Bidding with Securities: Auctions and Security Design

By PETER M. DEMARZ0, ILAN KREMER, AND ANDRZEJ SKRZYPACZ*

We study security-bid auctions in which bidders compete for an asset by bidding
with securities whose payments are contingent on the asset’s realized value. In
formal security-bid auctions, the seller restricts the security design to an ordered set
and uses a standard auction format (e.g., first- or second-price). In informal
settings, bidders offer arbitrary securities and the seller chooses the most attractive
bid, based on his beliefs, ex post. We characterize equilibrium and show that steeper
securities yield higher revenues, that auction formats can be ranked based on the
security design, and that informal auctions lead to the lowest possible revenues.

(JEL D44, G32, G34)

Auction theory and its applications have be-
come increasingly important as an area of eco-
nomic research over the last 20 years. As a
result, we now have a better understanding of
how the structure of an auction affects its out-
come. Almost all the existing literature studies
the case when bidders use cash payments, so
that the value of a bid is not contingent on future
events.

In a few cases, such as art auctions, the real-
ized value is subjective and cannot be used as a
basis for payment; however, this is the excep-
tion. In many important applications, the real-
ization of the future cash flow generated by the
auctioned asset or project can be used in deter-
mining the actual payment. That is, the bids can
be securities whose values are derived from the
future cash flow. We call this setting a security-
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bid auction, and provide an extensive charac-
terization of such auctions.

Formal auctions of this type are commonly
used in government sales of oil leases, wireless
spectrum, highway building contracts, and lead-
plaintiff auctions. Informal auctions of this type
(in the sense that formal auction rules are not set
forth in advance) are common in the private
sector. Examples include authors selling pub-
lishing rights, entrepreneurs selling their firm to
an acquirer or soliciting venture capital, and
sports associations selling broadcasting rights.'

The major difference between a formal and
an informal mechanism is the level of commit-
ment by the seller. In an informal mechanism,
bidders choose which securities to offer, and the
seller selects the most attractive offer ex post. In
this case, the auction contains the elements of a
signaling game because the seller may infer
bidders’ private information from their security
choices when evaluating their offers. In a for-
mal mechanism the seller restricts bidders to use

! See Kenneth Hendricks and Robert H. Porter (1988) for
a discussion of oil lease auctions, in which royalty rates are
commonly used. In wireless spectrum auctions, the bids are
effectively debt securities (leading in some cases to default).
Highway building contracts are often awarded through
“build, operate, and transfer” agreements to the bidder that
offers to charge the lowest toll for a pre-specified period.
See Jill E. Fisch (2001) for the use of contingency-fee
auctions in the selection of the lead plaintiff in class action
suits. In mergers, acquisitions, and venture capital agree-
ments, equity and other securities are commonly used (see
Kenneth J. Martin, 1996). John McMillan (1991) describes
the auction of the broadcast rights to the Olympic games,
where bids contained revenue-sharing clauses. Similarly,
publishing contracts include advance and royalty payments.
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securities from a pre-specified ordered set, such
as an equity share or royalty rate. The seller is
committed to disqualify any offer outside this
set. The seller also commits to an auction for-
mat, such as a first- or second-price auction.
One of our main results is that the revenues
from an informal mechanism are the lowest
across a large set of possible mechanisms. In
other words, the seller benefits from any form of
commitment. Moreover, we show how to rank
security designs and auction formats in terms of
their impact on the seller’s revenues, and that
the design of the securities can be more impor-
tant than design of the auction itself.

In our model, several agents compete for an
asset or project that requires an upfront invest-
ment. This investment may correspond to an
amount of cash that the seller needs to raise, or
the resources required to run the project. Bid-
ders observe private signals regarding the value
they can expect if they acquire the asset. Our
initial structure is similar to an independent
private values model, so that different bidders
expect different payoffs upon winning, although
we also consider correlated and common val-
ues. The model differs from standard auction
models in that bids are securities. Bidders offer
derivatives in which the underlying value is the
future payoff of the asset. Because the winner
may make investments or take other actions that
affect this payoff, we also discuss the possibility
of moral hazard.

