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F E A T U R E

T
his article analyzes the dynamics of bicy-

cles from the perspective of control.

Models of different complexity are pre-

sented, starting with simple ones and

ending with more realistic models gener-

ated from multibody software. We con-

sider models that capture essential behavior such as

self-stabilization as well as models that demon-

strate difficulties with rear wheel steering. We

relate our experiences using bicycles in control

education along with suggestions for fun and

thought-provoking experiments with proven

student attraction. Finally, we describe bicycles

and clinical programs designed for children with

disabilities.

The Bicycle
Bicycles are used everywhere—for transportation, exer-

cise, and recreation. The bicycle’s evolution over time

has been a product of necessity, ingenuity, materials, and

industrialization. While efficient and highly maneuverable,

the bicycle represents a tantalizing enigma. Learning to

ride a bicycle is an acquired skill, often obtained with some

difficulty; once mastered, the skill becomes subconscious

and second nature, literally just “as easy as riding a bike.”

Bicycles display interesting dynamic behavior. For

example, bicycles are statically unstable like the invert-

ed pendulum, but can, under certain conditions, be sta-

ble in forward motion. Bicycles also exhibit nonminimum

phase steering behavior. 

Bicycles have intrigued scientists ever since they appeared in

the middle of the 19th century. A thorough presentation of the

history of the bicycle is given in the recent book [1]. The papers

[2]–[6] and the classic book by Sharp from 1896, which has

recently been reprinted [7], are good sources for early work.

Notable contributions include Whipple [4] and Carvallo

[5], [6], who derived equations of motion, linearized around the
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vertical equilibrium configuration, based on Lagrangian

dynamics. The book [8] and its third edition [9] give a

broad engineering perspective. Rankine, Klein, and

Sommerfeld analyze bicycles in [2] and [10]. Papers

appear regularly in the scientific literature [11]–[23]. The

first publications that used differential equations to

describe the motion of an idealized bicycle appeared

toward the end of the 19th century. During the early 20th

century, several authors studied the problems of bicycle

stability and steering. Něımark and Fufaev [24] derived a

comprehensive set of linearized models by approximating

potential and kinetic energy by quadratic terms and

applying Lagrange’s equations to these expressions. The

analysis in [24], which modeled wheels both as ideal disks

and pneumatic tires, is elaborated in [25].

Modeling bicycles became a popular topic for disserta-

tions in the latter half of the last century [26]–[32]. One of

the first computer simulations of a nonlinear bicycle model

was presented in [33]. Nonlinear models are found in [23]

and [34]–[36], in which the dynamic order ranges 2–20,

depending on the assumptions made. Simple models of

bicycle dynamics are given in the textbooks [37]–[39].

Early models were derived by hand calculations. Software

for multibody systems [40]–[45] simplifies modeling signif-

icantly and permits more detailed modeling, as described

in the dissertations [46], [47].

Bicycles share many properties with motor-

cycles [49]. The high-order motorcycle mod-

els in [50] and [51] also include tire slip and

frame elasticity. Rider models are used to

study handling characteristics [28],

[18]. A comprehensive discussion of

motorcycle models is given in [52],

which provides a detailed treatment

of tire-road interaction. A high fideli-

ty model of motorcycle dynamics

that includes vibrational modes is

given in [53], and models based

on multibody software are found

in [54] and [55].

Several attempts have been

made to develop autopilots for

bicycles and motorcycles. In partic-

ular, [56] describes a complete

controller for a motorcycle,

including results from practi-

cal tests. Autopilots are

also described in [34],

[35], and [57]–[59].

The bicycle pro-

vides an ideal

venue for illus-

trating model-

ing, dynamics,

stabilization, and feedback. This system also illustrates the

fundamental limitations on control caused by poles and

zeros in the right-half plane. These limitations can be

demonstrated by simple experiments. In fact, special bicy-

cles with highly spectacular properties can be designed,

making the bicycle well suited to activities for K–12 educa-

tion, open houses, and demonstrations. Adaptive bicycles

for teaching children with disabilities to ride bicycles have

also been developed in [60] and [61] (see “Adapted Bicy-

cles for Teaching Children with Disabilities”).

Modeling
When modeling a physical object, it is important to keep

the purpose of the model in mind. In this article, we devel-

op bicycle models and use them to analyze balancing and

steering problems. 

A detailed model of a bicycle is complex because the

system has many degrees of freedom and the geometry is

intricate. Some important aspects to consider are the

choice of bicycle components to include in the model, the

treatment of elasticity of the bicycle parts, the modeling

of tire-road interaction, and the complexity of the rider

model. Successful control and maneuvering of a bicycle

depend critically on the forces between the wheels and

the ground. Acceleration and braking require longitudinal

forces, whereas balancing and turning depend on later-

al forces. A good understanding of these forces is

necessary to make appropriate assumptions

about valid models of the rolling conditions.

We assume that the bicycle consists of

four rigid parts, specifically, two

wheels, a frame, and a front fork with

handlebars. The influence of other

moving parts, such as pedals,

chain, and brakes, on the

dynamics is disregarded. To

include the rider in the

analysis, the rider’s upper

body is modeled as a

point mass that can move

laterally with respect to

the bicycle frame. The rider

can also apply a torque to

the handlebars.

When a rigid wheel

rolls without slid-

ing on a rigid sur-

face, forces be-

tween the wheel

and the ground

are transferred

without losses. In

reality, the tire is

deformed due to

IEEE Control Systems Magazine



the forces acting between ground and wheel. Since we do

not consider extreme conditions and tight turns, we

assume that the bicycle tire rolls without longitudinal or

lateral slippage. Control of acceleration and braking is not

considered explicitly, but we often assume that the forward

velocity is constant. To summarize, we simply assume that

the bicycle moves on a horizontal plane and that the

wheels always maintain contact with the ground.

Geometry
The parameters that describe the geometry of a bicycle

are defined in Figure 1. The key parameters are wheelbase b,

head angle λ, and trail c. The front fork is angled and

shaped so that the contact point of the front wheel with

the road is behind the extension of the steer axis. Trail is

defined as the horizontal distance c between the contact

point and the steer axis when the bicycle is upright with

zero steer angle. The riding properties of the bicycle are

strongly affected by the trail. In particular, a large trail

improves stability but makes steering less agile. Typical

values for c range 0.03–0.08 m.

Geometrically, it is convenient to view the bicycle as

composed of two hinged planes, the frame plane and the

front fork plane. The frame and the rear wheel lie in the

frame plane, while the front wheel lies in the front fork

plane. The planes are joined at the steer axis. The points

P1 and P2 are the contact points of the wheels with the

horizontal plane, and the point P3 is the intersection of the

steer axis with the horizontal plane (Figure 1).

Coordinates
The coordinates used to analyze the system, which fol-

low the ISO 8855 standard, are defined in Figure 2. There

is an inertial system with axes ξηζ and origin O. The

coordinate system xyz has its origin at the contact point

P1 of the rear wheel and the horizontal plane. The x axis

is aligned with the line of contact of the rear plane with

the horizontal plane. The x axis also goes through the

point P3 , which is the intersection between the steer

axis and the horizontal plane. The orientation of the

rear wheel plane is defined by the angle ψ , which is the

angle between the ξ -axis and the x-axis. The z axis is

vertical, and y is perpendicular to x and positive on the

left side of the bicycle so that a right-hand system is

obtained. The roll angle ϕ of the rear frame is positive

when leaning to the right. The roll angle of the front fork

plane is ϕf . The steer angle δ is the angle of intersection

between the rear and front planes, positive when steer-

ing left. The effective steer angle δf is the angle between

the lines of intersection of the rear and front planes with

the horizontal plane.

Simple Second-Order Models
Second-order models will now be derived based on addi-

tional simplifying assumptions. It is assumed that the

bicycle rolls on the horizontal plane, that the rider has

fixed position and orientation relative to the frame, and

that the forward velocity at the rear wheel V is constant.

