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Bicycles, Motorcycles, 
and Models

T
he potential of human-powered transportation was

recognized over 300 years ago. Human-propelled

vehicles, in contrast with those that utilized wind

power, horse power, or steam power, could run on

that most readily available of all resources:

willpower. The first step beyond four-wheeled horse-drawn

vehicles was to make one axle cranked and to allow the

rider to drive the axle either directly or through a system of

cranks and levers. These vehicular contraptions [1], [2] were

so cumbersome that the next generation of machines was

fundamentally different and based on only two wheels.

The first such development came in 1817 when the

German inventor Baron Karl von Drais, inspired by the

idea of skating without ice, invented the running machine,

or draisine [3]. On 12 January 1818, von Drais received his

first patent from the state of Baden; a French patent was

awarded a month later. The draisine shown in Figure 1

features a small stuffed rest, on which the rider’s arms are
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laid, to maintain his or her balance. The front wheel was

steerable. To popularize his machine, von Drais traveled

to France in October 1818, where a local newspaper

praised his skillful handling of the

draisine as well as the grace and

speed with which it descended a

hill. The reporter also noted that

the baron’s legs had “plenty to

do” when he tried to mount his

vehicle on muddy ground. Despite

a mixed reception, the draisine

enjoyed a short period of Euro-

pean popularity. In late 1818, the

draisine moved to England, where

Denis Johnson improved its

design and began manufacturing

the hobby horse. Despite the pub-

lic’s enduring desire for rider-pro-

pelled transportation, the draisine

was too flawed to survive as a

viable contender; basic impedi-

ments were the absence of drive

and braking capabilities.

Although the history of the

invention of the pedal-drive bicycle

is riven with controversy [2], tradi-

tional credit for introducing the

first pedal-driven two wheeler, in

approximately 1840, goes to the

Scotsman Kirkpatrick Macmillan

[1]. Another account has it that

pedals were introduced in 1861 by

the French coach builder Pierre

Michaux when a customer brought

a draisine into his shop for repairs

and Michaux instructed his son

Ernest to affix pedals to the broken

draisine. In September 1894, a

memorial was dedicated in honor

of the Michaux machine. Shown in

Figure 2, this vehicle weighed an

unwieldy 60 pounds and was

known as the velocipede, or bone

shaker. This nickname derives

from the fact that the velocipede’s

construction, in combination with

the cobblestone roads of the day,

made for an extremely uncomfort-

able ride. Although velocipedoma-

nia only lasted about three years

(1868–1870), the popularity of the

machine is evidenced by the large

number of surviving examples. A

common complaint among veloci-

pedists was that the front wheel

caught their legs when cornering. As a result, machines

with centrally hinged frames and rear-steering were tested

but with little success [4].

Speed soon became an obses-

sion, and the velocipede suf-

fered from its bulk, its harsh

ride, and a poor gear ratio to the

driven wheel. In 1870, the first

light all-metal machine

appeared. The “ordinary” or

penny farthing had its pedals

attached directly to a large front

wheel, which provided

improved gearing (see Figure 3).

Indeed, custom front wheels

were available that were as

large as one’s leg length would

allow. Solid rubber tires and the

long spokes of the large front

wheel provided a smoother ride

than its predecessors. This

machine, which was the first to

be called a “bicycle,” was the

world’s first single-track vehicle

to employ the center-steering

head that is still in use today.

These bicycles enjoyed great

popularity among young men of

means during their hey-day in

the 1880s. Thanks to its

adjustable crank and several

other new mechanisms, the

penny farthing racked up

record speeds of about 7 m/s.

As is often said, pride comes

before a fall. The high center of

gravity and forward position of

the rider made the penny far-

thing difficult to mount and dis-

mount as well as dynamically

challenging to ride. In the event

that the front wheel hit a stone

or rut in the road, the entire

machine rotated forward about

its front axle, and the rider, with

his legs trapped under the han-

dlebars, was dropped uncere-

moniously on his head. Thus

the term “taking a header”

came into being.

Another important invention

was the pneumatic tire intro-

duced by John Boyd Dunlop in

1899. The new tires substantially

improved the cushioning of the
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FIGURE 1  The draisine, or running, machine. This

vehicle, which was first built in Germany in 1816, is

early in a long line of inventions leading to the con-

temporary bicycle. (Reproduced with permission of

the Bicycle Museum of America, New Bremen, Ohio.)

FIGURE 2  Velocipede by Pierre Michaux et Cie of

Paris, France circa 1869. In the wake of the draisine,

the next major development in bicycle design was the

velocipede, which was developed in France and

achieved its greatest popularity in the late 1860s. The

velocipede marks the beginning of a continuous line of

developments leading to the modern bicycle. Its most

significant improvement over the draisine was the

addition of cranks and pedals to the front wheel. Dif-

ferent types of (not very effective) braking mecha-

nisms were used, depending on the manufacturer. In

the case of the velocipede shown, the small spoon

brake on the rear wheel is connected to the handlebar

and is engaged by a simple twisting motion. The

wheels are wooden wagon wheels with steel tires.

(Reproduced with permission of the Canada Science

and Technology Museum, Ottawa, Canada.)



ride and the achievable top speed. Dunlop sold the market-

ing rights to his pneumatic tire to the Irish financier Harvey

Du Cros, and together they launched the Pneumatic Tyre

Company, which supplied inflatable tires to the British

bicycle industry. To make their tires less puncture prone,

they introduced a stout canvas lining to the inner surface of

the tire carcass while thickening the inner tube [2].

A myriad of other inventions and developments have

made the bicycle what it is today. For bicycles using wheels

of equal size, key innovations include chain and sprocket

drive systems, lightweight stiff steel frames, caliper brakes,

sprung seats, front and rear suspension systems, free-running

drive hubs, and multispeed Derailleur gear trains [1], [5].

A comprehensive and scholarly account of the history

of the bicycle can be found in [2]. Archibald Sharp’s book

[1] gives a detailed account of the early history of the bicy-

cle and a thorough account of bicycle design as it was

understood in the 19th century. Archibald Sharp was an

instructor in engineering design at the Central Technical

College of South Kensington (now Imperial College).

Although Sharp’s dynamical analysis of the bicycle is only

at a high school physics course level, it is sure footed and

of real interest to the professional engineer who aspires to

a proper appreciation of bicycle dynamics and design.

EARLY POWERED MACHINES

If one considers a wooden frame with two wheels and a

steam engine a “motorcycle,” then the first one was probably

American. In 1867, Sylvester Howard Roper demonstrated a

motorcycle (Figure 4) at fairs and circuses in the eastern

United States. His machine was powered by a charcoal-fired,

two-cylinder engine, whose connecting rods drove a crank

on the rear wheel. The chassis of the Roper steam velocipede

was based on the bone-shaker bicycle.

Gottlieb Daimler is considered by many to be the inven-

tor of the first true motorcycle, or motor bicycle, since his

machine was the first to employ an internal combustion

engine. After training as a gunsmith, Daimler became an

engineer and worked in Britain, France, and Belgium before

being appointed technical director of the gasoline engine

company founded by Nikolaus Otto. After a dispute with

Otto in 1882, Daimler and Wilhelm Maybach set up their

own company. Daimler and Maybach concentrated on pro-

ducing the first lightweight, high-speed gasoline-fueled

engine. They eventually developed an engine with a surface-

mounted carburetor that vaporized the petrol and mixed it

with air; this Otto-cycle engine produced a fraction of a kilo-

watt. In 1885 Daimler and Maybach combined a Daimler

engine with a bicycle, creating a machine with iron-banded,

wooden-spoked front and rear wheels as well as a pair of

smaller spring-loaded outrigger wheels (see Figure 5).

The first successful production motorcycle was the

Hildebrand and Wolfmueller, which was patented in

Munich in 1894 (see Figure 6). The engine of this vehicle

was a 1,428-cc water-cooled, four-stroke parallel twin,

which was mounted low on the frame with cylinders in a

fore-and-aft configuration; this machine produced less than

2 kW and had a top speed of approximately 10 m/s. As

with the Roper steamer, the engine’s connecting rods were

coupled directly to a crank on the rear axle. The Hildebrand

and Wolfmueller, which was manufactured in France under

the name Petrolette, remained in production until 1897. 

Albert Marquis de Dion and his engineering partner

Georges Bouton began producing self-propelled steam

vehicles in 1882. A patent for a single-cylinder gasoline

engine was filed in 1890, and production began five years

later. The De Dion Bouton engine, which was a small,

lightweight, high-rpm four-stroke “single,” used battery-

and-coil ignition, thereby doing away with the trouble-

some hot-tube ignition system. The engine had a bore of 50
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FIGURE 4  Sylvester Roper steam motorcycle. This vehicle is pow-

ered by a two-cylinder steam engine that uses connecting rods fixed

directly to the rear wheel. (Reproduced with permission of the

Smithsonian Museum, Washington, D.C.)

FIGURE 3  Penny farthing, or ordinary. This bicycle is believed to

have been manufactured by Thos Humber of Beeston, Notting-

hamshire, England, circa 1882. The braking limitations of this vehi-

cle’s layout are obvious! (Reproduced with permission of the Glynn

Stockdale Collection, Knutsford, England.)



mm and a stroke of 70 mm, giving rise to a swept volume

of 138 cc. De Dion Bouton also used this fractional kilowatt

engine, which was widely copied by others including the

Indian and Harley-Davidson companies in the United

States, in road-going tricycles. The De Dion Bouton engine

is arguably the forerunner of all motorcycle engines.

Testosterone being what it is, the first motorcycle race

probably occurred when two motorcyclists came across

each other while out for a spin. From that moment on, the

eternal question in motorcycling circles became: “How do I

make my machine faster?” As one would imagine, the

quest for speed has many dimensions, and it would take

us too far afield to try to analyze these issues in detail. In

the context of modeling and control, it is apparent that the

desire for increased speed as well as the quest to more

fully utilize machine capability, requires high-fidelity

models, control theory, and formal dynamic analysis. One

also needs to replace the fractional kilowatt Otto-cycle

engine used by Daimler with a much more powerful one.

Indeed, modern high-performance two- and four-stroke

motorcycle engines can rotate at almost 20,000 rpm and

produce over 150 kW. In combination with advanced

materials, modern tires, sophisticated suspension systems,

stiff and light frames, and the latest in brakes, fuels, and

lubricants, these powerful engines have led to Grand Prix

machines with straight-line speeds of approximately 100

m/s. Figure 7 shows Ducati’s Desmosedici GP5 racing

motorcycle currently raced by Loris Capirossi.

The parameters and geometric layout that characterize

the dynamic behavior of modern motorcycles can vary

widely. Ducati’s Desmosedici racing machine has a steep

steering axis and a short wheelbase. These features pro-

duce the fast steering and the agile maneuvering required

for racing. The chopper motorcycle, such as the one

shown in Figure 8, is at the other extreme, having a heav-

ily raked steering axis and a long wheelbase. “Chopped”

machines are not just aesthetically different; they also

have distinctive handling properties that are typified by a

very stable feel at high straight-line speeds as compared

with more conventional machine geometries. However,

as with many other modifications, this stable feel is

accompanied by less attractive dynamic features such as

a heavy feel to the front end and poor responsiveness at

slow speeds and in corners.

Web sites and virtual museums dedicated to bicycles

and motorcycles are ubiquitous. See, for example, [6]–[10]

for bicycles and [11]–[15] for motorcycles.

BICYCLE MODELING AND CONTROL

Background

From a mathematical modeling perspective, single-track

vehicles are multibody systems; these vehicles include bicy-

cles, motorcycles, and motor scooters, all of which have

broadly similar dynamic properties. One of the earliest
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FIGURE 5  Daimler petrol-powered motorcycle. Gottlieb Daimler, who

later teamed up with Karl Benz to form the Daimler-Benz Corpora-

tion, is credited with building the first motorcycle in 1885. (Repro-

duced with permission of DaimlerChrysler AG, Stuttgart, Germany.)

FIGURE 6  Hildebrand and Wolfmueller motorcycle. This machine,

patented in 1894, was the first successful production motorcycle.

(Reproduced with permission of the Deutsches Zweirad- und NSU-

Museum, Neckarsulm, Germany.)

FIGURE 7  Loris Capirossi riding the Ducati Desmosedici GP5.

Ducati Corse’s MotoGP racing motorcycle is powered by a V-4 four-

stroke 989-cc engine. The vehicle has a maximum output power of

approximately 161 kW at 16,000 rpm. The corresponding top speed

is in excess of 90 m/s. (Reproduced with permission of Ducati

Corse, Bologna, Italy.)



attempts to analyze the dynamics of bicycles appeared in

1869 as a sequence of five short articles [16]. These papers

use arguments based on an heuristic inverted-pendulum-

type model to study balancing, steering, and propulsion.

Although rear-wheel steering was also contemplated, it

was concluded that “A bicycle, then, with the steering

wheel behind, may possibly be balanced by a very skillful

rider as a feat of dexterity; but it is not suitable for ordinary

use in practice.” These papers are interesting from a histori-

cal perspective but are of little technical value today.

The first substantial contribution to the theoretical bicy-

cle literature was Whipple’s seminal 1899 paper [17],

which is arguably as contributory as anything that fol-

lowed it; see “Francis John Welsh Whipple.” This remark-

able paper contains, for the first time, a set of nonlinear

differential equations that describe the general motion of a

bicycle and rider. The possibility of the rider applying a

steering torque input by using a torsional steering spring is

also considered. Since appropriate computing facilities

were not available at the time, Whipple’s general nonlinear

equations could not be solved and consequently were not

pursued beyond simply deriving and reporting them.

Instead, Whipple studied a set of linear differential equa-

tions that correspond to small motions about a straight-

running trim condition at a given constant speed.

