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The following Appendix provides additional details about the data and estimation pro-

cedures used in the paper. Tables A1-A3 summarize the bidding behavior of the top 20

firms in our sample, the number of participants in each auction, and the distribution of

these auctions over time. The next two tables present information about our use of in-

struments in the reduced form regressions of bids on contract characteristics and ex post

changes. Specifically, in Table A4, we present F-statistics from first-stage regressions

of the instruments. Table A5 demonstrates the robustness of our results by comparing

model specifications that instrument for different subsets of the potentially endogenous

variables. A final section describes in detail the procedure used to obtain the structural

estimates. This section also includes Table A6, which presents results for alternative

specifications of the first-stage recovery of the bid distributions using fixed effects and

random effects to control for unobserved auction heterogeneity.
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Table A1: Bidding Activities of Top 20 Firms 

ID No. of 
Wins 

Total Bid for 
Contracts 
Awarded 

Final Payments 
on Contracts 

Awarded 

No. of 
Bids 

Entered 

Participation 
Rate 

Conditional on Bidding for a Contract 

Average Bid Average 
Engineer's 
Estimate 

Average 
Distance 
(Miles) 

104 160 554,232,998 616,115,118  484 59.1% 3,395,548  3,379,604  133.3 
75 15 233,245,265  267,245,145  42 5.1% 10,607,480  10,894,612  81.9 

135 7 121,048,703  102,084,697  54 6.6% 13,769,467  13,414,968  441.0 
244 23 87,147,853  94,787,509  73 8.9% 3,932,621  3,721,600  58.3 

12 34 72,495,433  72,215,257  73 8.9% 2,201,216  2,377,883  31.8 
262 24 72,088,982  76,124,748  101 12.3% 2,806,625  2,830,655  215.4 
125 16 57,970,813  62,164,914  74 9.0% 3,236,709  3,030,180  81.5 
147 1 52,666,668  53,890,666  5 0.6% 19,007,185  19,037,046  86.0 
251 23 48,605,745  51,533,241  38 4.6% 1,990,136  2,126,489  46.3 
107 21 43,852,728  45,655,279  59 7.2% 2,609,335  2,688,572  53.3 

23 17 41,695,376  46,204,955  67 8.2% 3,123,777  2,886,551  67.1 
410 1 33,092,725  36,268,057  1 0.1% 33,092,725  28,181,000  141.0 
237 22 31,916,930  31,053,539  80 9.8% 2,094,049  2,065,371  69.7 
265 4 26,786,493  26,426,965  9 1.1% 7,283,186  7,406,581  234.5 
186 17 26,566,823 27,995,110 53 6.5% 1,621,933 1,630,168  48.2 
234 6 24,883,692  27,841,209  24 2.9% 2,189,430  2,001,743  166.2 
162 17 23,556,856  25,487,495  39 4.8% 1,358,393  1,427,103  61.9 
126 8 23,454,933  23,719,853  46 5.6% 1,597,387  1,633,259  69.7 

25 2 23,118,363  25,627,033  13 1.6% 4,954,998  4,913,823  44.5 
141 13 22,904,644  24,262,589  57 7.0% 2,644,021  2,515,985  61.4 

 
 
 

Table A2: Bid Concentration Among Contracts Awarded to Lowest Bidder 
Number of Bidders 2 3 4 5 6 7 8 9 10 11+ Total 
Contracts in 1999 21 47 36 30 11 8 4 2 3 0 162 
Contracts in 2000 30 45 49 43 30 21 6 12 6 7 249 
Contracts in 2002 13 13 12 24 14 21 5 4 2 2 110 
Contracts in 2003 2 9 6 5 2 1 1 0 0 1 27 
Contracts in 2004 21 32 31 19 9 7 4 2 2 0 127 
Contracts in 2005 46 38 34 7 8 6 5 0 0 0 144 

 
 