For simplicity, we assume that the steer axis is vertical,

which implies that the head angle λ is 90◦ and that the

trail c is zero. We also assume that the steer angle δ is the

control variable. The rotational degree of freedom associ-

ated with the front fork then disappears, and the system is

August 200528 IEEE Control Systems Magazine

Figure 1. Parameters defining the bicycle geometry. The

points P1 and P2 are the contact points of the wheels with the

ground, the point P3 is the intersection of the steer axis with the

horizontal plane, a is the distance from a vertical line through

the center of mass to P1, b is the wheel base, c is the trail, h is

the height of the center of mass, and λ is the head angle.

a

b c

h

C1

P1 P2 P3

C2

λ

Figure 2. Coordinate systems. The orthogonal system ξηζ is

fixed to inertial space, and the ζ -axis is vertical. The orthogo-

nal system xyz has its origin at the contact point of the rear

wheel with the ξη plane. The x axis passes through the points

P1 and P3, while the z axis is vertical and passes through P1.

P2
P1

P3

C1
x

z

C2

ζ

ξ

ϕ

η

ψ

f
δ

f
ϕ
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left with the roll angle ϕ as the only degree of freedom. All

angles are assumed to be small so that the equations can

be linearized.

Top and rear views of the bicycle are shown in Figure 3.

The coordinate system xyz rotates around the vertical axis

with the angular velocity ω = Vδ/b, where b is the wheel

base. An observer fixed to the coordinate system xyz expe-

riences forces due to the acceleration of the coordinate

system relative to inertial space.

Let m be the total mass of the system. Consider the

rigid body obtained when the wheels, the rider, and the

front fork assembly are fixed to the rear frame with δ = 0,

let J denote the moment of inertia of this body with

respect to the x-axis, and let D = − Jxz denote the inertia

product with respect to the xz axes. Furthermore, let the x

and z coordinates of the center of mass be a and h, respec-

tively. The angular momentum of the system with respect

to the x axis is [62]

Lx = J
dϕ

dt
− Dω = J

dϕ

dt
−

VD

b
δ.

The torques acting on the system are due to gravity and

centrifugal forces, and the angular momentum balance

becomes

J
d2ϕ

dt2
− mghϕ =

DV

b

dδ

dt
+

mV2h

b
δ. (1)

The term mghϕ is the torque generated by gravity. The

terms on the right-hand side of (1) are the torques gen-

erated by steering, with the first term due to inertial

forces and the second term due to centrifugal forces.

The model is called the inverted pendulum model

because of the similarity with the linearized equation for

the inverted pendulum.

Approximating the moment of inertia as J ≈ mh2 and

the inertia product as D ≈ mah, the model becomes

d2ϕ

dt2
−

g

h
ϕ =

aV

bh

dδ

dt
+

V2

bh
δ.

The model (1), used in [37] and [21], is a linear dynamical

system of second order with two real poles

p1,2 = ±

√

mgh

J
≈ ±

√

g

h
(2)

and one zero

z = −
mVh

D
≈ −

V

a
. (3)

It follows from (1) that the transfer function from steer

angle δ to tilt angle ϕ is

Gϕδ(s) =
V(Ds + mVh)

b( Js2 − mgh)

=
VD

bJ

s +
mVh

D

s2 −
mgh

J

≈
aV

bh

s +
V

a

s2 −
g

h

. (4)

Notice that both the gain and the zero of this transfer func-

tion depend on the velocity V. 

The model (4) is unstable and thus cannot explain why

it is possible to ride with no hands. The system (4), howev-

er, can be stabilized by active control using the propor-

tional feedback law

δ = −k2 ϕ, (5)

which yields the closed-loop system

J
d2ϕ

dt2
+

DVk2

b

dδ

dt
+

(

mV2hk2

b
− mgh

)

ϕ = 0. (6)

This closed-loop system is asymptotically stable if and only

if k2 > bg/V2, which is the case when V is sufficiently large.

Figure 3. Schematic (a) top and (b) rear views of a naive
(λ = 0) bicycle. The steer angle is δ, and the roll angle is ϕ.

a

O

P1 P2

δ

x

z

y

ϕ

b

y

(a) (b)



The Front Fork

The design of the front fork has a major impact on bicycle

dynamics. The simple model (1) does not capture this effect

because of the assumptions of zero trail c = 0 and head angle

λ = 90◦; see Figure 1. To take the front fork into account, we

define the torque applied to the handlebars, rather than the

steer angle, as the control variable. The contact forces

between the tire and road exert a torque on the front fork

assembly when there is a tilt. Under certain conditions, this

torque turns the front fork toward the lean. The centrifugal

force acting on the bicycle then counteracts the lean and can,

under certain circumstances, stabilize the system.

To model the front fork, we first observe that the steer

angle also influences the tilt angle. For small angles the

front fork roll angle is then

ϕf = ϕ − δ cos λ, (7)

and the effective front fork angle is

δf = δ sin λ. (8)

We model the front fork simply by a static torque balance.

Let Nf and Ff be the vertical and horizontal components of

the forces acting on the front wheel at the ground contact.

Neglecting dynamics and gyroscopic effects, we have

Nf = amg/b and

Ff =
amV2

b2
δf =

amV2 sin λ

b2
δ.

Letting T be the external torque applied to the handlebar

and neglecting the weight of the front fork assembly, the

static torque balance of the front fork becomes

T − (Ff + Nfϕf )csin λ = 0.

Introducing the expressions for Ff , Nf , δf , and ϕf yields

T −
acmg sin λ

b
ϕ −

acm sin λ

b2
(V2 sin λ − bg cos λ)δ = 0. (9)

Notice that the sign of the term proportional to δ is nega-

tive if V > Vsa, where

Vsa =

√

bg cot λ (10)

is the self-alignment velocity.

The torque balance for the front fork assembly (9) can

be written as

δ = k1(V )T − k2(V )ϕ, (11)

where

k1(V ) =
b2

(V2 sin λ − bg cos λ)macsin λ
(12)

and

k2(V ) =
bg

V2 sin λ − bg cos λ
. (13)

When k2(V ) is positive and sufficiently large, it follows

from (6) that the feedback generated by the front fork sta-

bilizes the bicycle.

The model (11) can be verified qualitatively by determin-

ing the torque applied to the front fork when biking in a

straight path. Leaning the body toward the left causes the

bicycle frame to tilt to the right, which corresponds to posi-

tive ϕ. A positive (counterclockwise) torque is required to

maintain a straight path. The steady-state parameters of

the model can be experimentally determined from mea-

surements of the torque and the tilt at different velocities.

Self-Stabilization

The frame model (1) changes because of the geometry of

the front fork. The steering angle δ is replaced by the effec-

tive steering angle δf given by (8). The center of mass of

the frame is also shifted when the steering wheel is turned,

which gives the torque

Tδ = −
mgacsin λ

b
δ.

The angular momentum balance for the frame given by (1)

then becomes

J
d2ϕ

dt2
− mghϕ =

DV sin λ

b

dδ

dt
+

m(V2h − acg) sin λ

b
δ. (14)

Inserting the expression (11) for steer angle δ into (14)

gives

J
d2ϕ

dt2
+

DVg

V2 sin λ − bg cos λ

dϕ

dt
+

mg2(bh cos λ − acsin λ)

V2 sin λ − bg cos λ
ϕ

=
DVb

acm(V2 sin λ − bg cos λ)

dT

dt
+

b(V2h − acg)

ac(V2 sin λ − bg cos λ)
T.

(15)
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This system is stable if

V > Vc =

√

bg cot λ (16)

and

bh > ac tan λ. (17)

Under these assumptions, the critical velocity Vc is equal

to the self-aligning velocity Vsa given by (10).

Taking the action of the front fork into account, the

bicycle is described by (14) and (11). The front fork model

(11) provides a negative feedback from tilt to steering

angle, as illustrated in Figure 4, which shows that the bicy-

cle can be regarded as a feedback system. The tilt angle ϕ

influences the steer angle δ as described by the frame

model (14), and the front wheel angle δ influences the tilt

angle ϕ as described by the front fork model (11). Notice

that there is no self-stabilization if the trail c is zero and if

the head angle is 90◦. Such a bicycle is called neutral.