Whipple’s model, which is essentially the model con-

sidered in the “Basic Bicycle Model” section, consists of

two frames—the rear frame and the front frame—which

are hinged together along an inclined steering-head assem-

bly. The front and rear wheels are attached to the front and

rear frames, respectively, and are free to rotate relative to

them. The rider is described as an inert mass that is rigidly

attached to the rear frame. The rear frame is free to roll and

translate in the ground plane. Each wheel is assumed to be

thin and thus touches the ground at a single ground-con-

tact point. The wheels, which are also assumed to be non-

slipping, are modeled by holonomic constraints in the

normal (vertical) direction and by nonholonomic con-

straints [18] in the longitudinal and lateral directions.

There is no aerodynamic drag representation, no frame

flexibility, and no suspension system; the rear frame is

assumed to move at a constant speed. Since Whipple’s lin-

ear straight-running model is fourth order, the corre-

sponding characteristic polynomial is a quartic. The

stability implications associated with this equation are

deduced using the Routh criteria.

Concurrent with Whipple’s work, and apparently inde-

pendently of it, Carvallo [19] derived the equations of

motion for a free-steering bicycle linearized around a

straight-running equilibrium condition. Klein and 

Sommerfeld [20] also derived equations of motion for a

straight-running bicycle. Their slightly simplified model (as

compared with that of Whipple) lumps all of the front-

wheel assembly mass into the front wheel. The main pur-

pose of their study was to determine the effect of the

gyroscopic moment due to the front wheel on the

machine’s free-steering stability. While this moment does

indeed stabilize the free-steering bicycle over a range of

speeds, this effect is of only minor importance because the

rider can easily replace the stabilizing influence of the front

wheel’s gyroscopic precession with low-bandwidth rider

control action [21].

An early attempt to introduce side-slipping and force-

generating tires into the bicycle literature appears in [22].

Other classical contributions to the theory of bicycle

dynamics include [23] and [24]. The last of these refer-

ences, in its original 1967 version, appears to contain the

first analysis of the stability of the straight-running bicycle

fitted with pneumatic tires; several different tire models

are considered. Reviews of the bicycle literature from a

dynamic modeling perspective can be found in [25] and

[26]. The bicycle literature is comprehensively reviewed

from a control theory perspective in [27], which also

describes interesting bicycle-related experiments.

Some important and complementary applied work

has been conducted in the context of bicycle dynamics.

An attempt to build an unridable bicycle (URB) is

described in [21]. One of the URBs described had the

gyroscopic moment of the front wheel canceled by

another that was counterrotating. The cancellation of

the front wheel’s gyroscopic moment made little differ-

ence to the machine’s apparent stability and handling

qualities. It was also found that this riderless bicycle

was unstable, an outcome that had been predicted
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FIGURE 8  “Manhattan” designed and built by Vic Jefford of Des-

tiny Cycles. Manhattan received the Best in Show award at the

2005 Bulldog Bash held at the Shakespeare County Raceway,

Warwickshire, England. Choppers, such as the one featured, are

motorcycles that have been radically customized to meet a par-

ticular taste. The name chopper came into being after the Sec-

ond World War when returning GIs bought up war surplus

motorcycles and literally chopped off the components they did

not want. According to the taste and purse of the owner, high

handle bars, stretched and heavily raked front forks, aftermarket

exhaust pipes, and chrome components are added. Custom-built

choppers have extreme steering-geometric features that have a

significant impact on the machine’s handling properties. These

features include a low head angle, long forks, a long trail, and a

long wheelbase. The extreme steering geometry of Manhattan

includes a steering head angle of 56°! (Reproduced with the per-

mission of Destiny Cycles, Kirkbymoorside, Yorkshire, England.)



theoretically in [20]. Three other URBs described in [21]

include various modifications to their steering geometry.

These modifications include changes in the front-wheel

radius and the magnitude and sign of the fork offset.

Experimental investigations of bicycle dynamics have

also been conducted in the context of teaching [28].
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F
rancis John Welsh Whipple (see Figure A) was born on 17

March 1876. He was educated at the Merchant Taylors’

School and was subsequently admitted to Trinity College, Cam-

bridge, in 1894. His university career was brilliant, and he

received his B.A. degree in mathematics in 1897 as second

wrangler. (Wrangler is a term that refers to Cambridge honors

graduates receiving a first-class degree in the mathematics tri-

pos; the senior wrangler is the first on the list of such gradu-

ates.) In 1898, he graduated in the first class in Part II of the

mathematics tripos. Whipple received his

M.A. degree in 1901 and an Sc.D. in 1929.

In 1899, he returned to the Merchant Tay-

lors’ School as mathematics master, a

post he held until 1914. He then moved to

the Meteorological Office as superinten-

dent of instruments.

Upon his death in 1768, Robert Smith,

master of Trinity College, Cambridge and

previously Plumian professor of astrono-

my, left a bequest establishing two annual

prizes for proficiency in mathematics and

natural philosophy to be awarded to junior

bachelors of arts. The prizes have been

awarded every year since, except for 1917

when there were no candidates. Through-

out its existence, the competition has

played a significant role by enabling grad-

uates considering an academic career, and the majority of prize

winners have gone on to become professional mathematicians

or physicists. In 1883, the Smith Prizes ceased to be awarded

through examination and were given instead for the best two

essays on a subject in mathematics or natural philosophy.

On 13 June 1899, the results of the Smith Prize competition

were announced in the Cambridge University Reporter [84].

Whipple did not win the prize, but it was written: “The adjudica-

tors are of the opinion that the essay by F.J.W. Whipple, B.A.,

of Trinity College, ‘On the stability of motion of a bicycle,’ is

worthy of honorable mention.”

The main results of this essay depend on the work of anoth-

er Cambridge mathematician, Edward John Routh, who

received his B.A. degree in mathematics from Cambridge in

1854. He was senior wrangler in the mathematical tripos exami-

nations, while James Clerk Maxwell placed second. In 1854,

Maxwell and Routh shared the Smith Prize; George Gabriel

Stokes set the examination paper for the prize, which included

the first statement of Stokes’ theorem.

Figure B, which was generated directly from a quartic equa-

tion given in Whipple’s paper, shows the dynamic properties of a

forward- and reverse-running bicycle as a function of speed.

Whipple found the parameters by experiment on a particular

machine. It is surely the case that Whipple would have loved to

have seen this figure—derived from the remarkable work of a

young man of 23, working almost 100 years before the wide-

spread availability of MATLAB!

FIGURE B  Stability properties of the Whipple bicycle. Real and

imaginary parts of the eigenvalues of the straight-running Whip-

ple bicycle model as functions of speed. Plot generated using

equation (XXVIII) in [17].
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FIGURE A  Francis John Welsh Whipple by

Elliot and Fry. Francis Whipple was assistant

director of the Meteorological Office and

Superintendent of the Kew Observatory from

1925–1939. He served as president of the

Royal Meteorological Society from 1936–

1938. Apart from his seminal work on bicycle

dynamics, he made many other contribu-

tions to knowledge, including identities for

generalized hypergeometric functions, sev-

eral of which have subsequently become

known as Whipple’s identities and transfor-

mations. He devised his meteorological slide

rule in 1927. He introduced a theory of the

hair hygrometer and analyzed phenomena

related to the great Siberian meteor. (Picture

reproduced with the permission of the

National Portrait Gallery, London.)

Francis John Welsh Whipple



Point-Mass Models

Bicycles and motorcycles are now established as nonlinear

systems that are worthy of study by control theorists and

vehicle dynamicists alike. In most cases, control-theoretic

work is conducted using simple models, which are special

cases of the model introduced by Whipple [17]. An early

example of such a model can be found in [29] (see equa-

tions (e) and (j) on pages 240 and 241, respectively, of [29]).

These equations describe the dynamics of a point-mass

bicycle model of the type shown in Figure 9; [29] presents

both linear and nonlinear models. Another early example

of a simple nonholonomic bicycle study in a control sys-

tems context can be found in [30], which gives a servo-

related interpretation of the self-steer phenomenon. A

more contemporary nonholonomic bicycle, which is essen-

tially the same as that presented in [29], was introduced in

[31] and [32]. This model is studied in [32] and [33] in the

context of trajectory tracking. A model of this type is also

examined in [27] in the context of the performance limita-

tions associated with nonminimum phase zeros.

The coordinates of the rear-wheel ground-contact point

of the inverted pendulum bicycle model illustrated in Fig-

ure 9 are given in an inertial reference frame O-xyz. The

Society of Automotive Engineers (SAE) sign convention is

used: x-forward, y-right, and z-down for axis systems and

a right-hand-rule for angular displacements. The roll angle

ϕ is around the x-axis, while the yaw angle ψ is around the

z-axis. The steer angle δ is measured between the front

frame and the rear frame.

The vehicle’s entire mass m is concentrated at its mass

center, which is located at a distance h above the ground

and distance b in front of the rear-wheel ground-contact

point. The acceleration due to gravity is denoted g, and w

is the wheelbase. The motion of the bicycle is assumed to

be constrained so that there is no side slipping of the vehi-

cle’s tires and thus the rolling is nonholonomic. The kine-

matics of the planar motion are described by

ẋ = v cos ψ, (1)

ẏ = v sin ψ, (2)

ψ̇ =
v tan δ

w cos ϕ
, (3)

where v is the forward speed.

The roll dynamics of the bicycle correspond to those of

an inverted pendulum with an acceleration influence

applied at the vehicle’s base and are given by

hϕ̈ = gsin ϕ−

[

(1 − hσ sin ϕ)σv2

+ b

(

ψ̈ + v̇

(

σ −
ϕ̇

v

))]

cos ϕ, (4)

where the vehicle’s velocity and yaw rate are linked by the

curvature σ satisfying vσ = ψ̇ . Using (3) to replace ψ̈ in (4)

by the steer angle yields

hϕ̈ =gsin ϕ − tan δ

(

v2

w
+

bv̇

w

+ tan ϕ

(

vb

w
ϕ̇ −

hv2

w2
tan δ

))

−
bvδ̇

w cos2 δ
. (5)

Equation (5) represents a simple nonholonomic bicycle

with the control inputs δ and v.  The equation can be lin-

earized about a constant-speed, straight-running condition

to obtain the simple small-perturbation linear model 

ϕ̈ =
g

h
ϕ −

v2

hw
δ −

bv

wh
δ̇ . (6)

In the constant-speed case, the only input is the steer angle.

Taking Laplace transforms yields the single-input, sin-

gle-output transfer function

Hϕδ(s) = −
bv

wh

s + v/b

s2 − g/h
, (7)

which has the speed-dependent gain (−bv)/(wh), a speed-

dependent zero at −v/b, and fixed poles at ±
√

g/h; the

unstable pole 
√

g/h corresponds to an inverted-pendulum-

type capsize mode. The zero −v/b, which is in the left-half

plane under forward-running conditions, moves through

the origin into the right-half plane as the speed is reduced

and then reversed in sign. Under backward-running
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FIGURE 9  Inverted pendulum bicycle model. Schematic diagram of

an elementary nonholonomic bicycle with steer δ, roll ϕ, and yaw ψ

degrees of freedom. The machine’s mass is located at a single

point h above the ground and b in front of the rear-wheel ground-

contact point. The wheelbase is denoted w . Both wheels are

assumed to be massless and to make point contact with the ground.

Both ground-contact points remain stationary during maneuvering

as seen from the rear frame. The path curvature is σ(t) = 1/R(t).

w
(x, y)

b

δ

R

ψ

h



conditions, the right-half plane zero, which for some

speeds comes into close proximity to the right-half plane

pole, is associated with the control difficulties found in

rear-steering bicycles [34].

Basic Bicycle Model

We use AUTOSIM [35] models, which are derivatives of

that given in [26], to illustrate the important dynamic prop-

erties of the bicycle. As with Whipple’s model, the models

we consider here consist of two frames and two wheels.

Figure 10 shows the axis systems and geometric layout

of the bicycle model studied here. The bicycle’s rear frame

assembly has a rigidly attached rider and a rear wheel that

is free to rotate relative to the rear frame. The front frame,

which comprises the front fork and handlebar assembly,

has a front wheel that is free to rotate relative to the front

frame. The front and rear frames are attached using a

hinge that defines the steering axis. In the reference config-

uration, all four bodies are symmetric relative to the bicy-

cle midplane. As with Whipple’s model, the nonslipping

road wheels are modeled by holonomic constraints in the

normal (vertical) direction and by nonholonomic con-

straints in the longitudinal and lateral directions. There is

no aerodynamic drag, no frame flexibility, no propulsion,

and no rider control. Under these assumptions, the bicycle

model has three degrees of freedom—the roll angle ϕ of

the rear frame, the steering angle δ , and the angle of
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FIGURE 10  Basic bicycle model with its degrees of freedom. The

model comprises two frames pinned together along an inclined

steering head. The rider is included as part of the rear frame. Each

wheel is assumed to contact the road at a single point.

X

Z

O

Trail

Wheelbase

Head
Angle

θr

ψ

θf

δ

TABLE 1 Parameters of the benchmark bicycle. These parameters are used to populate the AUTOSIM model described in [26]
and its derivatives. The inertia matrices are referred to body-fixed axis systems that have their origins at the body’s mass
center. These body-fixed axes are aligned with the inertial reference frame 0 − xyz when the machine is in its nominal state.