Table A3: Project Distribution throughout the Year 
Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 
Contracts in 1999 13 11 19 12 18 18 24 20 13 4 8 2 
Contracts in 2000 12 14 23 36 16 26 10 39 24 21 20 8 
Contracts in 2002 4 8 11 19 24 11 7 2 14 3 7 0 
Contracts in 2003 0 0 0 0 0 0 2 8 5 4 2 6 
Contracts in 2004 2 8 15 29 33 6 6 10 7 7 3 1 
Contracts in 2005 4 10 24 26 23 17 5 6 10 10 5 4 
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Table A4: First-Stage Results Testing Instrument Quality 
Endogenous Variable First Stage F-Stat 

Positive Adjustments 23.38 
Negative Adjustments 9.22 
Extra Work 4.79 
Deductions 5.53 
CCDBOverrun 31.96 
 
Number of Observations 

 
3661 

The five categories of ex post changes are each normalized by a measure of project 
size, actqb ⋅ . These suggest that the resident engineer’s identity is only strongly 
correlated with positive adjustments and the dollar overrun on itemized tasks, but 
weakly correlated with extra work and deductions. 

 
 

Table A5: Bid Function Regressions Using Actual Quantities Instead of Estimates 
Variable IV. VII.  V. VIII.  VI. IX.  
DISTi 0.0221 0.0217 0.0220 0.0089 0.0089 0.0089 0.0123 0.0119 0.0121 

(5.94) (5.85) (5.94) (3.61) (3.61) (3.61) (4.98) (5.32) (5.31) 
RDISTi 0.0353 0.0347 0.0355 -0.0013 -0.0013 -0.0013 0.0131 0.0116 0.0123 

(3.41) (3.24) (3.43) (-0.15) (-0.15) (-0.15) (1.83) (1.57) (1.69) 
FRINGEi -0.00004 0.0001 0.0004 0.034 0.034 0.034 0.0293 0.0297 0.0297 

(-0.00) (0.02) (0.04) (6.46) (6.46) (6.46) (5.59) (5.32) (5.32) 
Number of 

Bidders 

0.0058 0.0062 0.0062 0.0024 0.0030 0.0028 -0.0032 -0.0026 -0.0028 
(1.11) (1.21) (1.19) (0.47) (0.58) (0.55) (-0.80) (-0.73) (-0.78) 

NPosAdj 0.8032 0.8758 0.8815 0.8190 0.9044 0.9166 0.7712 0.9194 0.9319 
(5.89) (3.87) (3.92) (5.85) (3.82) (3.89) (6.39) (4.67) (4.76) 

NNegAdj -1.7988 -1.6894 -1.8365 -1.7367 -1.5647 -1.7848 -1.8894 -1.5473 -1.9697 
(-2.23) (-1.78) (-2.25) (-2.24) (-1.72) (-2.27) (-2.25) (-1.62) (-2.87) 

NEX 0.1644 0.2234 0.1644 0.1647 0.2261 0.1647 0.1559 0.2089 0.1558 
(1.74) (1.64) (1.76) (1.77) (1.66) (1.79) (1.79) (2.49) (3.52) 

NDED -1.0231 -1.7460 -0.9932 -1.3268 -2.4838 -1.2893 -0.9580 -2.2187 -0.9337 
(-1.31) (-0.99) (-1.28) (-1.84) (-1.30) (-1.80) (-1.46) (-1.58) (-1.22) 

NOverrun 0.0057 0.0065 0.0066 0.0059 0.0068 0.0069 0.0054 0.0070 0.0071 
(5.46) (3.72) (3.79) (5.46) (3.70) (3.78) (5.76) (3.94) (4.04) 

Constant 0.9054 0.8967 0.9015 -0.0518 -0.0628 -0.0564 0.9556 0.9443 0.9480 
(31.74) (29.73) (31.30) (-1.91) (-2.17) (-2.06) (44.80) (44.59) (46.82) 

Project Effects None None None Fixed Fixed Fixed Random Random Random 
Instruments None Resident 

Engineer 
Resident 
Engineer, 
only for 

NPosAdj, 
NOverrun 

None Resident 
Engineer 

Resident 
Engineer, 
only for 

NPosAdj, 
NOverrun 

None Resident 
Engineer 

Resident 
Engineer, 
only for 

NPosAdj, 
NOverrun 

R2 0.0738 0.0712 0.0732 0.7621 0.7621  0.0599 0.0577 0.0581 
Num. of Obs. 3661 3661 3661 3661 3661 3661 3661 3661 3661 