The model given by (14) and (11) gives a correct qualita-

tive explanation for self-stabilization. There are, however,

severe deficiencies in the model. The stabilizing action of

the front fork is delayed when the dynamics of the front

fork model is considered, and the critical velocity is then

larger than predicted by the static front fork model (16).

Gyroscopic effects also have an influence. These effects can

be included in more detailed linearized models developed

using software for multibody systems. 

Manual Control
The significant difference between the cases considered

above is due to the change in control input from steer

angle to steer torque. A practical consequence, realized

by skilled riders, is that the self-stabilizing action of the

front fork is best achieved by lightly gripping the handle-

bars. When teaching children to bike, it is important to

remind them that they should not hold the handlebars

too stiffly. This nuance is difficult for children with learn-

ing difficulties, since fear often induces an involuntary

rigidity of the body (see “Adapted Bicycles for Teaching

Children with Disabilities”). 

The rider controls the bicycle by leaning and by applying

a torque to the handlebars. The effects of manual steering

torques can be seen from (11). A simple model of rider

behavior is to assume that the rider acts as a proportional

controller by applying a steer torque proportional to bicycle

lean, that is, T = −kϕ. Inserting this relation into (11) yields

δ = −

(

kk1(V ) + k2(V )

)

ϕ.

The rider thus adds to the value of the parameter k2(V ) in

(11) through the term kk1(V ). A more complex model of

rider behavior accounts for the neuromuscular delay of

humans. A study of motorcycles in [28] gives a neuro-

muscular delay of 0.1 s for applying steering torque and

0.3 s for upper body lean.

Gyroscopic Effects
The gyroscopic action of the rotation of the front wheel

can be included in the model of the front fork. Replacing

(11) by

δ = k1(V )T − k2(V )ϕ − k3(V )
dϕ

dt

shows that gyroscopic effects give rise to derivative feed-

back. The parameter k3(V ) is proportional to the angular

momentum of the front wheel, and thus also to the velocity. 

Rear-Wheel Steering
Standard bicycles have rear-wheel drive and front-wheel

steering. Rear-wheel steering has been suggested for

recumbent bicycles, for which front-wheel drive is a natural

configuration. There are, however, difficulties with rear-

wheel steering, as summarized in [8].

Many people have seen theoretical advantages in

the fact that front-drive, rear-steered recumbent

bicycles would have simpler transmissions than

front-driven recumbents and could have the center

of mass nearer the front wheel than the rear. The

U.S. Department of Transportation commissioned

the construction of a safe motorcycle with this con-

figuration. It turned out to be safe in an unexpected

way: No one could ride it.
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Figure 4. Block diagram of the bicycle with a front fork.

The steer torque applied to the handlebars is T, the roll

angle is ϕ, and the steer angle is δ. Notice that the front fork

creates a feedback from the roll angle ϕ to the steer angle δ,

which can stabilize the system.

δ

Σ
ϕ

−1

T

Front Fork

Framek2(V )

k1(V )



The story behind this quote, which is elaborated in

“The NHSA Rear-Steered Motorcycle,” illustrates that it is

possible to design systems that have many desirable stat-

ic properties but are practically useless because of their

dynamics. 

A model for a bicycle with rear-wheel steering is

obtained simply by reversing the sign of the velocity of

models with forward-wheel steering. Consider, for exam-

ple, the model of a bicycle with zero trail (c = 0) and head

angle λ = 90◦ whose transfer function from steer angle to

tilt is given by (4). Reversing the sign of the velocity gives

the transfer function

Gϕδ(s) =
−VDs + mV2h

b( Js2 − mgh)

=
VD

bJ

−s +
mVh

D

s2 −
mgh

J

≈
aV

bh
·
−s + V/a

s2 − g/h
, (18)

which has one pole and one zero in the right-half plane.

Such a system is difficult to control robustly when the pole

and zero are too close [63], [64]. 

Attempting to stabilize the system with the transfer

function (18) using the proportional feedback (5), we find

that the closed-loop system is

J
d2ϕ

dt2
−

DVk2

b

dδ

dt
+

(

mV2hk2

b
− mgh

)

ϕ = 0. (19)

The closed-loop system is unstable for all positive veloc-

ities and values of the feedback gain k. Furthermore, dif-

ficulties remain even if an arbitrarily complex control

law is used, since there are fundamental problems in

controlling a system with poles and zeros in the right-

half plane. Specifically, robust control of such systems

requires that the ratio between the right-half-plane zero

z and the right-half-plane pole p be large [63], [64]. For

the system (18) we have

z

p
=

mVh

D

√

J

mgh
≈

V

a

√

h

g
.

As the velocity increases, this ratio also increases, which

improves the robustness of the closed-loop system.

The zeros of a system depend on the interconnections

between sensors, actuators, and states. Zeros change

when sensors are changed, and all zeros disappear when

all state variables are measured. Problems caused by

right-half-plane zeros can thus be eliminated by introduc-

ing more sensors. For the rear-steered bicycle, the prob-
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The NHSA Rear-Steered Motorcycle

T
he U.S. National Highway Safety Administration

(NHSA) funded a project aimed at developing a safe

motorcycle in the late 1970s. The key ideas included

having a low center of mass, a long wheel base, and sepa-

ration of steering and braking. The last requirement leads

naturally to a design with rear-wheel steering, since the

front wheel provides the major contribution to the braking

force. Rear-wheel steering combined with a long wheel

base also makes it possible to have a low center of mass. A

contract to analyze a motorcycle with rear-wheel steering

and to build a test vehicle was given to South Coast Tech-

nology in Santa Barbara, California, with Robert Schwarz as

principal investigator. 

A theoretical study was performed by taking the mathe-

matical model developed by Sharp [50] and simply revers-

ing the sign of the wheel-angular velocity. A derivation

based on first principles showed that reversing the sign does

indeed give the correct model. The model was linearized,

and the eigenvalues were investigated. Two complex pole

pairs and a real pole representing weave, wobble, and cap-

size dominate the dynamics. A range of geometrical config-

urations was investigated. The eigenvalues were plotted as

functions of velocity for each configuration. The real part of

the unstable poles typically covered

4–12 rad/s for speeds of 3–50

m/s. It was concluded that the

instability was too fast to be

stabilized by a human rider. 

The result was reported to NHSA with a recommenda-

tion that it was pointless to build a prototype because the

motorcycle could apparently not be ridden. NHSA was of

a different opinion based on an in-house study, and they

insisted that a prototype should be built and tested. The

tests showed conclusively that the motorcycle was unrid-

able, even by the most skilled riders.

The outriggers were essential; in fact, the only way to

keep the machine upright for any measurable period of

time was to start out down on one outrigger, apply a

steer input to generate enough yaw velocity to pick up

the outrigger, and then attempt to catch it as the

machine approached vertical. Analysis of film data

indicated that the longest stretch on two wheels was

about 2.5 s. [77]



lem caused by the right-half-plane zero can be eliminated

by introducing tilt and yaw rate sensors. As discussed in

“Alleviating Problems with Zeros in the Right-Half Plane,”

the problem cannot be alleviated by using an observer.

Maneuvering
Having obtained some insight into the stabilization prob-

lem, we now turn to the problem of maneuvering. A central

problem is to determine how the torque on the handlebars

influences the path of the bicycle. The first step is to inves-

tigate how the steer torque T influences the steer angle δ.

For the bicycle model (1) with the stabilizing front fork

modeled by (11), the transfer function from steer torque to

steer angle is given by

GδT (s) =
k1(V )

1 + k2(V )Gϕδ(s)
,

where Gϕδ(s) is given by (4); see Figure 4. Hence

GδT (s) =

k1(V )

(

s2
−

mgh

J

)

s2 +
k2(V )DV

bJ
s +

k2(V)V2mh

bJ
−

mgh

J

, (20)

which shows that the poles of the transfer function Gϕδ

appear as zeros of the transfer function GδT .