Parameters Symbol Value

Wheel base w 1.02 m 

Trail t 0.08 m

Head angle α arctan(3)

Gravity g 9.81 N/kg

Forward speed v variable m/s

Rear wheel (rw) 

Radius Rrw 0.3 m

Mass mrw 2 kg

Mass moments of inertia (Axx ,Ayy,Azz) (0.06,0.12,0.06) kg-m2

Rear frame (rf)

Position center of mass (xrf,yrf,zrf) (0.3,0.0,-0.9) m

Mass mrf 85 kg

Mass moments of inertia 

[

Bxx 0 Bxz

Byy 0
sym Bzz

] [

9.2 0 2.4
11 0

sym 2.8

]

kg-m2

Front frame (ff) 

Position center of mass (xff,yff,zff) (0.9,0.0,-0.7) m 

Mass mff 4 kg

Mass moments of inertia 

[

Cxx 0 Cxz

Cyy 0
sym Czz

] [

0.0546 0 −0.0162
0.06 0

sym 0.0114

]

kg-m2

Front wheel (fw) 

Radius Rf w 0.35 m

Mass mf w 3 kg

Mass moments of inertia (Dxx ,Dyy,Dzz) (0.14,0.28,0.14) kg-m2



rotation θr of the rear wheel relative to the rear frame. The

steering angle δ represents the rotation of the front frame

with respect to the rear frame about the steering axis.

The dimensions and mechanical properties of the

benchmark model are taken from [26] and presented in

Table 1. All inertia parameters use the relevant body-mass

centers as the origins for body-fixed axes. The axis direc-

tions are then chosen to align with the inertial O-xyz axes

when the bicycle is in its nominal state, as shown in Figure

10. Products of inertia Axz, Bxz and so on are defined as

−
∫ ∫

m(x, z)xzdxdz.

As derived in [17] and explained in [26], the linearized

equations of motion of the constant-speed, straight-running

nonholonomic bicycle, expressed in terms of the general-

ized coordinates q = (ϕ, δ)T , have the form

Mq̈ + vCq̇ + (v2K2 + K0)q = mext , (8)

where M is the mass matrix, the damping matrix C is mul-

tiplied by the forward speed v, and the stiffness matrix has

a constant part K0 and a part K2 that is multiplied by the

square of the forward speed. The right-hand side mext con-

tains the externally applied moments. The first component

of mext is the roll moment mϕ that is applied to the rear

frame. The second component is the action-reaction steer-

ing moment mδ that is applied between the front frame

and the rear frame. This torque could be applied by the

rider or by a steering damper. In the uncontrolled bicycle,

both external moments are zero. This model, together with

nonslipping thin tires and the parameter values of Table 1,

constitute the basic bicycle model.

To study (8) in the frequency domain, we introduce the

matrix-valued polynomial

P(s, v) = s2M + svC + (v2K2 + K0) , (9)

which is quadratic in both the forward speed v and in the

Laplace variable s. The associated dynamic equation is

[

P11(s) P12(s, v)

P21(s, v) P22(s, v)

] [

ϕ(s)

δ(s)

]

=

[

mϕ(s)

mδ(s)

]

, (10)

where P11 is independent of v. When studying stability,

the roots of the speed-dependent quartic equation

det(P(s, v)) = 0 (11)

need to be analyzed using the Routh criteria or found by

numerical methods. Figure 11 shows the loci of the roots of

(11) as functions of the forward speed. The basic bicycle

model has two important modes—the weave and capsize

modes. The weave mode begins at zero speed with the two

real, positive eigenvalues marked A and B in Figure 11. The

eigenvector components corresponding to the A-mode

eigenvalue have a steer-to-roll ratio of −37; the negative

sign means that as the bicycle rolls to the left, for instance,

the steering rotates to the right. This behavior shows that

the motion associated with the A mode is dominated by the

front frame diverging toward full lock as the machine rolls

over under gravity. Because real tires make distributed con-

tact with the ground, a real bicycle cannot be expected to

behave in exact accordance with this prediction. The eigen-

vector components corresponding to the B-mode eigenval-

ue have a steer-to-roll ratio of −0.57. The associated motion

involves the rear frame toppling over, or capsizing, like an

unconstrained inverted pendulum to the left, for instance,

while the steering assembly rotates relative to the rear

frame to the right with 0.57 of the roll angle.

Note that the term “capsize” is used in two different

contexts. The static and very-low-speed capsizing of the

bicycle is associated with the point B in Figure 11 and the

associated nearby locus. The locus marked capsize in Fig-

ure 11 is associated with the higher-speed unstable top-

pling over of the machine. This mode crosses the stability

boundary and becomes unstable when the matrix

v2K2 + K0 in (8) is singular.

As the machine speed builds up from zero, the two

unstable real modes combine at approximately 0.6 m/s to

produce the oscillatory fish-tailing weave mode. The

basic bicycle model predicts that the weave mode fre-

quency is approximately proportional to speed above 0.6

m/s. In contrast, the capsize mode is a nonoscillatory

motion, which when unstable corresponds to the rider-

less bicycle slowly toppling over at speeds above 6.057

m/s. From the perspective of bicycle riders and design-

ers, this mode is unimportant because it is easy for the

42 IEEE CONTROL SYSTEMS MAGAZINE » OCTOBER 2006

FIGURE 11  Basic bicycle straight-running stability properties. The

real and imaginary parts of the eigenvalues of the straight-running

basic bicycle model are plotted as functions of speed. The (blue)

dotted lines correspond to the real part of the eigenvalues, while the

(red) crosses show the imaginary parts for the weave mode. The

weave mode eigenvalue stabilizes at vw = 4.3 m/s, while the cap-

size mode becomes unstable at vc = 6.1 m/s giving the interval of

auto-stability vc ≥ v ≥ vw .
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rider to stabilize it using a low-bandwidth steering con-

trol torque. In practice, the capsize mode can also be sta-

bilized using appropriately phased rider body motions,

as is evident from hands-free riding.

In the recent measurement program [36], an instrument-

ed bicycle was used to validate the basic bicycle model

described in [17] and [26]. The measurement data show

close agreement with the model in the 3–6 m/s speed

range; the weave mode frequency and damping agreement

is noteworthy. The transition of the weave mode from sta-

ble to unstable speed ranges is also accurately predicted by

the basic bicycle model. These measurements lend credibili-

ty to the idea that tire and frame compliance effects can be

neglected for benign maneuvering in the 0–6 m/s range.

Special Cases
Several special cases of the basic bicycle model are now used

to illustrate some of the key features of bicycle behavior.

These cases include the machine’s basic inverted-pendulum-

like characteristics, as well as its complex steering and self-

stabilizing features. Some of these features are the result of

carefully considered design compromises.

Locked Steering Model
The dynamically simple locked steering case is considered

first. If the steering degree of freedom is removed, the

steering angle δ(s) must be set to zero in (10), and conse-

quently the roll freedom is described by

mϕ(s) = P11(s)ϕ(s)

= (s2Txx + gmtzt)ϕ(s) . (12)

The roots of P11(s) are given by

p± = ±

√

gmtzt

Txx
, (13)

where mt is the total mass of the bicycle and rider, zt is the

height of the combined mass center above the ground,

and Txx is the roll moment of inertia of the entire machine

around the wheelbase ground line. In the case of the basic

bicycle model, p± = ±3.1348. For the point-mass, 

Timoshenko-Young model, zt = h and Txx = mh2 and so

p± = ±
√

g/h.

Since the steering freedom is removed, the A mode (see

Figure 11) does not appear. The vehicle’s inability to steer

also means that the weave mode disappears. Instead, the

machine’s dynamics are fully determined by the speed-

independent, whole-vehicle capsize (inverted pendulum)

mode seen at point B in Figure 11 and given by (13). Not

surprisingly, motorcycles have a tendency to capsize at

low speeds if the once-common friction pad steering

damper is tightened down far enough to lock the steering

system; see [37].

Point-Mass Model with Trail and Inclined Steering
Interesting connections can now be made between the

Timoshenko-Young-type point-mass model and the more

complex basic bicycle model. To forge these links, we set to

zero the masses of the wheels and the front frame, as well

as all the inertia terms in (10). The trail and steering incli-

nation angle are left unaltered.

We first reconcile (7) and the first row of equation (10),

which is

ϕ(s) =
−P12(s, v)

P11(s, v)
δ(s), (14)

when the roll torque is mϕ(s) = 0. As in [26], we denote the

trail by t and the steering inclination angle as measured

from the vertical by λ. Direct calculation gives

Hϕδ(s, v) =
−P12

P11
(s, v) (15)

= −
cos(λ)(tbs2 + sv(b + t) + v2 − gtb/h)

wh(s2 − g/h)
. (16)

Equation (16) reduces to (7) when λ and t are set to zero. It

follows from (10) and mϕ = 0 that 

Hϕmδ
(s, v) =

−P12

det(P)
(s, v) , (17)

which reduces to

Hϕmδ
(s, v) =

w(tbs2 + sv(t + b) + v2 − gtb/h)

mtbg(s2 − g/h)(hw sin(λ) − tbcos(λ))
(18)

under the present assumptions. In contrast to the analysis

given in [27], (18) shows that the poles of Hϕmδ
(s, v) are

fixed at ±
√

g/h and that the steering inclination and trail

do not alone account for the self-stabilization phenomenon

in bicycles.

We now compute Hδmδ
(s, v) as 

Hδmδ
(s, v) =

P11

det P
(s, v)

=
hw2

mtbgcos(λ)(hw sin(λ) − tbcos(λ))
, (19)

which is a constant. Equation (19) shows that in a point-

mass specialization of the Whipple model, the steer angle δ

and the steering torque mδ are related by a virtual spring

whose stiffness depends on the trail and steering axis incli-

nation. Physically, this static dependence means that the

steer angle of the point-mass bicycle responds instanta-

neously to steering torque inputs. It also follows from (19)

that this response is unbounded in the case of a zero-trail

(t = 0) machine [29] because in this case the connecting

spring has a stiffness of zero.
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No Trail, Steering Inclination, or Front-Frame Mass Offset
We now remove the basic bicycle’s trail (by setting

t = 0), the inclination of the steering system (by setting

λ = 0),  and the front-frame mass offset by setting

xff = w. This case is helpful in identifying some of the

key dynamical features of the steering process. The first

row in (10) relates the roll angle to the steer angle when

mϕ = 0, and shows how the inverted pendulum system

is forced by the steer angle together with δ̇ and δ̈. The

second row of (10) is

(s2Cxz − s�fwDyy)ϕ(s) + {s2(Czz + Dzz)

+s(Czz + Dzz)v/w)}δ(s) = mδ(s), (20)

where �fw(s) is the angular velocity of the front wheel.

The ϕ(s) term in (20), which is the self-steering term,

shows how the roll angle influences the steer angle.

The first component of the self-steering expression is a

product of inertia, which generates a steering moment

from the roll acceleration. The second self-steering

term represents a gyroscopic steering moment generat-

ed by the roll rate. The expression for P22 in (20) relates

the steering torque to the steering angle through the

steered system inertia and a physically obscure speed-

proportionate damper, apparently coming from the

rear-wheel ground-contact model.

No Trail or Steering Inclination
We now modify the previous special case by including

front-frame mass offset effects (xff �= w). As before, the first

row of (10), which relates the roll angle to the steering

angle when mϕ = 0, represents steer angle forcing of the

inverted pendulum dynamics. The second row of (10) in

this case is shown in (21), found at the bottom of the page.

The quadratic self-steering term in (21) contains a new

term involving xff − w that comes from the fact that the

front-frame mass is no longer on the steering axis, imply-

ing an increase in the effective xz-plane product of inertia

of the front frame. The constant self-steering term in (21)

represents a mass-offset-related gravitational moment,

which is proportional to the roll angle. The steering mass

offset also increases the moment of inertia of the steering

system, enhances the steering damping, and introduces a

new speed-dependent stiffness term.

By comparing (20) and (21), it is suggested that the

bicycle equations become too complicated to express in

terms of the original data set when trail and steering incli-

nation influences are included. Indeed, when these elabo-

rations are introduced, it is necessary to resort to the use of

intermediate variables and numerical analysis procedures

[26]. In the case of state-of-the-art motorcycle models, the

equations of motion are so complex that they can only be

realistically derived and checked using computer-assisted

multibody modeling tools.

Gyroscopic Effects
Gyroscopic precession is a favorite topic of conversation in

bar-room discussions among motorcyclists. While it is not

surprising that lay people have difficulty understanding

these effects, inconsistencies also appear in the technical lit-

erature on single-track vehicle behavior. The experimental

evidence is a good place to begin the process of under-

standing gyroscopic influences. Experimental bicycles

whose gyroscopic influences are canceled through the

inclusion of counterrotating wheels have been designed

and built [21]. Other machines have had their gyroscopic

influences exaggerated through the use of a high-moment-

of-inertia front wheel [27]. In these cases, the bicycles were

found to be easily ridable. As with the stabilization of the

capsize mode by the rider, the precession-canceled bicycle

appears to represent little more than a simple low-band-

width challenge to the rider. As noted in [21], in connection

with his precession-canceled bicycle, “. . . Its ‘feel’ was a bit

strange, a fact I attributed to the increased moment of iner-

tia about the front forks, but it did not tax my (average) rid-

ing skill even at low speed . . . ”. It is also noted in [21] that

FIGURE 12  Bicycle straight-running stability properties. This plot

shows the real and imaginary parts of the eigenvalues of the

straight-running basic bicycle model with the gyroscopic moment

associated with the front road wheel removed by setting Dyy = 0.

The (blue) dotted lines correspond to the real parts of the eigen-

values, while the (red) pluses show the imaginary parts for the

weave mode.
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{

s2(Cxz + mffzff(w − xff)) − s�fwDyy + gmff(w − xff)
}

ϕ(s)+
{

s2(mff(w − xff)
2 + Czz + Dzz) + sv(Czz + Dzz − mffxff(w − xff))/w + v2mff(w − xff)/w

}

δ(s) = mδ(s). (21)
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the precession-canceled bicycle has no autostable speed range,

thereby verifying by experiment the findings reported in [20].