This table reproduces six of the columns from Table 7 in the body of the paper.  An additional column has been added for each of 
the no/fixed/random effects specifications, showing the estimates when we only instrument for NPosAdj and NOverrun where 
instrument strength is not an issue.  Note the similarity in our estimates across specifications.  As with Table 7, the dependent 
variable for all nine regressions is the vector product of the unit price bids and the actual quantities, divided by a measure of the 
project size ( bqact ⋅ ). Cluster-robust standard errors are used to compute t-Statistics, shown in parentheses.  NOverrun is a 
measure of the quantity-related overrun on standard contract items, calculated as the vector product of the CCDB prices (where 
available) and the difference between actual and estimated quantities. 
 



A Details on the Structural Estimation

Our structural approach uses a two-step semiparametric estimator that builds on those dis-

cussed in Elyakime, Laffont, Loisel, and Vuong (1994) and Guerre, Perrigne, and Vuong

(2000).1 In the first step, we estimate the density and the CDF of the bid distribution for

project n, denoted by h
(n)
j and H

(n)
j respectively. In the second step, we use those estimates

in a GMM estimator based on the first-order conditions in Equation (4). This allows us to

recover the adjustment cost coefficients, τa+, τa−, τd, and τx, along with a specific form of

the penalty from skewed bidding captured by the parameter σ.

Step 1: Estimating Bid Distributions

Because the bidder’s payoff function contains expectations of the probability that his

bid is the lowest, the first-order conditions will contain the density and CDF of the bid

distributions. Specifically, we are interested in an estimate for∑
j 6=i

h
(n)
j (b

(n)
i · qe,(n))

1−H(n)
j (b

(n)
i · qe,(n))

−1 (1)

for each contract n and each bidder i. As we note in the paper, we cannot recover fully

nonparametric estimates of these distributions while still controlling for important measures

of firm-specific and auction-specific heterogeneity. Instead we use the following semipara-

metric approach that “homogenizes” the submitted bids from all firms and all contracts,

and uses the homogenized bids to consistently estimate the underlying distribution of firm

valuations.

First, we regress the normalized bid on the firm’s distance and a fringe indicator, allowing

for project-specific random effects:

b
(n)
j · qe,(n)

b
(n) · qe

= x
(n)
j ′µ+ u(n) + ε

(n)
j

where x
(n)
j includes the bidder’s distance to the job site and an indicator for whether the

bidder is a fringe firm (with less than 1% of the value of contracts awarded). Let ε̂
(n)
j denote

the fitted residual from this regression:

ε̂
(n)
j =

b
(n)
j · qe,(n)

b
(n) · qe

− x(n)′j µ̂− û(n)

1This approach is detailed in the Athey and Haile (2007) chapter of the Handbook of Econometrics, and
similar versions are applied in Krasnokutskaya (2011) and Shneyerov (2006).
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These residuals are assumed to be iid with distribution GN (·), where N indexes the distri-

bution by the number of bidders in contract (n). We can use the empirical distribution of

these residuals to recover an estimate for the distribution of bids, since as we show in the

paper,

H
(n)
j (b) ≡ GN

(
b

b
(n) · qe,(n)

− x(n)′j µ− u(n)
)

Specifically, in order to construct Ĥ
(n)
j (b

(n)
i · qe,(n)), we first compute the empirical CDF of

the residuals, ĜN (·), by pooling all residuals from bids on contracts with the same number of

bidders,N , as in contract (n).2 Then we evaluate this distribution at
b
(n)
i ·q

e,(n)

b
(n)·qe,(n)

−x(n)′j µ̂− û(n)

to determine the probability that bidder i’s bid of b
(n)
i · qe,(n), normalized, would be less

than his rival bidder j’s, normalized bid. Put simply, we count the fraction of the fitted

residuals that are less than
b
(n)
i ·q

e,(n)

b
(n)·qe,(n)

− x(n)′j µ̂ − û(n). This is done for each contract n and

each bidder i, for each of bidder i’s rivals, indexed by j.

