

The algorithm just defined and analyzed is a polar cousin &iGk-Clark subdivision. Its curvatures are bounded

just as [Sabin 1991]. Its simplicity and the fact that thepotittonsists of bicubic patches recommend bicubic polar
subdivision as a useful addition to Catmull-Clark subdasis This addition gives the designer more freedom just
where Catmull-Clark subdivision encounters shape defiodsn the valence is high or polar layout is natural. The
paper [Myles et al. 2007] explains in detail how bicubic CalirClark and bicubic polar subdivision can be combined

for smooth object design such as in Figure 12.
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Fig. 7. Mirrored16-sided pyramid. Igft) control net; (niddle andright) subdivision surfaces (three light sources) usimid@le Catmull-Clark

subdivision, fight) polar bicubic subdivision (with Gauss-curvature shaaeset).

A @)

Fig. 8. Intended ripples:éft) Control net (niddle Catmull-Clark subdivision (note additional micro-rigg); ¢ight) polar subdivision.

LT

Fig. 9. Nonconvex polar net, nested surface rings of poladisision, shaded surface and reflection lines on the saddle

n=12,3=2 n=608=1 n=12,0= 1

control net n==6,0= %
Fig. 10. The effect of changing the parametérgind n of bicubic polar subdivision on the everywhere positive &aaurvature of a capped
cylinder.
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Fig. 11. (eft) Sample meshesmiddle bicubic surface ringsyight) Polar subdivision surfaces.

Fig. 12. Bicubic subdivision with Catmull-Clark rules ajgal wheren # 4 quadrilaterals meet and polar rules where triangles ngeey$urfaces).
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