When trying to ride this particular bicycle without hands,

however, the rider could only just keep it upright because

the vehicle seemed to lack balance and responsiveness.

In their theoretical work, Klein and Sommerfeld [20]

studied a Whipple-like quartic characteristic equation

using the Routh criteria. While the basic bicycle model has

a stable range of speeds, which Klein and Sommerfeld

called the interval of autostability, this model with the

spin inertia of the front wheel set to zero is unstable up to

a speed of 16.4 m/s. This degraded stability can be seen in

Figure 12, where the capsize mode remains stable with the

damping increasing with speed; due to its stability, the

capsize nomenclature may seem inappropriate in this

case. In contrast, the weave mode is unstable for speeds

below 16.4 m/s, and the imaginary part is never greater

than 1.8 rad/s. Klein and Sommerfeld attribute the stabi-

lizing effect of front-wheel precession to a self steering

effect; as soon as a bicycle with spinning wheels begins to

roll, the resulting gyroscopic moment due to the s�fwDyy

term in (20) causes the bicycle to steer in the direction of

the fall. The front contact point, consequently, rolls

towards a position below the mass center.

The Klein and Sommerfeld finding might leave the

impression that gyroscopic effects are essential to auto-sta-

bilization. However, it is shown in [38] that bicycles without

trail or gyroscopic effects can autostabilize at modest speeds

by adopting extreme mass distributions, but the design

choices necessary do not make for a practical machine.

A Feedback System Perspective

Basic Bicycle as a Feedback System
To study the control issues associated with bicycles, we

use the second row of (10) to solve for δ(s), which yields

δ(s) =
−P21(s, v)

P22(s, v)
ϕ(s) +

1

P22(s, v)
mδ(s). (22)

Equations (22) and (14) are shown diagrammatically in the

feedback configuration given in Figure 13. Eliminating ϕ(s)

yields the closed-loop transfer function

Hδmδ
(s, v) =

P11

det(P)
(s, v) . (23)

In [27], (22) is simplified to

δ(s) = k1(v)mδ(s) + k2(v)ϕ(s) , (24)

in which the mass and damping terms are neglected. If the

wheel and front frame masses, as well as all of the inertia

terms, are set to zero, these velocity-dependent gains are

given by

k1(v) =
w2

tmbcos λ(v2 cos λ − gw sin λ)
, (25)

k2(v) =
wg

v2 cos λ − wgsin λ
. (26)

Although this stiffness-only model represents the low-

frequency behavior of the steering system, the approxima-

tion obscures some of the basic bicycle model’s structure.

The poles and zeros of Hδmδ
(s, v), as a function of speed,

are shown in Figure 14. Except for the pair of speed-inde-

pendent zeros, this diagram contains the same information

FIGURE 13  Block diagram of the basic bicycle model described in

[26]. The steer torque applied to the handlebars is mδ(s), ϕ(s) is the

roll angle, and δ(s) is the steer angle.

δ(s)

1
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−

FIGURE 14  Poles and zeros of Hδmδ
(s, v) as functions of speed.

The speed v is varied between ±10 m/s. The poles are shown as

blue dots for forward speeds and red crosses for reverse speeds.

There are two speed-independent zeros shown as black squares

at ± 3.135 1/s.
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as that given in Figure 11. As the speed of the bicycle

increases, the unstable poles associated with the static cap-

size modes coalesce to form the complex pole pair associat-

ed with the weave mode. The weave mode is stable for

speeds above 4.3 m/s [26]. As the machine’s speed increas-

es further, it becomes unstable due to the dynamic capsize

mode at 6.06 m/s.

The zeros of Hδmδ
(s, v), which derive from the roots of

P11(s) as shown in (13) [see (23)], are associated with the

speed-independent whole-vehicle capsize mode. The back-

ward-running vehicle is seen to be unstable throughout

the speed range, but this vehicle is designed for forward

motion and, when running backwards, it has negative trail

and a divergent caster action. See “Caster Shimmy” and

note that the cubic terms of (38) and (39) are negative for

negative speeds, indicating instability in this case.

A control theoretic explanation for the stabilization difficul-

ties associated with backward-running bicycles centers on the

positive zero fixed at +
√

gmtzt/Txx, which is in close proximi-

ty to a right-half plane pole in certain speed ranges [34].

Steering
An appreciation of the subtle nature of bicycle steering

goes back over 100 years. Archibald Sharp records [1, p.

222] “. . . to avoid an object it is often necessary to steer for

a small fraction of a second towards it, then steer away

from it; this is probably the most difficult operation the

beginner has to master. . . ” While perceptive, such histori-

cal accounts make no distinction between steering torque

control and steering angle control. They do not highlight

the role played by the machine speed, and timing esti-

mates are based on subjective impressions rather than

experimental measurement.

As Whipple [17] surmised, the rider’s main control

input is the steering torque. While in principle one can

steer through leaning (by applying a roll moment to the

rear frame), the resulting response is too sluggish to be

practical in an emergency situation. The steer-torque-to-

steer-angle response of the bicycle can be deduced from

(23). Once the steer angle response is known, the small

perturbation yaw rate response for the model described in

[26] can be calculated using

ψ̇ =
v cos λδ

w + t/ cos λ
,

which corresponds to (3) for the Timoshenko-Young bicy-

cle with small perturbation restrictions. In the case of small

perturbations from straight running, (2) becomes

ẏ = vψ.

It now follows that the transfer function linking the lateral

displacement to the steer angle is

Hyδ(s, v) =
v2 cos λ

s2(w + t/ cos λ)
(27)

and that the transfer function linking the lateral displace-

ment to the steering torque is given by Hyδ(s, v)Hδmδ
(s, v),

with Hδmδ
(s, v) given in (23).

This transfer function is used

in the computation of

responses to step steering

torque inputs.

To study the basic bicycle

model’s steering response at

different speeds, including

those outside the autostable

speed range, it is necessary to

introduce stabilizing rider

control. The rider can be

emulated using the roll-angle

plus roll-rate feedback law

mδ(s) = r(s) + (kϕ + skϕ̇)ϕ(s) , (28)

in which r(s) is a reference torque input and kϕ and kϕ̇ are

the roll and roll-rate feedback gains, respectively. This

feedback law can be combined with (17) to obtain the

open-loop stabilizing steer-torque prefilter

F(s) =
det(P(s, v))

det(P(s, v)) + (kϕ + skϕ̇)P12(s, v)k(s)
, (29)

which maps the reference input r(s) into the steering

torque mδ(s) as shown in Figure 15. In the autostable

speed range, the stabilizing prefilter is not needed and

F(s) is set to unity in this case. The bicycle’s steering

behavior can now be studied at speeds below, within, and

above the autostable speed range. Prior to maneuvering,

the machine is in a constant-speed straight-running trim

condition. For an example of each of the three cases, the

filtered steering torque and the corresponding roll-angle

46 IEEE CONTROL SYSTEMS MAGAZINE » OCTOBER 2006

FIGURE 15  Steering torque prefilter F(s) described in (29). This filter is an open-loop realization of the

roll-angle-plus-roll-rate feedback law described in (28). As readers familiar with control systems are

aware, open- and closed-loop systems can be represented in equivalent ways if there are no distur-

bances and no modeling uncertainties.

Σ
r (s)

F (s)

δ(s)mδ(s)

ν

ν



responses are shown in Figure 16, while the steer angle

and lateral displacement responses are shown in Figure

17. In each case, the filter gains are chosen to be stabilizing

and to achieve approximately the same steady-state roll

angle; numerical gain values appear in the figure captions.

The autostable case is considered first, because no stabiliz-

ing torque demand filtering is required. In this case, the

clockwise (when viewed from above) unit-step steer

torque demand is applied directly to the bicycle’s steering

system (see Figure 16). The machine initially steers to the

right and the rear wheel ground-contact point starts mov-

ing to the right also (see Figure 17). Following the steer

torque input, the bicycle immediately rolls to the left (see

Figure 16) in preparation for a left-hand turn. After

approximately 0.6 s, the steer angle sign reverses, while

the rear-wheel ground-contact point begins moving to the

left after approximately 1.2 s. The oscillations in the roll

angle and steer angle responses have a frequency of about

0.64 Hz and are associated with the weave mode of the

bicycle (see Figure 11). Therefore, to turn to the left, one

must steer to the right so as the make the machine roll to

the left. This property of the machine to apparently roll in

the wrong direction is sometimes referred to as counter-

steering [39], [27], but an alternative interpretation is also

possible, as seen below. The nonminimum phase behavior

in the steer angle and lateral displacement responses is

attributable to the right-half plane zero in Hδmδ
(s, v) given

by the roots of P11(s) = 0 and corresponding to the locked-

steering whole-machine capsize mode as illustrated in

(13). Toward the end of the simulation shown, the steer

angle settles into an equilibrium condition, in which the

bicycle turns left in a circle with a fixed negative roll

angle. In relation to the nonminimum phase response in

the lateral displacement behavior, the reader is reminded

of the control difficulty that arises if one rides near to a

curb or a drop [39]; to escape, one has to go initially closer

to the edge. Body lean control is unusually useful in such

circumstances.

At speeds below the autostable range, a stabilizing steer-

ing-torque prefilter must be utilized to prevent the machine

from toppling over. In the low-speed (3.7 m/s) case, the steer

torque illustrated in Figure 16 is the unit-step response of the

prefilter, which is the steer torque required to establish a

steady turn. The output of the prefilter is unidirectional apart

from the superimposed weave-frequency oscillation required

to stabilize the bicycle’s unstable weave mode. In the case

considered here, the steady-state steer torque is more than

twice the autostable unit-valued reference torque required to

bring the machine to a steady-state roll angle of approximate-

ly −0.65 rad. To damp the weave oscillations in the roll and

FIGURE 16  Step responses of the prefilter and the roll angle of the

basic bicycle model. The steering torque and roll angle response at

the autostable speed of 4.6 m/s are shown in blue; the prefilter gains

are kϕ = 0 and kϕ̇ = 0.The low-speed 3.7 m/s case, which is below

the autostable speed range, is shown in red; the stabilizing preflter

gains are kϕ = −2 and kϕ̇ = 3. The high-speed 8.0-m/s case, which

is above the autostable speed range, is shown in green; the stabiliz-

ing prefilter gains are kϕ = 2.4 and kϕ̇ = 0.02. In each case, a clock-

wise steering moment (viewed from above) causes the machine to

roll to the left. This tendency of the machine to apparently roll “in the

wrong direction” is sometimes referred to as countersteering. In the

high-speed case (green curves), the steering torque is positive initially

and then negative. This need to steer in one direction to initiate the

turning roll response, and then to later apply an opposite steering

torque that stabilizes the roll angle, is a high-speed phenomenon.
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FIGURE 17  Response of the simple bicycle model to a steering

moment command. The steer angle and the rear-wheel ground-con-

tact point displacement responses at the autostable speed of 4.6

m/s are shown in blue; the prefilter gains are kϕ = 0 and kϕ̇ = 0.

The responses at a speed of 3.7 m/s, which is below the autostable

speed range, are shown in red; the stabilizing prefilter gains are

kϕ = −2 and kϕ̇ = 3. The responses at a speed of 8.0 m/s, which is

above the auto-stable speed range, are shown in green; the stabiliz-

ing prefilter gains are kϕ = 2.4 and kϕ̇ = 0.02. The steer angle and

lateral displacement responses show the influence of the right-half-

plane zero of P11(s). This zero is associated with the unstable

whole-vehicle capsize mode. See point A in Figure 11 and (13).
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steer angle responses, the torque demand filter, which mim-

ics the rider, introduces weave-frequency fluctuations into

the steering torque. The steer angle and lateral displacement

responses are similar to those obtained in the autostable case.

If the trim speed is increased to the upper limit of the

autostable range (in this case 6.1 m/s; see Figure 11), then

the steady-state steering torque required to maintain an

equilibrium steady-state turn falls to zero; this response is

due to the singularity of the stiffness matrix v2K2 + K0 at

this speed. At speeds above the autostable range, stabiliz-

ing rider intervention is again required. As before, in

response to a positive steer torque input, the steer angle

and lateral displacement initially follow the steer torque

(see Figure 17). At the same time the machine rolls to the

left (see Figure 16). Moments later, one observes the non-

minimum phase response in the steer angle and the lateral

displacement responses. The interesting variation in this

case is in the steering torque behavior. This torque is ini-

tially positive and results in the machine rolling to the left.

However, if this roll behavior were left unchecked, the

bicycle would topple over, and so to avoid the problem the

steer torque immediately reduces and then changes sign

after approximately 4 s. The steer torque then approaches a

steady-state value of −0.6 N-m to stabilize the roll angle

and maintain the counterclockwise turn. This need to steer

in one direction to initiate the turning roll angle response,

and then to later apply an opposite steering torque that

stabilizes the roll angle is a high-speed phenomenon, pro-

viding the alternative interpretation of countersteering

mentioned earlier. Countersteering in the first sense is

always present, while in the second sense it is a high-speed

phenomenon only. It is interesting to observe that the pre-

filter enforces this type of countersteering for all stabilizing

values of kϕ and kϕ̇ . First note that the direct feedthrough

(infinite frequency) gain of F(s) is unity. Since kϕ and kϕ̇

are stabilizing, all of the denominator coefficients of F(s)

have the same sign as do all of the numerator terms in the

autostable speed range. As the speed passes from the

autostable range, det(v2K2 + K0) changes sign, as does the

constant coefficient in the numerator of F(s). Therefore, at

speeds above the autostable range, F(s) has a negative

steady-state gain, thereby enforcing the sign reversal in the

steering torque as observed in Figure 16.