Next, in order to recover the empirical density of the bids, Ĥ
(n)
j (b

(n)
i · qe,(n)), we need

an estimate of the empirical density of the residuals, gN (·), where again, N indexes the

density by the number of bidders in contract (n). We use a kernel density estimator, with a

normal kernel and a bandwidth determined by Silverman’s rule of thumb (a value of 0.0255

for our data).3 Using a change of variables, we convert this estimated residual density to an

estimate of the bid density:

ĥ
(n)
j (b) =

1

b
(n) · qe,(n)

· ĝN

(
b

b
(n) · qe,(n)

− x(n)′j µ̂− û(n)
)

We use the above to calculate ĥ
(n)
j (b

(n)
i ·qe,(n)) for each contract n (with number of bidders,

N ) and each bidder i, for each of bidder i’s rivals, indexed by j. Each of the resulting values

are then combined with the estimates of the CDF to form the expression in 1.

Note that the estimates of both Ĥ
(n)
j (b) and ĥ

(n)
j (b) make use of bidder- and project-

specific information, as they are evaluated at values that depend on the project’s size,

b
(n) · qe,(n), rival bidder j’s characteristics x

(n)
j , and the unobserved project heterogeneity,

û(n). Furthermore, a separate distribution is estimated for each set of N bidders to account

for the fact that, in equilibrium, the distribution of bids will be different in a 2-firm auction

2We thank an anonymous referee for reminding us to emphasize that in a first-price auction, the distri-
bution of the mean zero ε

(n)
j will vary by the number of bidders in equilibrium. That is, there is a separate

empirical distribution for contracts where n=2 (which we estimate using residuals from 266 bids), n=3 (esti-
mated using residuals from 552 bids), n=4 (671 bids), n=5 (639 bids), n=6 (444 bids), n=7 (448 bids), n=8
(200 bids), n=9 (180 bids), n>=10 (261 bids). We pool contracts with over 10 bidders as there are a limited
number of contracts with such large sets of bidders.

3Varying this bandwidth slightly did not significantly alter the results.
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as compared to a 5-firm auction, since bidders know the number of participants at the time

of bidding. These estimated distributions are reasonably precise, drawing upon anywhere

from 180 to 671 observed bids. The Matlab code to construct these estimates is available as

a supplement to this online appendix.

Step 2: GMM Estimation of the First-Order Conditions

We use the estimates from Step 1 to construct

(∑
j 6=i

ĥ
(n)
j (b

(n)
i ·q

e,(n))

1−Ĥ(n)
j (b

(n)
i ·qe,(n))

)−1
. This term is

found in the bidder’s first-order condition given in equation (10) of the paper. Following

that equation, we can construct the composite error, ẽ
(n)
i , as:

ẽ
(n)
i =

1

b
(n) · qa,(n)

b
(n)
i · qa,(n) −

T∑
t=1

dbit(s
i)

dsi
q
a,(n)
t

∑
j 6=i

ĥ
(n)
j (b

(n)
i · qe,(n))

1 − Ĥ
(n)
j (b

(n)
i · qe,(n))

−1
+

1

b
(n) · qa,(n)

[
(1 − τa+)A

(n)
+ + (1 + τa−)A

(n)
− + (1 − τx)X(n) + (1 + τd)D(n)

]

− 1

b
(n) · qa,(n)

P (bi(n)) −
T∑

t=1

dbit(s
i)

dsi
∂P (bi(n))

∂bit

∑
j 6=i

ĥ
(n)
j (b

(n)
i · qe,(n))

1 − Ĥ
(n)
j (b

(n)
i · qe,(n))

−1
where we parameterize P (bi(n)) as

P (bi(n)) = σ

T∑
t=1

(
bit − bt

)2 ∣∣∣∣qet − qatqet

∣∣∣∣
We form the moment condition

mN (σ, τa+, τa−, τd, τx, ĥ, Ĥ) =
1

N

∑
n

∑
i

ẽ
(n)
i (σ, τa+, τa−, τd, τx, ĥ, Ĥ)(z

(n)
i − z(n)i )

where the instruments, z
(n)
i include the engineer’s estimate, a full set of dummy variables for

the resident engineer assigned to the project, and (in some specifications) month and dis-

trict dummy variables. We use a non-linear least squares optimization algorithm (Matlab’s

lsqnonlin) to minimize the objective functionm′NWmN , whereW is a positive semi-definite

weighting matrix. We first estimate (σ̂, τ̂a+, τ̂a−, τ̂d, τ̂x) using the identity weighting matrix,

then use those estimates to construct the optimal weighting matrix as the inverse of the

sample variance of mN .
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Table A6: Structural Estimation, using Alternative Specifications for the First-Stage Recovery of the Bid Distributions 
  I-A I-B II-A II-B III-A III-B IV-A IV-B 
Implied Marginal Transaction Costs 
Positive Adjustments  (τA+) 4.759 2.203 4.192 2.224 4.523 2.132 4.557 2.236 