To determine how the bicycle’s path is influenced by

the steer angle, we use the coordinate system in Figure 2.

Assuming that the angle ψ is small and linearizing around

a straight line path along the ξ axis yields

dη

dt
= Vψ,

dψ

dt
=

V

b
δ.

The transfer function from steer angle δ to path deviation

η is thus

Gηδ(s) =
V2

bs2
.

Combining Gηδ(s) with (20) gives the transfer function

from steer torque T to η, which has the form

GηT (s) =
k1(V )V2

b

s2
−

mgh

J

s2



s2 +
k2(V )VD

bJ
s +

mgh

J

(

V2

V2
c

− 1

)





.

(21)

When the tilt dynamics of the bicycle is stabilized by

the front fork, the maneuvering dynamics have a zero in

the right-half plane at s =

√

mgh/ J, which imposes limita-

tions on the maneuverability.

Figure 5 shows the path of a bicycle when a positive

torque-step input is applied to the handlebars. Notice

that the path deviation η is initially positive but later

becomes negative. This inverse response behavior, which

is typical for a system with a right-half-plane zero, can be

explained as follows. When a positive steer torque is

applied, the bicycle’s contact points with the ground ini-

tially track in the direction of the applied torque. This

motion generates a reaction force that tilts the bicycle

around the positive x axis. In turn, this tilt generates a
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Alleviating Problems
with Zeros in the Right-Half Plane

T
he problem with right half-plane zeros can be elim-

inated by introducing extra sensors and actuators.

Consider the standard linear system

dx

dt
= Ax + Bu,

y = Cx,

where x ∈ Rn, u ∈ Rp, and y ∈ Rq. The invariant zeros of

the system are the values of s for which the matrix





sI − A B

C 0





loses rank. A system has no invariant zeros if either B or C

has rank n.

The difficulties with the rear-steered bicycle can thus

be eliminated by introducing a feedback system with a

rate gyro and a tilt sensor. However, the system then

becomes critically dependent on sensing and actuation,

which implies that control is mission critical [78].

It also follows that a system has no zeros if the matrix B

has rank n. Hence, the problem caused by right half-plane

zeros can alternatively be eliminated by using additional

actuators. Maneuvering of bicycles is a typical example.

By using both steer torque and rider lean, the zero in the

transfer function (21) can be eliminated. In fact, skilled

riders frequently use variations in forward speed as an

additional control variable, since centrifugal forces can be

altered to some extent.



torque on the front fork, due in large part to the upward

action of the ground supporting the front wheel, which

rotates the front fork in the negative direction. Thus,

both the lean angle and the steer angle tend to be, as the

bicycle’s transient decays, in the direction opposite to

the torque applied to the handlebars. Recall again that

the roll angle ϕ of the rear frame is positive when leaning

to the right. In Figure 5, the lean angle settles to ϕ = 0.14

rad, whereas the steer angle settles to δ = −0.14 rad.

Given the curves in Figure 5, it is straightforward to give a

physical explanation, although it is difficult to apply

causal reasoning directly because of the closed-loop

nature of the system. The physical argument also indi-

cates a remedy because the centrifugal force can be

opposed by gravitational forces if the biker leans his or

her upper body relative to the frame. This motion is pre-

cisely what experienced riders do automatically.

The inverse nature of the response to steer torque has

contributed to a number of motorcycle accidents. To

explain this phenomenon, visualize a motorcycle driven

along a straight path and assume that a car suddenly

appears from the right. The intuitive reaction is to try to

steer left, away from the car. The motorcycle initially does

so when the steer torque is applied to the left, but, because

of the nature of the maneuvering dynamics, the motorcycle

ultimately steers into the car as indicated in Figure 5. A sig-

nificant number of motorcycle accidents are caused by

novice riders who fail to counter-steer. The remedy is to

simultaneously lean and counter-steer, which consists of

applying a torque to the handlebars in the opposite direc-

tion of the intended travel. Counter-steering establishes a

lean, which aids in turning the motorcycle away from the

obstacle that has appeared in front of the rider. Leaning

without counter-steering suffices in many normal traveling

conditions, such as routine lane changes. Counter-steering

is necessary for fast lane changes since the dynamics of

leaning alone have a long response time. It is interesting

that Wilbur Wright was fully aware of these advantages, as

illustrated in “Wilbur Wright on Counter-Steering.”

Effects of Rider Lean

In terms of model development, it has been assumed that

the rider sits rigidly on the bicycle without leaning. A sim-

ple way to describe the effect of leaning is to consider the

rider as composed of two rigid pieces, the lower body and

the upper body, where the upper body can be rotated as

illustrated in Figure 6.

Let φ denote the upper body lean angle relative to a

plane through the bicycle. The linearized momentum bal-

ance given by (1) is then replaced by

J
d2ϕ

dt2
+ Jr

d2φ

dt2
= mghϕ + mrghrφ +

DV

b

dδ

dt
+

mV2h

b
δ, (22)
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Figure 5. Simulation of the bicycle with a constant positive
steer torque. The plots show the time histories of (a) the path
deviation η, (b) the tilt angle ϕ, and (c) the steer angle δ.
Notice the reverse response in the path η.
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Wilbur Wright on Counter-Steering

W
ilbur Wright owned a bicycle shop with his

brother Orville. Wilbur had an amazing abili-

ty to intuitively understand complex, techni-

cal problems, as illustrated by the following:

I have asked dozens of bicycle riders how

they turn to the left. I have never found a

single person who stated all the facts

correctly when first asked. They

almost invariably said that to turn to

the left, they turned the handlebar

to the left and as a result made a

turn to the left. But on further

questioning them, some would

agree that they first turned the

handlebar a little to the right,

and then as the machine

inclined to the left they

turned the handlebar to

the left, and as a result made

the circle inclining inwardly. [79, p. 170]

Wilbur’s understanding of dynamics contributed

strongly to the Wright brothers’ success in making the first

airplane flight.



where Jr is the moment of inertia of

the upper body with respect to the x

axis, mr is the mass of the upper

body, and hr is the distance from the

center of mass of the upper body to

its turning axis. Combining (22) with

the static model of the front fork (11)

gives a model of the bicycle with a

leaning rider, which has the form

J
d2ϕ

dt2
+

DVk2(V )

b

dϕ

dt
+

(

mV2hk2(V )

b
− mgh

)

ϕ

=
DVk1(V )

b

dT

dt
+

mV2k1(V )

b
T − Jr

d2φ

dt2
+ mrghrφ. (23)

The dynamics relating steer angle to steer torque and

lean is a second-order dynamic system. The difficulties

associated with the right-half-plane zero in (20) can be

avoided because the system has two inputs; namely, steer-

ing and leaning. By proper coordination of handlebar

torque and upper body lean, it is possible to alleviate

problems occurring when using only handlebar torque for

steering. This technique is what we normally do intuitively

when biking. The system theoretic interpretation is that

the right-half-plane zero is eliminated by introducing an

additional control variable (see “Alleviate Problems with

Zeros in the Right-Half Plane”).

More Complicated Models
The simple models used so far shed insight but are not

detailed enough to give accurate answers to some inter-

esting questions, such as how the critical velocity

depends on the geometry and mass distribution of the

bicycle. There are physical phenomena that warrant

investigation in greater depth, such as gyroscopic effects

and tire-road interaction. A nonlinear model can be used

to analyze straight line forward motion as well as continu-

ously turning maneuvers.

Most bicycle models are linear because they were

developed before adequate computer tools were avail-

able. Today it is feasible to develop complex multibody

models using general object-oriented software such as

Modelica [65]. A mechanical system can be viewed as an

interconnection of subsystems, which are described in an

object oriented manner. Equations for each subsystem are

given as balances of mass, momentum, and energy,

together with constitutive equations. Component libraries

can be built, and modeling is performed conveniently by

dragging and dropping graphical objects.