We conclude this section by associating the basic bicy-

cle model’s nonminimum phase response (in the steer

angle) with its self-steering characteristics. To do this, con-

sider removing the basic bicycle’s ability to self-steer by

setting α = π/2, t = 0, Cxz = 0, Dyy = 0, and xff = w. With

these changes in place, it is easy to see from (20) that

P21(s, v) = 0. This identity means that

Hδmδ
=

1

P22(s, v)

=
1

s(Czz + Dzz)(s + v/w)
, (30)

which is clearly minimum phase and represents the

response one would expect when applying a torque to a

pure inertia with a damper to ground.

Pneumatic Tires, Flexible Frames, and Wobble

A modified version of the basic bicycle model is now con-

sidered in which a flexible frame and side-slipping tires

are included. The flexibility of the frame is modeled by

including a single rotational degree of freedom located

between the steering head and the rear frame. In the model

studied here, the twist axis associated with the frame flexi-

bility freedom is in the plane of symmetry and perpendic-

ular to the steering axis, and the associated motion is

restrained by a parallel spring-damper combination. In

this modified model, the nonholonomic lateral ground

contact constraints are replaced by (31) and (32); see “Tire

Modeling.” These equations represent tires that produce

lateral forces in response to sideslip and camber, with time

lags dictated by the speed and the tires’ relaxation lengths.

The tire and frame flexibility data used in this study are

given in Table 2; two representative values for the frame

stiffness KP and frame damping CP are included. The high-

er values of KP and CP are associated with a stiff frame,

while the lower values correspond to a flexible frame.

First, we examine the influence of frame compliance

alone on the system eigenvalues, which can be seen in Fig-

ure 18. The dotted curve corresponds to the rigid frame that

was studied in Figure 11 and is included here for reference

purposes. The cross- and circle-symbol loci correspond to

the stiff and flexible frames, respectively. The first important

observation is that the model predicts wobble when frame

compliance is included; see “Wobble.” In the case of the

flexible frame, the damping of the wobble mode reaches a

minimum at about 10 m/s and the mode has a resonant fre-

quency of approximately 6 Hz. In the case of the stiff frame,

the wobble mode’s resonant frequency increases, while its

damping factor decreases, with increasing speed. Figure 18

also illustrates the impact of frame flexibility on the damp-

ing of the weave mode. At low speeds, frame flexibility has

no impact on the characteristics of the weave mode. At

intermediate and high speeds, the weave-mode damping is

TABLE 2 Bicycle tire and frame flexibility parameters. Tire
parameters include relaxation lengths and cornering- and
camber-stiffness coefficients. The frame flexibility is
described in terms of stiffness and damping coefficients. All
of the parameter values are given in SI units.

Parameters Value

σ f , σr 0.1, 0.1 

Cf s, Cr s 14.325, 14.325

Cf c, Cr c 1.0, 1.0

K low
P

, K
high
P

2,000, 10,000 

C low
P

, C
high
P

20, 50
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C
lassical bicycle models, such as those developed by Whipple

[17], and Timoshenko and Young [29], describe the wheel-

road contact as a constraint. The wheel descriptions involve rota-

tional coordinates to specify the wheels’ orientation and

translational coordinates that describe the location of the road

contact points. The rolling constraints connect these coordinates

so that translational changes are linked to rotational ones. In the

case of general motions, the rotational and translational coordi-

nates cannot be linked algebraically, since this linkage is path

dependent; thus the nomenclature “nonholonomic,” or incomplete

constraint [18, p. 14]. Instead, it is the rotational and translational

velocities that are linked, and the rolling constraint renders the

wheels’ ground-contact points, or lines, absolutely stationary [24],

[51], [52]. During motion, the wheel-ground contact points change

with time, with each point on the wheel periphery coming into con-

tact with the ground once per wheel revolution. In the case of the

bicycle, it is illustrated that (nonholonomic) tire constraint modeling

limits the fidelity of the vehicle model to low speeds only. 

By 1950, the understanding of tire behavior had improved sub-

stantially, and it had become commonplace, although not universal,

to regard the rolling wheel as a force producer rather than as a con-

straint on the vehicle’s motion. With real tire behavior, the tread

material at the ground contact “slips” relative to the road and so has

a nonzero absolute velocity and the linkage between the wheels’

rotational and translational velocities is lost. To model this behavior,

it is necessary to introduce a slip-dependent tire force-generation

mechanism. 

To understand the underlying physical mechanisms underpin-

ning tire behavior, it is necessary to analyze the interface between

the elastic tire tread base and the ground. This distributed contact

involves the tire carcass and the rubber tread material, which can

be thought of as a set of bristles that join the carcass to the ground.

Under dynamic conditions, these bristles move, as a continuous

stream, into and out of the ground-contact region. Under free-

rolling conditions, in common with the nonholonomic rolling model,

the tread-base material is stationary; consequently, the bristles

remain undeformed in bending as they pass through the contact

region. When rolling resistance is neglected, no shear forces are

developed. Free-rolling corresponds to zero slip, and, if a slip is

developed, it has in general both longitudinal and lateral compo-

nents [50], [51]. In contrast to the physical situation, tire models

usually rely on the notion of a ground-contact point.

To assemble these ideas in a mathematical framework, let vf

denote the velocity of the tread base material at the ground contact

point. In the case of no longitudinal slipping, vf is perpendicular to

the line of intersection between the wheel plane and the ground

plane; the unit vector i lies along this line of intersection and the

unit vector j is perpendicular to it. The velocity of a tread base point

with respect to the wheel axle is given by vf r = ωf Rf i, where ωf is

the wheel’s spin velocity and Rf is the wheel radius. If we now

associate with this ground contact point an “unspun” point, its

velocity is vus

f
= vf + vf r . The slip (for the front wheel) is defined as

ssf =
vf

< vus

f
, i >

,

where < ·, · > denotes the inner product. The slip is in the j direction in

the case of no longitudinal slipping, as is assumed here. If the bristle

bending stiffness is constant and the frictional coupling between the

bristle tips and the ground is sufficient to prevent sliding, the lateral

force developed is proportional to ssf and acts to oppose the slip. 

When the rolling wheel is leaned over, then even with no slip,

the tread base material becomes distorted from its unstressed state.

This distortion leads to the development of a lateral force that is

approximately equal to the normal tire load multiplied by the camber

angle [51], [52]. If the tire is not working hard, the force due to cam-

ber simply superimposes on the force due to slip. The elemental lat-

eral forces due to camber are distributed elliptically over the contact

length, while those due to sustained slip increase with the longitudi-

nal distance of the tire element from the point of first contact. As the

sideslip increases, the no-sliding condition is increasingly chal-

lenged as the rear of the contact patch is approached. Thus, as the

tire works harder in slip, sliding at the rear of the contact patch

becomes more pronounced. Force saturation is reached once all

the tire elements (bristles) in contact with the road begin to slide. 

When the tire operates under transient conditions, following for

example a step change in steering angle, the distortion of the tire

tread material described above does not develop instantly. Instead,

the distortion builds up in a manner that is linked to the distance cov-

ered from the time of application of the transient. For vehicle model-

ing purposes, a simple approximation of this behavior is to treat the

dynamic force development process as a speed-dependent first-

order lag. The characterizing parameter, called the relaxation length

σ f , is similar to a time constant except that it has units of length

rather than time. The relaxation length is a tire characteristic that can

be determined experimentally. The lateral force response of the tire

due to steering, and therefore side slipping, is a dynamic response to

the slip and camber angles of the tire, which is modeled as

σf

|vus

f
|
Ẏf + Yf = Zf (Cfsssf + Cf cϕf ) , (31)

where Zf is the normal load on the front tire and ϕf is the front wheel’s

camber angle relative to the road (pavement). The force Yf acts in the j

direction and opposes the slip. The product Zf Cf s is the tire’s cornering

stiffness, while Zf Cf c is its camber stiffness. The sideforce associated

with the rear tire is given analogously by

σr

|vus
r

|
Ẏr + Yr = Zr (Crsssr + Crcϕr ) , (32)

where each term has an interpretation that parallels that of the front

wheel. Equations (31) and (32) are suitable only for small perturbation

modeling. 

Contemporary large perturbation tire models are based on

magic formulas [51] and [53]–[55], which can mimic accurately mea-

sured tire force and moment data over a wide range of operating

conditions.

Tire Modeling



compromised by the flexible frame, although this mode

remains well damped. As is now demonstrated, the more

realistic tire model has a strong impact on the predicted

properties of both wobble and weave.

Figure 19 shows the influence of frame flexibility in com-

bination with relaxed side-slipping tires. Again, the cross-

and circle-symbol loci correspond to the stiff and flexible

frames, respectively, while the dotted loci belong to the

rigid-framed machine. As can be seen from this dotted locus,

the introduction of side-slipping tires also produces a wob-

ble mode, which is not a property of the basic bicycle. The

predicted resonant frequency of the wobble mode varies

from approximately 12.7–4.8 Hz, depending on the frame

stiffness. Lower stiffnesses correspond to lower natural fre-

quencies. With a rigid frame, the wobble damping is least at

low and high speeds. With a compliant frame, the damping

is least at an intermediate speed. The frame flexibility can be

such that the resonant frequency aligns with the practical

evidence. Frame flexibility modeling can also be used to

align the wobble-mode damping with experimental mea-

surement. Comparison with Figure 18 shows that the intro-

duction of the side-slipping tire model causes a marked

reduction in the wobble-mode frequency for the stiff-framed

machine, while the impact of the side-slipping tires on the

wobble mode of the flexible-framed machine is less marked.

As with the flexible frame, side-slipping tires have little

impact on the weave mode at very low speeds. However, as

the speed increases, the relaxed side-slipping tires cause a

significant reduction in the intermediate and high-speed

weave-mode damping. By extension from measured motor-

cycle behavior, there is every reason to suspect that the accu-

rate reproduction of bicycle weave- and wobble-mode

behavior requires a model that includes both relaxed side-

slipping tires and flexible frame representations.

MOTORCYCLE MODELING

Background

Several factors differentiate bicycles from motorcycles. A

large motorcycle can weigh at least ten times as much as a
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A
phenomenon known variously as speedman’s wobble,

speed wobble, or death wobble is well known among

cyclists [85] and [86]. As the name suggests, wobble is a steer-

ing oscillation belonging to a more general class—wheel shim-

my. The oscillations are similar to those that occur with

supermarket trolley wheels, aircraft nose wheels, and automo-

bile steering systems. Documentation of this phenomenon in

bicycles is sparse, but a survey [86] suggests that wobble at

speeds between 4.5–9 m/s is unpleasant, while wobble at

speeds between 9–14 m/s is dangerous. The survey [86] also

suggests a wide spread of frequencies for the oscillations with

the most common being between 3–6 Hz, somewhat less than

for motorcycles. The rotation frequency of the front wheel is

often close to the wobble frequency, so that forcing from wheel

or tire nonuniformity may be an added influence. Although

rough surfaces are reported as being likely to break the regular-

ity of the wobble and thereby eliminate it, an initial event is nor-

mally needed to trigger the problem. Attempting to damp the

vibrations by holding on tightly to the handlebars is ineffective, a

result reproduced theoretically for a motorcycle [87]. The sur-

vey [86] recommends “pressing one or both legs against the

frame, while applying the rear brake” as a helpful practical pro-

cedure, if a wobble should commence. The possibility of accel-

erating out of a wobble is mentioned, suggesting a worst-speed

condition. The influences of loading are discussed with special

emphasis on the loading of steering-frame-mounted panniers.

Evidently, these influences are closely connected with the first

term in each of (20) and (21), representing roll-acceleration-to-

steer-torque feedback. Sloppy wheel or steering-head bearings

and flexible wheels are described as contributory. Increasing

the mechanical trail is considered stabilizing with respect to

wobble, raising both the frequency and the worst-case speed,

but is not necessarily advantageous overall.

In an important paper from a practical and experiential view-

point, [37] implies that wobble was a common motorcycling phe-

nomenon in the 1950s. Machines of the period were usually fitted

with a rider-adjustable friction-pad steering damper. The idea was

that the rider should make the damper effective for high-speed

running and ineffective for lower speeds; see also [88]. Refer-

ence [37] offers the view that steering dampers should not be

necessary for speeds under 45 m/s, indicating that, historically,

wobble of motorcycles has been a high-speed problem. Refer-

ence [37] also points to the dangers of returning from high speed

to low speed while forgetting to lower the preload on the steering

damper. A friction lock on the steering system obliges a rider to

use fixed (steering position) control, which we have earlier

demonstrated to be difficult. The current status of motorcycle

wobble analysis is covered in the “Motorcycle Modeling” section.

Wheel shimmy in general is discussed in detail in [51], where

a whole chapter is devoted to the topic. Ensuring the stability of

wheel shimmy modes in aircraft landing gear, automotive steer-

ing systems, and single-track vehicles is vital due to the potential

violence of the oscillations in these contexts. An idea of how

instability arises can be obtained by examining simple cases

(see “Caster Shimmy”), but systems of practical importance are

sufficiently complex to demand analysis by automated multibody

modeling tools and numerical methods.

A simple system quite commonly employed to demonstrate

wheel shimmy, both experimentally and theoretically [51], [89],

is shown in Figure C. If the tire-to-ground contact is assumed

to involve nonholonomic rolling, the characteristic equation of

the system of Figure C is third order, and symbolic results for

Wobble



bicycle, and, consequently, in the case of a motorcycle, the

rider’s mass is a much smaller fraction of the overall rider-

machine mass. A modern sports motorcycle can achieve

top speeds of the order 100 m/s, while a modern sports

bicycle might achieve a top speed of approximately 20

m/s. As a result of these large differences in speed, our

understanding of the primary modes of bicycles must be

extended to speeds that are usually irrelevant to bicycle

behavioral studies. At high speeds, aerodynamic forces are

important and need to be accounted for. 