(4.032) (0.409) (2.121) (0.373) (4.015) (0.401) (2.113) (0.379) 
Negative Adjustments  (τA+) -0.994 0.305 -15.145 4.802 -0.268 0.743 -1.863 2.758 

(53.680) (3.156) (33.565) (4.323) (53.686) (3.08) (33.572) (3.015) 
Extra Work  (τX) * 1.091 1.084 2.449 1.233 1.079 1.076 2.209 1.227 

(2.708) (0.152) (1.470) (0.203) (2.708) (0.154) (1.469) (0.198) 
Deductions (τD) 9.069 0.556 10.574 2.881 7.200 0.033 4.246 1.478 

(77.845) (4.878) (39.989) (3.860) (77.904) (4.844) (40.035) (3.601) 
              
Skewing Parameter 
Penalty (σ) -4.699E-05 -1.225E-05 -4.235E-05 -1.309E-05 -4.35E-05 -1.11E-05 -4.84E-05 -1.22E-05 
 (5.69E-05) (1.00E-05) (3.38E-05) (9.10E-06) (5.56E-05) (9.49E-06) (3.31E-05) (1.04E-05) 

              

Number of Obs 3661 3661 3661 3661 3661 3661 3661 3661 
First-Stage Bid Distribution** Contract 

Fixed 
Effects 

Contract 
Fixed 

Effects 

Contract 
Fixed 

Effects 

Contract 
Fixed 

Effects 

Contract 
Random 
Effects 

Contract 
Random 
Effects 

Contract 
Random 
Effects 

Contract 
Random 
Effects 

Weighting Matrix*** Identity Optimal Identity Optimal Identity Optimal Identity Optimal 
Instruments Used in Second Stage 
GMM 

 Resident 
Engineer, 
Engineer’s 
Estimate 

 Resident 
Engineer, 
Engineer’s 
Estimate, 

Month and 
District 

Dummies 

 Resident 
Engineer, 
Engineer’s 
Estimate 

 Resident 
Engineer, 
Engineer’s 
Estimate, 

Month and 
District 

Dummies 
           

* These estimates represent an upper bound on transaction costs associated with changes in scope.  They do not account for marginal costs associated with performing the 
extra work, which for a reasonable profit margin of 20 percent would lower our estimate by $0.80. 
** To recover the bid distribution from which the moment conditions (based on the first-order conditions) are formed, we obtain residuals from a first stage regression of bids 
on contract and bidder characteristics.  This “homogenizes” the data by controlling for contract- and bidder-specific characteristics. In Columns I-A, I-B, II-A, and II-B, the 
first-stage regression includes bidder distance, fringe status, and a contract fixed effect.  In Columns III-A, III-B, IV-A, and IV-B, the first-stage regression includes bidder 
distance, fringe status, the number of bidders, and a contract random effect (the fixed effect approach did not include the number of bidders as it would have been fully 
absorbed by the fixed effect.  In both cases, the residuals for all 3661 bids (819 contracts) were then pooled in order to recover the bidding distribution from which bidders 
would form their expectations of winning.  This differs from the approach in the paper – where separate distributions are recovered for each set of contracts with the same 
number of bidders – but the resulting estimates are very similar.  We prefer the indexing approach used in the paper, as it trades off a higher variance (fewer observations used 
to construct each distribution) in favor of unbiasedness. 
*** Consistent GMM estimates were computed using the identity matrix as the weighting matrix. In a second step, efficient GMM estimates were computed using the optimal 
weighting matrix derived from the variance of the sample moments in the first step. Standard errors appear in parentheses. 