A Modelica library for multibody systems, described

in [45], gathers all equations for subsystems and inter-

connections and uses symbolic computations to elimi-

nate redundant equations. The resulting equations are

then transformed into ordinary differential equations or

differential-algebraic equations, which are then inte-

grated numerically. Linearized equations are obtained

as a side product. Special purpose software for multi-

body systems [40]–[44] can also be used. The nonlinear

model analyzed in the following is derived with a multi-

body software described in [46] and [66]. A similar

approach is used in [47].

A Linear Fourth-Order Model

A simple second-order model of the bicycle consists of a

dynamic torque balance for the frame (1) and a static

momentum balance for the front fork assembly (11). A nat-

ural extension is to replace the static front fork model with

a dynamic model, which yields the fourth-order model

M





ϕ̈

δ̈



 + C V





ϕ̇

δ̇



 + (K0 + K2V2)





ϕ

δ



 =





0

T



 , (24)
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Figure 6. Rear view of the bicycle with a leaning rider. The

bicycle roll angle is ϕ, while the rider lean relative to the

bicycle is φ.

z

ϕ

φ

y

The bicycle’s evolution has been

a product of necessity, ingenuity,

materials, and industrialization.



where V denotes the forward speed, and the elements of

the matrices depend on the geometry and mass distribu-

tion of the bicycle. The model was derived by Whipple

[4] in 1899 and elaborated in [24], [25], [27], and [67].

The model is compared with numerical linearization of

nonlinear models obtained from two multibody pro-

grams in [48], where the bicycle is described by 23 para-

meters; namely, wheel base b = 1.00 m, trail c = 0.08 m,

head angle λ = 70◦ , wheel radii Rrw = Rfw = 0.35 m, and

parameters that characterize the mass distribution. The

parameters listed in Table 1, with g = 9.81 m/s2, yield the

following numerical values

M =





96.8 (6.00) −3.57(−0.472)

−3.57 (−0.472) 0.258 (0.152)



 ,

C =





0 −50.8 (−5.84)

0.436 (0.436) 2.20 (0.666)



 ,

K0 =





−901.0 (−91.72) 35.17 (7.51)

35.17 (7.51) −12.03 (−2.57)



 ,

K2 =





0 −87.06 (−9.54)

0 3.50 (0.848)



 . (25)

The values in parentheses are for a bicycle without a

rider. This model is well suited for the design of autopi-

lots for bicycles. 

The momentum balance for the roll axis is similar to the

simple model (1), but there is an additional inertia term

m12d2δ/dt2 due to the shift of the mass when the front fork

is turned. The model (24) gives the self-alignment velocity

of the front fork as Vsa =
√

7.51/2.57 = 1.74 m/s, which can

be compared with the value 1.89 m/s given by (10).

A Fourth-Order Nonlinear Model

For more detailed investigations of bicycle dynamics,

we use the nonlinear model in [46], which was general-

ized so that bicycles with toroidal wheels could be ana-

lyzed. The model was developed using Sophia [66],

which is a package of Maple procedures for symbolic

representation of multibody dynamics. The dynamical

equations have the form

M(ϕ, δ)
(

u̇ϕ u̇δ ω̇
)T

= F(ϕ, δ,uϕ,uδ, ω, T),

(

ϕ̇ δ̇
)T

=
(

uϕ uδ

)T
, (26)

where M is a 3 × 3 symmetric matrix, uϕ is the roll angle

velocity, uδ is the steer angle velocity, and ω is the angular

velocity of the front wheel projected onto its axis. The

term F is a vector of generalized forces, which are func-

tions of the state and externally applied forces and

torques. In our case, only gravitation is considered. The

equations are much too long to publish in text form, since

all components are complicated functions of variables and

parameters defining the geometry and the mass distribu-

tion. Because of the nonholonomic rolling constraints, the

number of coordinates differs from the number of general-

ized velocities in a minimal description. The dynamical

system has dimension five, but energy is preserved if the

applied forces are conservative, and the dynamics are of

fourth order. Linearization of (26) by symbolic methods

gives the linear model (24).

The bifurcation diagram in Figure 7 yields fixed points of

a bicycle with a rider rigidly attached to the rear frame and

illustrates the complex behavior of the nonlinear model.

These fixed points are characterized by uϕ = uδ = 0, F = 0,

and ω �= 0. Apart from the zero solution ϕ = 0 and δ = 0,

there are continuously turning solutions and several

saddle-node bifurcations. All of these

turning solutions are unstable. 

Although the fourth-order model

captures many aspects of the bicycle,

there are effects that are neglected. Sev-

eral extensions of the model are of inter-

est. Frame elasticity is noticeable in

conventional bicycles with diamond-

shaped frames and even more so in

frames for women, not to mention

mountain bikes with front and rear sus-

pension springs. The elasticity of pneu-

matic tires can also be considered, as in

[25] and [50]. Furthermore, the effects

of the interaction between the tires and

the road can be considered. Finally, it is

interesting to have a more realistic

model of the rider.
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Rear Frame Front Frame Rear Wheel Front Wheel

Mass m [kg] 87 (12) 2 1.5 1.5

Center of Mass
x[m] 0.492 (0.439) 0.866 0 b
z[m] 1.028 (0.579) 0.676 Rrw Rfw

Inertia Tensor
Jxx [kg-m2] 3.28 (0.476) 0.08 0.07 0.07
Jxz [kg-m2] −0.603 (−0.274) 0.02 0 0
Jyy [kg-m2] 3.880 (1.033) 0.07 0.14 0.14
Jzz [kg-m2] 0.566 (0.527) 0.02 Jxx Jxx

Table 1. Basic bicycle parameters. This table gives the mass, inertia tensor,
and geometry for a standard bicycle with a rider. The values in parentheses
are for a bicycle without a rider.



Stability of an Uncontrolled Bicycle
The simple second-order model (11), (14) indicates that a

bicycle is self-stabilizing provided that the velocity is suffi-

ciently large. Self-stabilization will now be explored using

the fourth-order linear model (24). Figure 8 shows the

root locus of the model (24) with matrices given by (25)

for the bicycle with a rider. When the

velocity is zero, the system has four

real poles at p1,2 = ±3.05 and

p3,4 = ±9.18, marked with circles in

Figure 8. The first pair of poles corre-

sponds to the pendulum poles,

given by (2). The other pole pair

corresponds to the front fork

dynamics. As the velocity increases,

the poles p2 and p4 meet at a veloci-

ty that is close to the self-alignment

velocity and combine to a complex

pole pair.  The real part of the complex pole-pair

decreases as the velocity increases. Following [50] this

mode is called the weave mode. The weave mode

becomes stable at the critical velocity Vc = 5.96 m/s.

The pendulum pole p1 remains real and moves toward

the right with increasing velocity. It becomes unstable

at the velocity V = 10.36 m/s, where the determinant of

the matrix K0 + V2K2 vanishes. This mode has little

influence on practical ridability, since it can easily be

stabilized by manual feedback. The pole p3 moves to the

left as velocity increases. For large V , it follows from

(24) that one pole approaches zero, and three poles are

asymptotically proportional to the velocity, specifically,

p = (−0.65 ± 1.33i)V , and −1.40 V.

The velocity range for which the bicycle is stable is

more clearly visible in Figure 9, which shows the real part

of the poles as functions of velocity. The values for nega-

tive velocities correspond to a rear-steered bicycle. Figure

9 shows that the poles for a rear-steered bicycle have pos-

itive real parts for all velocities.

The nonlinear model reveals even more complex

behavior. There is a stable limit cycle for velocities
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Figure 8. Root locus for the bicycle with respect to velocity.
The model is given by (24) with parameters given by (25).
The poles at zero velocity, marked with red o, are symmetric
with respect to the imaginary axis. The poles p1 and p2 are
the pendulum poles given by (2), and the poles p3 and p4 are
the front fork poles.

Figure 7. Bifurcation diagram for a nonlinear model of the
bicycle with a rider. The upper curve shows equilibria of the
tilt angle ϕ as a function of velocity V, while the lower curves
show corresponding equilibria of the steering angle δ. Notice
that there are many equilibria. The equilibrium ϕ = 0, δ = 0

is stable for 5.96 m/s ≤ V ≤ 10.36 m/s.