In his study of bicycles, Whipple [17] introduced a

nondimensional approach to bicycle dynamic analysis,

which is helpful when seeking to deduce the behavior of

motorcycles from that of bicycles. The dimensionless

model was obtained by representing each mass by

m = αw, where α is dimensionless and w has the units of

mass (kilograms, for example) and each length quantity by

l = βb, where β is dimensionless and b has the units of

length (meters, for example). As a result, the moments and

products of inertia are expressed as J = γ wb2 , where γ is

also dimensionless. These changes of variable allowed

Whipple to establish that the roots of the quartic character-

istic equation, which represents the small perturbation

behavior around a straight-running trim state, are inde-

pendent of the mass units used. Therefore, for the nonho-

lonomic bicycle model, increasing the masses and inertias

of every body by the same factor makes no difference to

the roots of the characteristic equation. In this restricted

sense, a grown man riding a motorcycle is dynamically

equivalent to a child riding a bicycle. 

Whipple then showed that the characteristic equation

p(λ, v) = 0 can be replaced with p̃(ξ, ǫ) = 0 using a change

of variables. In the first case, the speed v has units such as

m/s, the characteristic equation has roots λi having the

units of circular frequency (rad/s for example). The new

variables: ξ = λb/v and ǫ = gb/v2 , where g is the gravita-

tional constant, are dimensionless as are the polynomial’s

coefficients. Therefore, all of the nondimensional single-

track vehicles corresponding to p̃(ξ, ǫ) = 0, where ǫ is a

constant, have the same dynamical properties in terms of
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the conditions for stability are

obtained in “Caster Shimmy.” For

higher levels of complexity, the

system order is increased and

analytical stabil i ty conditions

become significantly more com-

plex. In [51], a base set of para-

meter values is chosen, and

stability boundaries are found

numerically for systematic varia-

tions in speed v and mechanical

trail e . The resulting stabil ity

boundaries are plotted in the (v ,

e) parameter space for several

values of the lateral stiffness k of

the king-pin mounting. The least

oscillatory system is that having

the highest stiffness, with the

king-pin compliance contributing

to the system behavior in much

the same way tire lateral compli-

ance contributes.

Significant from the point of

view of single-track vehicles, and

aircraft nose-wheels, is the lateral compliance at the king-pin. If

this compliance allows the assembly to rotate in roll about an

axis well above the ground, as with a typical bicycle or motorcy-

cle frame or aircraft fuselage, lateral motions of the wheel

assembly are accompanied by camber changes. If, in addition,

the wheel has spin inertia, gyroscopic effects have an important

influence on the shimmy behavior. These effects are shown in

[51] to create a second area of instability in the (v , e) space at

higher speeds, which have a substantially different mode

shape. The gyroscopic mode involves a higher ratio of lateral

contact point velocity to steer velocity than occurs in situations

in which a roll freedom is absent. This new phenomenon is

called gyroscopic shimmy, and it is this shimmy variant that is

particularly relevant to the single-track vehicle [40], [41], [47].

FIGURE C  Plan view of a simple system capable of shimmy. This example is adapted from [51]

and [89, pp. 333, 334, ex. 215 p. 414]. The wheel is axisymmetric and free to spin relative to

the forks that support it; the wheel is deemed to have no spin inertia. The wheel has mechani-

cal trail e and mass offset f with respect to the vertical king-pin bearing. The king-pin is free to

translate laterally with displacement y from static equilibrium, while the whole assembly

moves forward with constant speed v. The king-pin mounting has stiffness k, while the moving

assembly has mass m. The steer angle is δ. The king-pin is assumed massless so that analy-

sis deals with only one body; see “Caster Shimmy.” The tire-ground contact can be treated on

one of three different levels. First, pure (nonholonomic) rolling, implying no sideslip, can be

assumed. Second, the tire may be allowed to sideslip thereby producing a proportionate and

instantaneous side force. Third, the side force may be lagged relative to the sideslip by a first-

order lag determined by the tire relaxation length; see “Tire Modeling.” 
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ξ . The modal frequencies and decay/growth rates scale

according to eλi t translating to e(ξiv/bt′) , where t ′ is dimen-

sionless. This analysis provides a method for predicting

the properties of a family of machines from those of a sin-

gle nondimensional vehicle. For example, if b is halved so

as to represent a child’s bicycle in this alternative length-

scaling sense, then a simultaneous reduction of the speed

by a factor of 
√

2 leaves the roots of p̃(ξ, ǫ) unchanged. The
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C
aster wheel shimmy can occur in everyday equipment such

as grocery trolleys, gurneys, and wheelchairs. These self-

excited oscillations, which are energetically supported by the

vehicle prime mover, are an important consideration in the

design of aircraft landing gear and road vehicle suspension

and steering systems. In the context of bicycles and motorcy-

cles, this quantitative analysis is conducted by including the

appropriate frame flexibility freedom and dynamic tire descrip-

tions in the vehicle model. The details are covered in the

“Pneumatic Tires, Flexible Frames, and Wobble” section.

By its nature, a caster involves a spinning wheel, a king-pin

bearing, and a mechanical trail sufficient to provide a self-center-

ing steering action. Our purpose here is to demonstrate how

oscillatory instability can be predicted for the simple system of

Figure C. In the case of small perturbations, the tire sideslip is

s = δ + eδ̇ − ẏ

v
. (33)

It follows from (31) that the resulting tire side force F is given by

σ

v
Ẏ + Y = Cs, (34)

in which C is the tire’s cornering stiffness and σ is the relaxation

length. The equations of motion for the swivel wheel assembly in

Figure D are

m(ÿ − f δ̈) + ky − Y = 0 (35)

and

Jz δ̈ + (e − f )Y + kyf = 0, (36)

where Jz is the yaw-axis moment of inertia of the swiveled wheel

assembly around the mass center. The characteristic polynomial

associated with small motions in the system in Figure D is derived

directly from (33)–(36). The resulting quintic polynomial is

det

[

ms2 + k −fms2 −1
kf s2Jz e − f

Cs/v −C(1 + (es)/v) 1 + σs/v

]

. (37)

Two interesting special cases can be deduced from the gen-

eral problem by making further simplifying assumptions. In the

case of the nonholonomic wheel, the cornering stiffness becomes

arbitrarily large for all values of σ, thereby preventing tire sideslip

lim
C→∞

det[·]
kC

= (m(e − f )2 + Jz)s
3

kv

+ m(e − f )s2

k
+ e2s

v
+ e, (38)

where det [·] comes from (37). It follows from (38) and the Routh

criterion that shimmy occurs if m f (e − f ) ≤ Jz , and in the case

that m f (e − f ) = Jz the frequency of oscillation is

ω =
√

(ke)/(m(e − f )). These results show the role played by the

steering system geometry, and the mass and inertia properties of

the moving assembly in determining the stability, or otherwise, of

the system. The king-pin stiffness influences the frequency of oscil-

lation. The case of m f (e − f ) = Jz corresponds to a mass distri-

bution in which the rolling contact is at the center of percussion

relative to the kingpin. In this situation the rolling constraint has no

influence on the sping force. 

In the case of a rigid assembly

lim
k→∞

det[·]
kC

=σ(f 2m + Jz)s
3

Cv

+ (f 2m + Jz)s
2

C
+ e2s

v
+ e. (39)

It follows from (39) that shimmy occurs if e ≤ σ , and in the case

that e = σ the frequency of oscillation is ω =
√

Ce/(f 2m + Jz).

The tire properties dictate both conditions for the onset of shimmy

and its frequency when it occurs. Interestingly, the tire relaxation

length alone determines the onset, or otherwise, of shimmy, while

the frequency of oscillation is dictated by the tire’s cornering stiff-

ness alone. The Pirelli company reports [90] on a tire tester that

relies on this precise result. The test tire is mounted in a fork trailing

a rigidly mounted king-pin bearing and runs against a spinning

drum to represent movement along a road. Following an initial

steer displacement of the wheel assembly, the exponentially

decaying steering vibrations are recorded, and the decrement

yields the tire relaxation length, while the frequency yields the cor-

nering stiffness. Unlike the bicycle case, the shimmy frequency is

independent of speed. 

As discussed in the “Basic Bicycle Model” section, in connec-

tion with the zero-speed behavior, the simple caster does not in

reality oscillate at vanishingly small speeds due to the distributed

contact between the tire and the ground. The energy needed to

increase the amplitude of unstable shimmy motions comes from

the longitudinal force that sustains the forward speed of the king-

pin. This longitudinal force is given by

F = m(δÿ + f δ̇2) + δky

for the small perturbation problem described in (33)–(36). In the

case of a pure-rolling (nonholonomic) tire, δ̇ should be eliminated

from the above equation using the zero-sideslip constraint

δ̇ = (ẏ − vδ)/e.

Caster Shimmy



associated variation in the time domain response comes

from λi translating to 
√

2λi.

Whipple’s scaling rules, in combination with observa-

tions, lead one to conclude that a viable motorcycle model

1) must be consistent with bicycle-like behavior at low

speed, 2) must reproduce the autostability properties pre-

dicted by Whipple [17], 3) must reproduce the motorcycle’s

inclination to wobble at intermediate and high speeds, and

4) must reproduce the observed high-speed weave charac-

teristics of modern high-performance motorcycles. 

High-powered machines with stiff frames have a ten-

dency to wobble at high speeds [40]–[42]; see “Tommy

Smith’s Wobble.” A primary motivation for studying wob-

ble and weave derives from the central role they play in

performance and handling qualities. These modes are also

associated with a technically challenging class of stability-

related road accidents. Several high-profile accidents of this

type are reviewed and explained in the recent literature

[43]. Central to understanding the relevant phenomena is

the ability to analyze the dynamics of motorcycles under

cornering, where the in-plane and out-of-plane motions,

which are decoupled in the straight-running situation,

become interactive. Consequently, cornering models tend

to be substantially more complex than their straight-run-

ning counterparts. This added complexity brings computer-

assisted multibody modeling to the fore [42], [44], [45].

In the remainder of this article, we study several contri-

butions, both theoretical and experimental, that have

played key roles in bringing the motorcycle modeling art

to its current state of maturity. Readers who are interested

in the early literature are referred to the survey paper [46],

which reviews theoretical and experimental progress up to

the mid 1980s. That material focuses almost entirely on the

straight-running case, which is now considered.

Straight-Running Motorcycle Models
An influential contribution to the theoretical analysis of the

straight-running motorcycle is given in [47]. The model

developed in [47] is intended to provide the minimum level

of complexity required for predicting the capsize, weave,

and wobble modes. This research is reminiscent of Whip-

ple’s analysis in terms of the assumptions concerning the

rider and frame degrees of freedom. In contrast to Whipple,

[47] treats the tires as force generators, which respond to

both sideslip and camber; tire relaxation is included (see

“Tire Modeling”), while aerodynamic effects are not.

A linearized model is used for the stability analysis

through the eigenvalues of the dynamics matrix, which is

a function of the vehicle’s (constant) forward speed. Two

cases are considered: one with the steering degree of free-

dom present, giving rise to the free-control analysis, and

the other with the steering degree of freedom removed,

giving rise to the fixed-control analysis. The free-control

model predicts the existence of capsize, weave, and wob-

ble modes. As with the bicycle, the capsize mode is a

slowly divergent instability of the whole vehicle, which

corresponds to the machine toppling over onto its side.

This mode is relatively unimportant because it is easily

(and subconsciously) controlled by the rider. As with the

bicycle, weave is a low-frequency (2–3 Hz) oscillation of

the whole vehicle involving roll, yaw, and steer motions,

and is well damped at moderate speeds but becomes

FIGURE 19  Root loci of the basic bicycle model with flexible frame

and relaxed sideslipping tires. The speed is varied from 0–20 m/s;

the zero-speed end is represented by a square and the high-speed

end by a diamond. The (blue) dotted loci correspond to the rigid

frame, the (black) crosses to the high frame stiffness and damping

values, and the (red) circles to the low stiffness and damping val-

ues. The properties illustrated here for the limited speed range of

the bicycle are remarkably similar to those of the motorcycle, with

its extended speed capabilities.
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FIGURE 18  Root loci of the basic bicycle model with a flexible frame.

The speed is varied from 0–20 m/s; the zero-speed end is repre-

sented by a square and the high-speed end by a diamond. The

(blue) dotted loci correspond to the rigid frame, the (black) crosses

to the high frame stiffness and damping values, and the (red) circles

to the low stiffness and damping values.
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increasingly less damped and possibly unstable at higher

speeds. Wobble is a higher frequency (typically 7–9 Hz)

motion that involves primarily the steering system. In

contrast to the bicycle study presented in this article, [47]

predicts that the wobble mode is well damped at low

speeds, becoming lightly damped at high speeds.

In particular, the study shows that tire relaxation is an

important contributor to the prediction of wobble and the

quantitative characteristics of high-speed weave. The influ-

ences of parameter variations on the vehicle’s dynamic

behavior are also studied, and the results obtained are for

the most part aligned with the behavior of vehicles of the

time. Of particular importance is the predicted influence of

the steering damper on the wobble-mode damping and the

destabilizing effect that the damper has on the weave mode.

The positive effect of moving the rear frame mass center for-

ward, the critical impact on stability of the steering-head

angle, the mechanical trail, and the front frame mass center

offset from the steering axis are also demonstrated. A recur-

ring theme is the need to find compromises under varia-

tions in these critical parameters.

Leaving briefly the constant-forward-speed case, [48]

represents the first attempt to study the effects of accelera-

tion and deceleration on the stability of motorcycles. A

rather simple approach, in which the longitudinal equation

of motion is decoupled from the lateral equations, gives the

longitudinal acceleration as a parameter of the lateral

motion. The acceleration parameter contributes to longitudi-

nal inertia forces, which are included in standard stability

computations. Such computations lead to some tentative

conclusions, which depend on knowledge of the influence

of loading on tire force and moment properties. More recent

results [49], which are based on a higher fidelity model, are

not supportive of the conclusions given in [48]. In [49], it is

found that braking and acceleration have little influence on

the frequency and damping of the weave mode. It is also
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T
ommy Smith was born in 1933. He started riding motorized bicy-

cles at the age of 13 and was racing motorcycles professionally

by the age of 17. In 1952, Tommy had the opportunity to ride a

modified 650 cc Triumph Thunderbird at the Bonneville Salt Flats in

Utah, United States. At that time, fuel (as opposed to gasoline)

motorcycles used about 70% methanol and 30% nitro methane;

crankcase explosions occurred when higher nitro percentages were

tried. To further increase the motorcycle’s engine power, the cylin-

der head was reversed, so that the intake ports were pointing for-

ward to achieve a ram air effect. This engine configuration made it

impossible to sit on the machine in a conventional manner. For this

reason, the motorcycle was fitted with a plywood board for the rider

to lie prone on. Leathers were heavy and uncomfortable and so

Tommy rode the bike wearing a fiberglass helmet, goggles, tennis

shoes (with socks), and a Speedo bathing suit (see Figure D).

On the first high-speed run, the machine produced an eerie

“floating” sensation that was probably the result of a veneer of

loose salt on the running track combined with a lightly loaded

front wheel, resulting from the high speed and unusual riding

position. Engine revolution and speed measurements taken at

the time suggested that there was approximately 4.5 m/s of lon-

gitudinal tire-slip velocity. An accompanying lateral drifting phe-

nomenon had to be corrected with small handlebar inputs that

were required every 5–10 s. The need for continuous steering

corrections may have also been associated with an unstable

capsize mode with an unusually large growth rate and the lack

of constraint between the rider and machine, both related to the

riding position. Detailed calculations relevant to the situation

described have not been carried out, so far as the authors are

aware. The official one-way speed achieved was 147.78 mi/h,

which was not to be exceeded by a 650-cc-motorcycle rider for

another ten years. 

On 25 August 1952, Tommy made his third high-speed run.

Everything started normally—the floating sensation was the same

as it had been on previous tests. Suddenly, the motorcycle went

into a high-speed wobble and Tommy held tightly onto the handle-

bars to prevent himself from falling off. After a period of 3–5 s, the

wobble was so violent that Tommy “hit the salt” and slid through

the first 1/10 mi speed trap at an official speed of 139 mi/h. The

speed of the motorcycle was not recorded! Although the motorcy-

cle was only slightly damaged, Tommy’s abrasion injuries were

severe enough to keep him out of the Korean War. At the time, it

was suggested that Tommy’s light weight contributed to the

motorcycle’s instability, because heavier riders did not experience

wobble at similar speeds. This suggestion that light riders might

be prone to instability has been investigated by computer simula-

tion studies [43]. The mobility of the rider relative to the motorcy-

cle, as well as his rearward positioning, which led to a reduction in

the front wheel load, are likely to have been important influences

on the machine problem treated above.

FIGURE D  24 Modified Triumph Thunderbird. Tommy Smith riding

a modified 650-cc Triumph Thunderbird at the Bonneville Salt

Flats in Utah. Note the forward-facing air intake ports.

Tommy Smith’s Wobble



concluded in [49] that descending a hill or braking have a

substantial destabilizing effect on the wobble mode. Con-

versely, the wobble-mode damping increases substantially

under acceleration or ascending an incline, for small pertur-

bations from straight running. An open issue is the influ-

ence of acceleration or braking on a cornering machine.

Tire Modeling
Modeling the generation of shear forces and moments by

pneumatic tires has been approached in various ways, which

recognize the physics of the situation in more or less detail. At

one extreme, physical models [50]–[52] contain detailed

descriptions of the tire structure and the tread-ground interac-

tions, while, at the other, empirical formulas [50]–[53] come

from fitting curves to measured data. In the middle ground,

simple physical models provide good representations of the

basic geometry and the distributed tire-ground rolling contact.

The detailed models are effective in terms of accuracy and

range of behavior covered but are computationally demand-

ing to use. Contemporary high-fidelity models, which can be

used over a wide variety of operating conditions, are almost

exclusively of the empirical variety. An overview of many of

these ideas in the context of car tires is given in [51].

The basis for contemporary tire models are magic formu-

las [51], [53]–[55], which are empirical models favored for

their ability to accurately match tire force and moment data

covering a full range of operating conditions. The original

development was for car tires [56], in which context magic

formula models are now dominant. These models describe

the steady-state longitudinal forces, side forces, aligning

moments, and overturning moments as functions of the lon-

gitudinal slip, sideslip, camber angle, and normal load. The

extension of magic formula ideas to motorcycle tires is rela-

tively recent, with substantial changes needed to accommo-

date the changed roles of sideslip and cambering in the

force and moment generation process. When finding the

parameters that populate the magic formulas, constraints

must be placed on the parameter set to ensure that the tire

behavior is reasonable under all operating conditions, some

of which may be beyond those used in the parameter identi-

fication process. Although limited tire-parameter informa-

tion can be found in the literature, models can be

augmented with available experimental force and moment

data. A full set of parameters for modern front and rear

high-performance motorcycle tires can be found in [42].

Additional data are available in [51], [53]–[55], and [57]–[60]. 

Aerodynamic Forces
The importance of aerodynamic forces on the performance

and stability of high-powered motorcycles at high speeds

was demonstrated in [61]. Wind tunnel data were obtained

for the steady-state aerodynamic forces acting on a wide

range of motorcycle-rider configurations. It appears from

the results in [61] that the effects of aerodynamic side forces,

yawing moments, and rolling moments on the lateral stabil-

ity of production motorcycles are minor. However, the drag,

lift, and pitching moments contribute significantly to

changes in the posture of the machine on its suspension and

also to the tire loads. Aiming to explain the high-speed

weave stability problem, [61] introduces these aerodynamic

effects into the model of [47] using aerodynamic parameters

corresponding to a streamlined machine. These results yield

the conclusions that aerodynamic effects lead to only minor

changes in the wobble mode and that high-speed weave dif-

ficulties cannot be attributed entirely to steady-state aerody-

namic loading. As a result, it is postulated in [61] that the

problem may involve nonsteady aerodynamic influences. To

fully appreciate aerodynamic effects, it is necessary to

employ a state-of-the-art model that includes the suspension

system as well as tire models that recognize the influences

of load changes. In such models [44], the aerodynamic drag

and lift forces and the pitching moments are represented as

being proportional to the square of the speed.

Structural Flexibility
Motivated by the known deterioration in the steering behavior

resulting from torsional compliance between the wheels, [62]

extends the model of [47] by allowing the rear wheel to cam-

ber relative to the rear frame. This freedom is constrained by a

parallel spring-damper arrangement. It was found that

swingarm flexibility had very little influence on the capsize

and wobble modes, but it reduced the weave mode damping

at medium and high speeds. The removal of the damping

associated with the swingarm flexibility made no material dif-

ference to these findings. The results indicate that a swingarm

stiffness of 12,000 N-m/rad for a high-performance machine

would bring behavior approaching closely that for a rigid

frame. Product development over the last 30 years has clearly

involved substantial stiffening of the swingarm structure,

such that most contemporary designs are probably deep into

diminishing returns for additional stiffness.

Experimental work [63]–[66] shows that the theory

existing at the time overpredicted the wobble-mode damp-

ing at moderate speeds, at which the damping is often

quite small. In particular, [65] associates the low medium-

speed-wobble damping with front fork compliance and

shows improved behavior from stiffer forks. It is also

shown in [65] that stiffening the rear frame with additional

structures increased the damping of the weave mode.

The discrepancy between theory and experiment, mainly

with respect to the damping of the wobble mode and its

variation with speed, is substantially removed by the results

of [40] and [41], where mathematical models were extended

to include front frame compliances. In particular, [40]

employs three model variants A, B, and C. The A model

allows the front wheel to move laterally along the wheel

spindle. The B model allows torsional compliance in the

front frame about an axis parallel to the steer axis, while the

C model allows twisting of the front frame relative to the

rear frame about an axis perpendicular to the steering axis.
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In each case, the new compliance involves a parallel spring-

damper arrangement. The parameters from four different

large production motorcycles are used. The following con-

clusions are drawn. 1) The torsional freedom parallel to the

steering axis makes very little difference to the results

obtained from the stiff-framed model. 2) The front-wheel

lateral compliance results in a decrease in the wobble-mode

damping, but the associated speed dependence is not sup-

ported by experiment. This flexibility also results in

improved weave-mode damping at moderate speeds but

worsens it for high speeds, which is where it matters. It is

suggested that the lateral stiffness should be made large but

that such stiffening brings diminishing returns beyond an

intermediate stiffness level. 3) The C-model freedom leads

to the prediction of the observed intermediate-speed low

damping of the wobble mode, with higher damping at high

speeds deriving from the frame compliance. Thus, the com-

pliance may to some extent contribute to good behavior. In

an independent study, [41] confirms the findings described

above. Apart from varying the torsional stiffness, the effect

of changing the height of the lateral fork bending joint was

also examined. The analysis concluded that the lateral bend-

ing of the front fork should be reduced by stiffening and

that the bending axis should be located as close to the pave-

ment as possible. It also concluded that the “best” front-

wheel suspension system should be designed to have high

lateral stiffness without being excessively heavy.

Measured static torsional stiffness data for motorcycle

frames are given in [58] and [67]–[69], while [68] and [69]

also include the results of dynamic testing. Stiffnesses for

large motorcycles from the past apparently lie in the range

of 25,000–150,000 N-m/rad, where the influence on stabili-

ty properties is marked. Predicting the wobble mode prop-

erly and understanding the need for a steering damper

depend on accounting for frame torsional compliance in

the steering-head region and lateral fork bending.  

This frame flexibility work is consolidated in [70], where

a motorcycle model is developed for straight-running stud-

ies with design parameters and tire properties obtained

from laboratory experiments. The model constituents are, in

addition to those given in the earlier model [47], lateral and

frame twist flexibilities at the steering head, a flexibility of

the rear wheel assembly about an inclined hinge, a roll free-

dom associated with the rider’s upper body, in-plane aero-

dynamic effects, and more elaborate tire modeling.

Hands-on and hands-off cases are presented, and the results

are in agreement with empirical observations and experi-

mental findings of [71]. The results show the advantage that

can be derived in respect of the weave mode damping from

a long wheelbase and a large steering-head angle. The

model of [70] was subsequently rebuilt using a modern

multibody simulation package [72], confirming the original.

In the context of contemporary high-performance machines,

the only frame flexibility deemed to be important is that

associated with the steering head and front forks [42], [44].

Rider Modeling
In early motorcycle and bicycle models, the rider is consid-

ered to be no more than an inert mass rigidly attached to the

rear frame [17], [47]. In [57] and [58], the rider’s lower body is

represented as an inert mass attached to the rear frame, while

the upper body is represented as an inverted pendulum that

has a single roll freedom constrained by a parallel spring-

damper arrangement. The parameter values come from sim-

ple laboratory experiments, which show that values can vary

significantly from rider to rider [73]. This single-degree-of-

freedom inverted pendulum rider model is also used in [70]. 

The straight-running stability of a combined motorcy-

cle rider model, which focuses on the frame flexibilities

and the rider’s dynamic characteristics, is studied in [73].

This 12-degree-of-freedom model includes two rider free-

doms. The first is associated with the rolling motion of the

rider’s upper body, while the second allows the rider’s

lower body to translate laterally relative to the motorcy-

cle’s main frame. Both bodies associated with the rider are

restored to their nominal positions by linear springs and

dampers. The system parameters are found experimental-

ly, and the rider data, in particular, is measured by means

of forced vibration experiments, whereby the frequency

responses from vehicle roll to rider body variables are

obtained. The frequency and damping ratios of the wob-

ble and weave modes are calculated at various speeds and

compared with results obtained from experiments con-

ducted with four motorcycles covering a range of sizes. A

model without rider freedoms (a reduction of two degrees

of freedom) is used for comparison. In general terms,

there is very good agreement between the experimental

results for each of the four machines and the detailed

model, with a tendency for the measured damping factors

to be a little greater than those predicted.

The effect of individual rider parameters on the rider-

motorcycle system stability is also investigated analytical-

ly. It is found that the rider’s vibration characteristics

influence both wobble and weave. The parameters of the

rider’s upper body motion are most influential on weave,

while those concerned with the rider’s lower body primar-

ily influence the wobble mode.

The role of the rider as an active controller is studied in

some detail in [74], where it is recognized that inadvertent

rider motions can have a significant influence on the vehi-

cle’s behavior. The focus of [74] is to treat the rider as a feed-

back compensator that maps the vehicle’s roll angle errors

into a steering torque, where the controller’s characteristics

are chosen to mimic those of the rider’s neuromuscular sys-

tem. The rider is modeled (roughly) as being able to control

his upper body roll angle as well as the steering torque; the

steering torque influence is found to be dominant.

A motorcycle rider model similar to that studied in [73] is

investigated in [75] to find those aspects of the rider’s control

action that are most important in the description of single-

lane-change maneuvering behavior. In this case, the rider
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model comprises upper and lower body masses that are both

free to roll relative to the motorcycle’s main frame. The rider is

assumed to generate three control torques that are applied to

the steering system from the rider upper body, the upper

body from the lower body, and the lower body from the rear

frame. The rider representation, which plays the role of a feed-

back controller tasked with tracking a heading, is as a propor-

tional controller. Simulations for a single-lane-change

maneuver are compared with measurements generated by 12

different riders.  The results show that, for a running speed of

17 m/s, a good match can be obtained between the simulation

model with suitably chosen controller parameters and the

measured responses of the different riders. The results also

suggest that the most important control input is the steering

torque. While it is possible to control the motorcycle with

lower body lean movement, much larger torques are required

in this case. Normally, lower body control is utilized to assist

steering torque control, while the upper body is controlled

only to keep the rider in the comfortable upright position.