The bicycle can be used to illustrate a

wide variety of control concepts such as

modeling, nonlinear dynamics, and

codesign of process and control.



below the critical velocity, as illustrated in Figure 10,

which shows trajectories for a bicycle without a rider for

initial velocities above and below the critical velocity.

The stable periodic orbit is clearly visible in the figure.

There is period doubling when the velocity is reduced

further. The periodic orbit can be observed in carefully

executed experiments.

Gyroscopic Effects
A frequent question is to what extent gyroscopic effects

contribute to stabilization of bicycles [69]. This question

was raised by Klein and Sommerfeld [10]. Sommerfeld

summarizes the situation as follows: 

That the gyroscopic effects of the wheels are very small

compared with these (centrifugal effects) can be seen

from the construction of the wheel; if one wanted to

strengthen the gyroscopic effects, one should provide

the wheels with heavy rims and tires instead of making

them as light as possible. It can nevertheless be shown

that these weak effects contribute their share to the sta-

bility of the system. [68]

Jones [13] experimentally determined that gyroscopic

action plays a relatively minor role in the riding of a bicy-

cle at normal speeds. Jones wanted to design an unridable

bicycle, and he investigated the effects of gyroscopic

action experimentally by mounting a second wheel on the

front fork to cancel or augment the angular momentum of

the front wheel.

This creation, “Unridable Bicycle MK1,” unac-

countably failed; it could easily be ridden, both with

the extra wheel spinning at high speed in either

direction and with it stationary. Its “feel” was a bit

strange, a fact I attribute to the increased moment of

inertia about the front forks, but it did not tax my

(average) riding skill even at low speed. [13]

Klein and students at the University of Illinois at

Urbana-Champaign (UIUC) conducted a number of preces-

sion canceling and altering experiments in the 1980s

based on two experimental bicycles that are similar

except for the front fork geometries. The bicycle in Figure

11 has an unaltered steering head and a positive trail. Sim-

ilar to Jones’ results, this precession-canceling bicycle is

easily ridable. The bicycle in Figure 12 has an altered
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Figure 10. Simulation of the nonlinear model (26) of a

bicycle with a rigid rider. The solid lines correspond to initial

conditions below the critical velocity, while the dashed lines

correspond to initial conditions slightly above the critical

velocity. The figure shows that there is a stable limit cycle for

certain velocities.

Figure 11. A UIUC bicycle with precession canceling. This
bicycle is used to illustrate that gyroscopic effects have little
influence on ridability.
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Figure 9. Real parts of the poles for a bicycle with a rider
as a function of velocity. Real poles are indicated by a dot,
complex poles by o, unstable poles are red, and stable poles
are blue. The figure shows that the bicycle is self-stabilizing
for 5.96 m/s ≤ V ≤ 10.36 m/s.



frame, thereby accommodating a vertical steering head

and front fork, as well as zero trail. This bicycle, called the

naïve bicycle, has no predisposition for the handlebars to

turn when the bicycle leans. While the naïve bicycle is

modestly wobbly when ridden, it is indeed ridable.

The effects of precession, which are more pro-

nounced for riderless bicycles, can be explored by calcu-

lating the closed-loop poles for different moments of

inertia of the wheels. The moments of inertia are varied

from 0 to 0.184 kg m2 , corresponding to the case in

which all of the mass is located at the perimeter of the

wheel. The results are given in Figure 13, showing that

the velocity interval for which the bicycle is stable is

shifted toward lower velocities when the front wheel

inertia is increased. This effect is validated by experi-

ments using bicycles of the type shown in Figure 14.

Notice in the figure that the velocity at which the capsize

mode becomes unstable is inversely proportional to the

square of the moments of inertia of the wheels. This

dependence suggests that there is a simple formula for

the velocity limit, which remains to be found. For asymp-

totically low moments of inertia, it appears that the ratio

of the velocities is constant.

The difficulties in manually controlling unstable sys-

tems can be expressed in terms of the dimensionless quan-

tity p τ , where p is the unstable pole and τ is the neural

delay of the human controller expressed in seconds. A sys-

tem with p τ > 2 cannot be stabilized at all. In [64], it is

shown that comfortable stabilization requires that

p τ < 0.2. A crude estimate of the neural delay for bicycle

steering is τ = 0.2 s [28]. A bicycle can thus be ridden com-

fortably so long as the unstable pole has a real part that is

less than 1 rad/s. 

Wheels

Many bicycles have thin tires whose tube diameter is an

order of magnitude smaller than the wheel radius. The

crowned rollers used in bicycles for children with disabili-

ties change the dynamics significantly (see “Adapted Bicy-

cles for Teaching Children with Disabilities”). This effect

is illustrated in Figure 15, which shows the poles for an

adapted bicycle with a rider. The bicycle has a rear wheel

with a crowned roller having a lateral radius of 0.4 m and

the height of the center of the mass is 0.4 m. The weave

mode becomes stable at 3.9 m/s, and the capsize mode

remains stable for all velocities. The dynamics of the sys-

tem are also slower as predicted by (27) in “Adapted Bicy-

cles for Teaching Children with Disabilities.”

Bicycles in Education
Bicycles are simple, inexpensive, and highly attractive

for use in education. In addition, most students ride bicy-

cles and have some feel for their behavior. The bicycle

can be used to illustrate a wide variety of control
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Figure 12. The UIUC naive bicycle with precession cancel-
ing. This bicycle is used to demonstrate that a bicycle is rid-
able even when there are no gyroscopic effects. The bicycle is
similar to the bicycle in Figure 11 but has a vertical front fork
(λ = 90◦) and zero trail (c = 0, see Figure 1), which means
that the front fork does not turn when the bicycle is tilted.

Figure 13. Critical velocities as functions of the moment of
inertia of the front wheel.  The solid line shows the velocity at
which the bicycle becomes stable, while the dashed line
shows the velocity at which the capsize mode becomes unsta-
ble. The figure shows that the gyroscopic effect of the front
wheel modifies the parameters but not the qualitative behav-
ior of the bicycle. Notice that the scales are logarithmic.
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Figure 14. The Lund University bicycle. This bicycle has a
weighted front wheel to exaggerate gyroscopic effects and an
elastic cord attached to a neck on the front fork to enhance
self-stabilization.
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concepts such as modeling, dynamics of nonlinear non-

holonomic systems, stabilization, fundamental limita-

tions, the role of right-half-plane poles and zeros, the

role of sensing and actuation, control design, adaptation,

and codesign of process and control. The bicycle is also

well suited to activities for K–12 education and for the

general public. Self-stabilization of conventional bicycles

and the counterintuitive properties of rear-steered bicy-

cles are useful in this context. A few experiments will be

presented in this section.

Pioneering work on the use of the bicycle in education

was done at Cornell University [67] and at the UIUC

[70]–[72]. An adaptive controller for a bicycle was

designed at the Department of Theoretical Cybernetics at

the St. Petersburg State University [57]. Several universi-

ties have incorporated bicycles into the teaching of

dynamics and controls, for example, Lund University,

the University of California Santa Barbara (UCSB), and

the University of Michigan.

Instrumentation

There are many simple experiments that can be conducted

with only modest instrumentation. A basic on-board instru-

mentation system can provide measurements of wheel

speed, lean angle, relative lean angle of the rider, front fork

steer angle, and steer torque. Gyros and accelerometers

give additional information, as do video cameras on the

ground, on the frame, and on the handlebars. Examples of

on-board instrumentation are given in Figures 16 and 17.
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Figure 16. The handlebar of the instrumented UCSB bicycle.

Steer torque is measured using a strain gauge on the right.

The box on the left contains a  display for speed and switch-

es for data logging.

Figure 17. Rear part of the instrumented UCSB bicycle. A
potentiometer is used to sense rider lean. The boxes contain
a data logger and a power pack.

D
A

V
E

 B
O

T
H

M
A

N

Figure 15. Real parts of the poles for an adapted bicycle
with a rider. The bicycle has a crowned roller (see Figure 21)
with lateral radius 0.3 m at the rear and a heavy front wheel.
A comparison with Figure 9 shows that the behavior is quali-
tatively the same as for an ordinary bicycle but that the real
parts of the poles are numerically smaller, thus making the
adapted bicycle easier to ride.
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Figure 18. Klein’s original unridable rear-steered bicycle.
This bicycle shows the difficulties of controlling a system with
poles and zeros in the right-half plane. There is a US$1,000
prize for riding this bicycle under specified conditions.
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The Front Fork

The front fork is essential for the behavior of the bicycle,

particularly the self-stabilization property. A simple experi-

ment is to hold the bicycle gently in the saddle and lean

the bicycle. For a bicycle with a positive trail, the front fork

will then flip towards the lean. Repeating the experiment

while walking at different speeds shows that the front fork

aligns with the frame when the speed is sufficiently large.

Another experiment is to ride a bicycle in a straight path

on a flat surface, lean gently to one side, and apply the

steer torque to maintain a straight-line path. The torque

required can be sensed by holding the handlebars with a

light fingered grip. Torque and lean can also be measured

with simple devices as discussed below. The functions
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Figure 20. The UCSB rear-steered bicycle. This bicycle is rid-

able as demonstrated by Dave Bothman, who supervised the

construction of the bicycle. Riding this bicycle requires skill

and dare because the rider has to reach high speed quickly.

Figure 19. Klein’s ridable rear-steered bicycle. This bicycle

is ridable because the rider has a high center of gravity and

because the vertical projection of the center of mass of the

rider is close to the contact point of the driving wheel with

the ground.
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ngineering systems are traditionally designed based

on static reasoning, which does not account for sta-

bility and controllability. An advantage of studying

control is that the fundamental limitations on design

options caused by dynamics can be detected at an early

stage. Here is a scenario that has been used successfully in

many introductory courses.

Start a lecture by discussing the design of a recumbent

bicycle. Lead the discussion into a configuration that has a

front-wheel drive and rear-wheel steering. Have students

elaborate the design, then take a break and say, “I have a

device with this configuration. Let’s go outside and try it.”

Bring the students to the yard for experiments with the rear-

steered bicycle, and observe their reactions. The riding

challenge invariably brings forth willing and overly coura-

geous test riders who are destined to fail in spite of repeat-

ed attempts. After a sufficient number of failed attempts,

bring the students back into the classroom for a discussion.

Emphasize that the design was beautiful from a static point

of view but useless because of dynamics. Start a discussion

about what knowledge is required to avoid this trap,

emphasizing the role of dynamics and control. You can

spice up the presentation with the true story about the

NHSA rear-steered motorcycle. You can also briefly men-

tion that poles and zeros in the right-half plane are crucial

concepts for understanding dynamics limitations. Return to

a discussion of the rear-steered bicycle later in the course

when more material has been presented. Tell students how

important it is to recognize systems that are difficult to con-

trol because of inherently bad dynamics. Make sure that

everyone knows that the presence of poles and zeros in the

right-half plane indicates that there are severe difficulties in

controlling a system and also that the poles and zeros are

influenced by sensors and actuators.

This approach, which has been used by one of the authors

in introductory classes on control, shows that a basic knowl-

edge of control is essential for all engineers. The approach also

illustrates the advantage of formulating a simple dynamic

model at an early stage in a design project to uncover potential

problems caused by unsuitable system dynamics.

Control Is Important for Design
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k1(V ) and k2(V ) in (11) can be determined by repeating the

experiment at different speeds.

Most students are astonished to realize that in many no-

hands riding conditions, one initiates a turn by leaning into

the turn, but the matter of maintaining the steady-state

turn requires a reverse lean, that is, leaning opposite to

the direction of turn. This realization is a good illustration

of the bicycle’s counterintuitive nature associated with its

nonminimum phase properties.

Quantitative data can be obtained by measuring four

variables, namely, steer torque, rider lean angle relative

to the frame, steer angle, and forward velocity. In the
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Adapted Bicycles for Teaching Children with Disabilities

W
hile it is an intellectual challenge to design

unridable bicycles, it is more useful to design

bicycles that are easy to ride. Klein and col-

leagues have developed a program and a methodology to

permit children to ride bicycles more easily [60], [61]. This

program, which has been successful in teaching children

with disabilities to ride bicycles, is based on knowledge of

bicycle dynamics, rider perceptions, and limitations. Chil-

dren who are fearful of riding, or children who have yet to

learn to ride, typically fear speed and thus timidly pedal in

anticipation of falling. The low speed, compounded by

rigidity of the child’s tense body and previous exposure to

training wheels tend to make the experience uncomfortable

and erratic for the child. In particular, the children cannot

benefit from the self-stabilizing property that occurs when

the critical speed is exceeded.

When placing timid children on a bicycle, it is desirable

to provide stability augmentation and slower dynamics.

These modifications make the bicycle more forgiving and

easier to ride. Experience from behavior studies indicates

that people, including children with disabilities, can learn,

refine, and encode motor tasks as long as they have some

success [75]. By adapting the bicycle, it is possible to create

conditions so that children, including those with develop-

mental challenges, can develop riding skills.

By making a bicycle more stable and easier to ride, we

necessarily diminish maneuverability and thus restrict con-

trollability in a system-theoretic sense. Getting a fearful first-

time rider to be successful in staying upright while on a

bicycle takes precedence over maneuverability. Thus, the

program uses special bicycles with properties of enhanced

stability and slower dynamics. Moreover, pedagogical

methods have also been developed to use these bicycles to

teach children with an array of disabilities and handicaps.

The key is to design bicycles that behave like ordinary bicy-

cles but with more benign dynamics.

The simple model given by (1) shows that the bicycle

has an unstable mode with a pole approximately at 
√

g/h

(2). The unstable mode can be made slower by replacing

the ordinary wheels with crowned rollers as shown in Fig-

ure 21, where the rocking radius R is the radius of the lateral

curvature of the rollers. To model the system, we observe

that the gravity term mgh in (1) is replaced by mg(h − R). A

bicycle with crowned rollers is stable if R > h, and unstable

for R < h. The unstable pole 

p =

√

mg(h − R)

J
≈

√

(1 − R/h)g

h
(27)

can be made arbitrarily slow by making R sufficiently close

to h. The critical velocity also decreases with increasing h.

By using crowned rollers and changing the gearing, it is

possible to design bicycles that behave much like an ordi-

nary bicycle, but which can be pedaled at a slower forward

speed while maintaining its self-stabilizing ability.

Figure 21. Schematic rear view of a bicycle with

crowned rollers. The center of mass is CM, the lateral

radius of the rollers is R, and h is the distance from the

bottom of the roller to the center of mass. The horizontal

displacement of the center of mass when the bicycle is tilt-

ed is (h − R) sin ϕ.

R

CM

h − R
ϕ

z

y



UIUC experiments, steer torque is measured using a

torque wrench. Rider lean angle is measured using a

potentiometer pivoted to the rear of the seat, attached

to a vertical rod, and then attached to a vest worn by

the rider. A dc voltage calibrated to rider lean angle is

indicated by a voltmeter mounted on the handlebars in

view of the rider. Steer angle is also measured in a simi-

lar way. Velocity is measured using a common bicycle

speedometer.

An experiment that can be conducted with basic

instrumentation is to ride in a circle marked on the

ground; a radius of 10 m is a good value. The objective of
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The bicycle dynamics are adjusted by changing the rock-

ing radius R of the rollers. For a timid child, we start with

nearly flat rollers, which make the bicycle statically stable

(see Figure 22). The rollers are replaced to make the open-

loop capsize pole unstable but slow. The capsize pole is

then successively made faster as the child acquires

improved balance and riding skills. Some adapted bicycles

have front and rear rollers, whereas more advanced adapt-

ed bicycles only have a rear roller (see Figure 23). When

trained instructors observe that the child is participating in

steering by turning into the direction of the lean, we

advance the child onto bicycles that are more like conven-

tional bicycles but still retain some modifications. This

approach helps children learn to ride conventional two

wheelers. The approach is similar to the wind-surfer

approach to adaptive control proposed in [76]. 