A complex rider model that comprises 12 rigid bodies

representing the upper and lower body, the upper and

lower arms, and the upper and lower legs, with appropri-

ate mass and inertia properties is introduced in [76]. The

various rider model masses are restrained by linear

springs and dampers so that rider motions such as steer-

ing, rolling, pitching, weight shifting and knee gripping

are possible. Rider control actions associated with these

degrees of freedom are also modeled using proportional

control elements. Steady-state cornering and lane-chang-

ing maneuvers are studied.

Suspension and Cornering Models
Under steady-state cornering it is clear that a motorcycle’s

forward speed, yaw rate, lateral acceleration, and lean angle

are constant, while the suspension posture of the machine,

the tire force system, and the aerodynamic forces are all

functions of the lean angle. Essential components of high-

fidelity cornering models include [44]: 1) a rigid rear frame,

which has six degrees of freedom; 2) a front frame joined to

the rear frame using an inclined steering system with a com-

pliance included between the steering head and the rear

frame; 3) spinning road wheels, which include thick profiled

tire descriptions, where the dynamic migration of the road-

tire ground contact point under cornering is modeled; 4) an

elaborate tire force and moment representation informed by

extensive measurements; 5) lag mechanisms by which tire

forces are delayed with respect to the slip phenomena that

produce them; 6) aerodynamic effects, which allow the tire

loads and machine posture to be properly represented under

speed variations; 7) a realistic suspension model; and 8) the

freedom for the rider’s upper body to roll relative to the rear

frame of the vehicle. The accuracy of predicted behavior

depends not only on effective conceptual modeling and

multibody analysis but also on good parameter values.

The in-plane modes present under straight-running con-

ditions are shown in Figure 20; similar plots can be found

in [44]. The in-plane modes that are associated with the sus-

pension and tire flexibilities are referred to as the front

suspension pitch mode, the rear suspension pitch mode,

the front wheel-hop mode, and the rear wheel-hop mode.

These modes are insensitive to speed variations and are

decoupled from the out-of-plane modes described above.

The cornering situation is considerably more complex

than the straight-running case, since the in-plane and out-of-

plane motions are coupled and these interactions tend to

increase with roll angle. As a consequence, several straight-

running modes merge together to form combined cornering

modes with the particular characteristics shown in the right-
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FIGURE 20  Motorcycle root locus plots: (a) straight-running and (b) 30° of roll angle with speed the varied parameter. The speed is increased

from (a) 5 m/s (�), (b) 6 m/s (�) to 60 m/s (⋆). 
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hand root locus plot in Figure 20. Cornering weave is simi-

lar in frequency to straight-running weave at high speeds,

but for the machine studied here, the weave-mode damping

decreases as the lean angle increases. The suspension sys-

tem contributes significantly to the machine characteristics,

as observed experimentally. The influence of suspension

damping on the weave mode is demonstrated both analyti-

cally and experimentally in [66] and [77]. Under cornering,

the wobble mode involves suspension movement, and the

previously speed-independent suspension-pitch and wheel-

hop modes now vary markedly with speed. An interaction

between the front wheel-hop and wobble modes occurs

when the two modes are close enough in terms of natural

frequency. This interaction is possibly linked to wheel patter,

which is known anecdotally [78]. The coupling of the in-

plane and out-of-plane motions also suggests the possibility

of road excitation signals being transmitted into the lateral

motions of the vehicle, causing steering oscillations [43].

The early literature [77] discusses the existence of a

modified weave mode that occurs under cornering condi-

tions, where the suspension system plays an important role

in its initiation and maintenance. To investigate the effect of

suspension damping on cornering weave, [77] benchmarks

several front and rear suspension dampers in laboratory

experiments and riding tests. Motorcycle stability is found

to be sensitive to suspension damping characteristics, while

cornering weave instability is to some extent controllable

through rear suspension damper settings. As stated in [77],

“. . . slight road surface undulations exacerbate the problem,

which is generally confined to speeds above 60 mph and

roll angles in excess of 25 deg from pavement-perpendicu-

lar . . . ”. It is also found that, as the speed is increased, cor-

nering weave is produced at smaller roll angles. A separate

study [79] demonstrates, using a simple analysis, the possi-

bility of interaction between pitch and weave modes at

high speeds, where the lightly damped weave-mode natur-

al frequency approaches that of the pitch mode. Although

for straight running the coupling of in-plane and out-of

plane motions is weak, for steady-state cornering the cou-

pling between the two modes increases with increased roll

angle, indicating that the inclusion of pitch and bounce

freedoms in motorcycle models is essential for handling

studies involving cornering.

Cornering experiments described in [66] quantify the

influences of various motorcycle design parameters and

operating conditions on wobble and weave. Tests with a

range of motorcycles and riders are carried out for both

straight running and steady-state cornering. The wobble

mode, which is excited by a steering torque pulse input

from the rider, is seen to be self-sustained during hands-

off straight running at a moderate speed of 18 m/s; the

measured wobble frequency is 5.4 Hz, which is lower than

the theoretical prediction. More importantly, under steady-

state cornering, measurements of cornering weave

responses at 27 m/s, involving oscillations in the suspen-

sion system, indicate a frequency of 2.2 Hz, while at 36

m/s the frequency is 2.6 Hz. It is also found that the weave

oscillations die out once the rider reduces the roll angle.

Further, [66] also demonstrates that reduced rear suspen-

sion damping, increased rear loading, and increased speed

increases the tendency for the motorcycle to weave. As

predicted by theory, the frequency of wobble varies little

with speed, while that of weave increases with speed.

Significant steps in the theoretical analysis of motorcycle

behavior are documented in [57] and [58]. The model devel-

oped considers small perturbations about straight-running

conditions but also for the first time about steady-cornering

conditions. The model in [57] is used to calculate the eigen-

values of the small-perturbation linearized motorcycle,

where the results for straight running are consistent with

the conventional wisdom. The way the weave- and wobble-

mode characteristics are predicted as varying with speed is

conventional, with new front- and rear-suspension pitch

and wheel-hop modes almost independent of speed appear-

ing. Under cornering conditions, the interaction of these

otherwise uncoupled modes produces more complicated

modal motions. The cornering weave and combined wheel-

hop/wobble modes are illustrated, and root loci are plotted

to observe the sensitivity of the results to parameter varia-

tions. Surprisingly, it is predicted that removing the suspen-

sion dampers hardly affects the stability of the cornering

weave mode, contrary to the experiences of [66] and [77].

One of the original aims of [44] is to investigate the

apparent conflict between the results of [80] on the negligi-

ble influence of suspension damping on the stability of

cornering weave and the anecdotal and experimental evi-

dence of [66] and [77]. Cornering root loci with the rear

suspension damping varied are reproduced and the damp-

ing is found to have a significant influence, indicating a

probable error in the calculations in [80]. The model pre-

sented in [44] is enhanced in [42] to include magic formula

tire models with the additional features included in [81]. 

The influence of the front suspension system on the ride

qualities of a motorcycle is studied in [82]. A typical suspen-

sion unit is modeled on the basis of its inner structure and

functionality, which give rise to the spring forces, viscous

damping forces, friction forces, and oil lock forces. Sine-wave

excitation experiments show that the model represents the unit

accurately. Further experiments are conducted, this time to

check the validity of the fork unit model combined with a sim-

plified motorcycle model that comprises the vertical and longi-

tudinal dynamics. The results obtained for riding over bumps

and under braking agree with measurements. The influence of

the suspension characteristics on riding qualities of the vehicle

are found by simulation; experiments verify the findings.

Experimental cornering results obtained from an instru-

mented motorcycle are presented in [83]. The motorcycle is

fitted with steering torque and angle transducers. Fiber-

optic gyros are used to measure the roll rate and yaw rate,

and strain gauges provide tire force and moment data.
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This paper provides experimental data that are used for

model qualification. 

A study of the effects of road profiling on motorcycle

steering responses is presented in [43]. The results show that

under cornering conditions, regular low-amplitude road

undulations that would not trouble four-wheeled vehicles

can be a source of considerable difficulty to motorcycle rid-

ers. At low machine speeds, the wobble and front suspen-

sion pitch modes are likely to respond vigorously to

resonant vertical-displacement road forcing, while, at higher

speeds, the weave and front wheel-hop modes may be simi-

larly affected. Connections between resonant responses and

a class of single-vehicle loss-of-rider-control accidents are

postulated. This work has several practical consequences.

First, these results appear to explain the key features of many

stability-related road traffic accidents reported in the popu-

lar literature and help to show why motorcycles that behave

perfectly well for long periods can suddenly suffer serious

and dangerous oscillation problems. Such oscillations are

likely to be difficult to reproduce and study experimentally.

Second, road builders and maintainers, as well as motorcycle

manufacturers, should be aware of the possibility of strong

resonant responses to small but regular undulations under

certain critical running conditions. These conditions are char-

acterized by the machine speed, the lean angle, the rider’s

mass and posture, and the road profile wavelength.

CONCLUSIONS

Research and scholarship relating to single-track vehicles

involves, to a large extent, two separate communities that

can benefit from a higher level of interaction. One group

favors the use of simple bicycle models, while the other is

concerned with high-performance motorcycles and the

development of models with a high level of quantitative

predictive capability over a wide operating envelope.

The simple models can be regarded as derivatives or

simplifications of Whipple’s model. In these models, the

lateral motion constraints at the road contact are nonholo-

nomic and thus special techniques may be needed to form

correct equations of motion. When the tire is regarded as

constraining the motion of the vehicle, the model validity

is restricted to low speeds (<10 m/s), low frequencies

(<1.0 Hz), and low tire-force utilization associated with

benign maneuvering (<20% of capacity).

The model of Timoshenko and Young [29] represents the

lowest level of complexity of any potential usefulness; their

model has no rake, no trail, no inertias, no front frame mass,

and a point-mass representation of the rear frame. The Tim-

oshenko-Young model leads one to conclude that the steer

angle and speed completely determine the lateral motion of

the base point of an inverted pendulum that represents the

vehicle’s roll dynamics. In terms of understanding single-

track vehicle steering, this level of modeling complexity is

too low, since unrealistic steer angle control must be accom-

modated. The self-steering influences, which are vital to the

operation of a real single-track vehicle, are completely

absent. Nevertheless, steer-displacement control inputs that

allow a prescribed path to be followed while the rolling

motion is properly stabilized have been optimized on sim-

ple Timoshenko-Young-type models and applied to sophis-

ticated machine models with some success.

Whipple’s model, when linearized for constant-speed

straight running, yields two second-order equations of

motion in rolling and steering. The Whipple model, while

simple enough for control system optimization studies,

contains a sufficient level of physical realism to make it

credible. Physical influences deriving from the vehicle’s

design can be seen to combine in complex ways to give an

effective steering inertia, steering damping, and steering

stiffness. The Whipple model also provides an appreciation

of the complex interactions between the roll angle, roll

velocity, and roll acceleration, and the steering torque. Lin-

ear versions of Whipple-type models are useful for explain-

ing nonminimum phase responses, the benefits of feedback,

and achievable robustness margins in single-track vehicles. 

In models of the Timoshenko-Young type, the roll dynam-

ics are driven kinematically by the steer angle, the steer veloc-

ity, the steer acceleration, and the vehicle acceleration inputs.

The advantage of these models is that considerable insight

into the stability and steering control of single-track vehicles,

within the model applicability boundaries, can be gained

from their separable design parameter influences. Although

such insights cannot easily be developed by referring to the

numerical results derived from more complex models, com-

prehensive models surely have their place in enabling effec-

tive virtual product design and testing across the full

operating envelope. The essential features of modern motor-

cycle design models include: 1) multiple rigid bodies and a

complex set of allowed motion freedoms; 2) detailed tire force

and moment models, incorporating static behavior up to and

possibly beyond the tire saturation limits, as well as transient

behavior; 3) case-dependent frame and rider compliances; 4)

suspension systems; 5) aerodynamic forces and moments;

and 6) detailed geometric models for accurately describing all

of the external forces. When motorcycles are ridden “on the

limit,” the stability and performance of the machine are

restricted by the properties of the tires, the suspension setup,

the weight distribution, the frame stiffness properties, and the

steering damping. A practical virtual design and testing facil-

ity must be able to accurately predict every feature of this

limit behavior. 

In relation to trajectory tracking on the boundaries of

the vehicle’s capability—essentially the racing problem—it

is clear that performance is limited by tire force saturation

and transient dynamics, among other things. It appears to

be a considerable act of faith to regard the ultimate perfor-

mance as calculable on the basis of nonholonomic rolling

constraints! In the future, we hope to see more elaborate

models, of the motorcycle-fraternity type, applied to mini-

mum lap time and optimal-trajectory tracking problems.
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Complexity-related difficulties, implicit in comprehensive
motorcycle modeling activities, are an exciting opportunity,
rather than a threat to be feared and avoided. Indeed, the
thoughtful use of powerful multibody modeling tools makes
routine the study of problems that would have been deemed
intractable only a decade ago. The challenges facing modelers
include a systematic approach to removing redundancy in
nonlinear models and the retention of key insights, which tend
to be obscured or even destroyed, in model reduction exercis-
es. The challenges facing control theorists include: 1) the devel-
opment of general theories for reducing complex nonlinear
models that guarantee the reduced-order model’s dynamic
fidelity; 2) removing assumptions that currently make general
control theories inapplicable to nonlinear mechanics problems,
and 3) the parallel development of computational platforms
that support complex controller synthesis applications.
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