This therapy has been effective in over a dozen U.S.-

based clinics for children and adults with a wide array of

disabilities, including Down syndrome, autism, mild cere-

bral palsy, and Asperger’s syndrome. The therapy has been

applied to about 600 children from six to 20 years of age.

The children typically enjoy the adapted bicycle program,

and smiles abound. More details on the adapted bicycling

program are available at http://losethetrainingwheels.org.

Figure 22. A child on an entry-level adapted bicycle.

The wheels are replaced with crowned rollers. Virtually

all children love the idea of being independent bicycle rid-

ers. This child rides comfortably because the bicycle is sta-

ble. As the child becomes more proficient, we substitute

rollers with more crown (smaller R in Figure 21) and

eventually transition the children to conventional bicycles.
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Figure 23. A child on an adapted bicycle with a
crowned roller on the rear wheel and a regular front
wheel. The child is participating in steering by gently turn-
ing the handlebars into the direction of tilt.
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the experiment is to use lean angle as the primary input,

while steer torque is nulled to be maintained close to zero.

Small adjustments of steer torque are required to main-

tain stability and the desired circular path. Another exper-

iment is to keep the relative rider lean angle at 0◦ while

applying the steer torque required to maintain the steady

state turning. The experiment should be conducted at a

constant forward speed. The behavior of the system is dif-

ferent for speeds below and above the critical speed.

Stabilization
Many experiments can be done to illustrate instability

and stabilization of riderless bicycles in various configu-

rations. Start by holding the bicycle still and upright,

and then release it to get a feel for the time constant of

the basic instability of the stationary bicycle as an

inverted pendulum. Then walk forward holding the bicy-

cle in the saddle, observe the behavior of the front fork as

the velocity is changed, and determine the self-alignment

velocity (16).

The next sequence of experiments can be done on an

open surface with a gentle down slope. One person starts

the bicycle rolling with a firm initial push. Another person

positioned downhill hits the bicycle sideways with a hand

as the riderless bicycle passes. The impact causes a brief

transient and then the self-stabilizing action restores the

bicycle to a straight upright position, although the path of

travel will be at a different angle. Give the bicycle a push

downhill, and observe its self-stabilizing behavior. The

downhill slope and initial speed should be sufficient so

that the critical velocity is exceeded. Tests at different

speeds combined with side impulse jabs will give a feel for

the critical velocity. When the velocity is subcritical, a

bicycle oscillates with growing amplitude when jabbed.

Conversely, the oscillation is damped when the velocity is

above the critical speed. Next, it is useful to see how criti-

cal velocity varies with trail and then with the addition of

mass to the front wheel. A simple way to increase the mass

of the front wheel is to wrap a lead cable or chains around

the rim secured in place with tape around the circumfer-

ence of the rim and tire (see Figure 14). This increased

mass increases the gyroscopic action on the front wheel

substantially and lowers the critical velocity.

Yet another experiment is to arrange a destabilizing

torque spring to the front fork by attaching a rubber cord

between the steering neck stem and the seat post (see Fig-

ure 14). Although the rubber cord destabilizes the bicycle

at zero velocity, stability improves at higher velocities

because the front wheel reacts faster to the lean.

The Rocket Bike
A riderless bicycle is provided with a model rocket

attached to one side of the handle-

bars so that it can create a torque

on the front fork. In the experiment,

the bicycle is pushed off in a

straight direction. The rocket is

ignited remotely. The startling coun-

terintuitive result is that the path of

travel resembles the one in Figure 5.

Spectators are frequently aston-

ished to see that the bicycle ends up turning in the oppo-

site direction of the applied torque. This demonstration

presents convincing empirical evidence that the bicycle

is counterintuitive, aptly demonstrating the nonmini-

mum phase character of the bicycle. Moreover, when

pushed off, the bicycle either remains stable in a turn

when its velocity is above the critical value, or it falls

inward in an increasingly tighter turn if its velocity is

below the critical value. The experiments can be com-

bined with stability augmentation such as weighted

wheels and differing trail configurations as described

previously.

Rear-Wheel Steering
A bicycle with rear-wheel steering has many pedagogical

uses. Almost everyone who tries to ride such a bicycle is

surprised to find that a seemingly familiar device can

exhibit such strange behavior. The rear-steered bicycle

never fails to arouse interest in observers, young students

as well as senior engineers, and provides an ideal tool for

motivating students to study dynamics and control. A

rear-steered bicycle can be used to illustrate the impor-

tance of integrated process and control design, the effects

of poles and zeros in the right-half plane, and the funda-

mental limitations caused by bad system dynamics. Fur-

thermore, a rear-steered bicycle can also lead into

discussions about the role of sensors and actuators. An

example is provided by the scenario given in “Control Is

Important for Design.”

A rear-steered bicycle built by Klein is shown in Figure

18. A regular bicycle can be converted to this configu-

ration with a moderate effort. Trying to ride a rear-

steered bicycle is a direct way to experience the

difficulties of controlling a system with poles and zeros

in the right-half plane. The bicycle in Figure 18 is unrid-

able as is a similar bicycle built in Lund. The simple

analysis based on the second-order model (18) gives

insight into what is required to ride a rear-steered
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The front fork is essential for the

behavior of the bicycle, particularly

the self-stabilization property.



bicycle. The right-half-plane pole is fixed at p ≈

√

g/h,

whereas the right-half-plane zero at z ≈ V/a depends

on the velocity. The zero, which is at the origin at zero

velocity, moves to the right with increasing velocity.

To have good separation between the pole and the

zero, it is desirable to have a large velocity V, a large

height h, and a small distance from the contact point of

the front wheel and the projection

of the center of mass on the ground

a. A bicycle with these properties

has been built by Klein (see Figure

19) and can indeed be ridden suc-

cessfully. The rear-steered UCSB

bicycle in Figure 20 is designed to

be ridable under certain condi-

tions. One way is to start by lean-

ing forward (making a small) and

standing up on the pedals (making

h large) and then pedaling rapidly

to quickly reach a high speed. This skill takes fortitude,

but several students and one faculty member, Roy

Smith, have mastered the technique.

Conclusions
Control is becoming ubiquitous with an increasing number

of applications in widely different areas. One reason for this

success is the huge potential benefits of feedback: to reduce

effects of disturbances and parameter variations, to change

the dynamic behavior of systems, and to stabilize an unsta-

ble system. Another reason is the ease of implementation of

control. An understanding of control is also essential for

understanding the behavior of natural and man-made sys-

tems. The wider range of potential uses of feedback offers

challenges to control. A recent panel for assessment of the

field made the following recommendation:

The Panel believes that control principles are now

a required part of any educated scientist’s or engi-

neer’s background, and we recommend that the com-

munity and funding agencies invest in new approaches
to education and outreach for the dissemination of con-
trol concepts and tools to nontraditional audiences.
[73], [74]

When teaching control to students from a broader spec-

trum of disciplines, it is essential to strive for a balance

between theory and application. This balance can be

achieved by relating the abstract concepts to concrete and

familiar systems. The bicycle allows us to help students

understand dynamic behavior and to model and design

control systems.

In this article, we have approached the bicycle from

the point of view of control. By using models of differ-

ent complexity, we explored interesting properties, for

example, that the front fork creates feedback, which

under certain circumstances stabilizes a bicycle, and

that rear-steered bicycles are difficult to ride. These

properties can be explained qualitatively using simple

models. More elaborate models that give quantitative

results are also given. A number of experiments that

can be performed with modest equipment have been

described. Insights into dynamics and control have

been used to develop adapted bicycles for children

with cognitive and motor developmental disabilities.

Clinical experiences from using adapted bicycles are

also presented.
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