One might conjecture that the results from
standard auction theory carry over to security-
bid auctions by simply replacing each security
with its cash value. Unlike cash bids, however,
the value of a security bid depends upon the
bidder’s private information. This difference
can have important consequences as the follow-
ing simple example demonstrates:

Consider an auction in which two bidders,
Alice and Bob, compete for a project. The
project requires an initial fixed investment
that is equivalent to $1M (we can inter-
pret some or all of this amount as a min-
imum up-front cash payment required by
the seller). Alice expects that if she un-
dertakes the project, then on average it
would yield cash flows of $4M; Bob ex-
pects future cash flows of only $3M. As-
suming these estimates are private values,
in a standard second-price auction it is a
dominant strategy for bidders to bid their
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reservation values. As a result, Alice
would bid 4 — 1 = $3M and win the
auction, paying Bob’s bid of 3 — 1 =
$2M.

Now suppose that rather than bidding
with cash, the bidders compete by offer-
ing a fraction of the future revenues. As
we discuss later, it is again a dominant
strategy for bidders to bid their reserva-
tion values. Alice offers ¥ of future cash
flows while Bob offers 25. As a result,
Alice wins the auction and pays according
to Bob’s bid; that is, she gives up %5 of the
future revenues. This yields a higher pay-
off for the auctioneer; (35) X $4M =
$2.67M > $2M (in addition to any up-
front payment).

This example is based on Robert G. Hansen
(1985), who was the first to examine the use of
securities in an auction setting. Hansen showed
that a second-price equity auction yields higher
expected revenues than a cash-based auction. In
a related paper, John G. Riley (1988) considers
first-price auctions where bids include royalty
payments in addition to cash. He shows that
adding the royalty increases expected revenues.
The intuition in both cases is that adding an
equity component to the bid lowers the differ-
ence between the winner’s valuation and that of
the second highest bidder. Because this differ-
ence is the rent captured by the winner, reduc-
ing it benefits the seller.

In this paper, we generalize this insight along
several dimensions. First, we consider a general
class of securities that includes debt, equity or
royalty rates, options, and hybrids of these. Sec-
ond, we consider alternative auction formats
(e.g., first-price versus second-price). Third, we
consider informal auctions, in which the seller
cannot commit to an auction mechanism in
advance.

The structure of the paper is as follows. The
basic model is described in Section I. We begin
our analysis in Section II by examining formal
mechanisms, which consist of both an auction
format and a security design. There we establish
the following results:

e We characterize super-modularity conditions
under which a monotone—and hence effi-
cient—equilibrium is the unique outcome for
the first- and second-price auctions.
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e First we compare security designs holding
fixed the auction format (first- or second-
price). We show that for either format, the
seller’s expected revenues are positively re-
lated to the “steepness” (a notion that we
define) of the securities. As a result, debt
contracts minimize the seller’s expected pay-
offs while call options maximize it. This re-
sult generalizes the observations of Hansen
(1985) and Riley (1988).

e Fixing the security design, we then consider
the role of the auction format. We define two
important classes of sets of securities: sub-
convex and super-convex sets. For sub-
convex sets—which include, for example, the
set of debt securities—we show that a sec-
ond-price auction yields higher expected rev-
enues than a first-price auction. Alternatively,
if the set is super-convex (e.g., call options),
the reverse conclusion holds and first-price
auctions are superior. However, we find the
effect of the auction format to be small rela-
tive to the security design.

e We then ask whether the Revenue Equiva-
lence principle for cash auctions, which states
that expected revenues are independent of the
auction format, can be extended to security-
bid auctions. We show it holds if the ordered
set of securities is a convex set. This is true
for important classes of securities, such as
equity.

e Finally we combine these results to show that
the first-price auction with call options max-
imizes the seller’s revenue, while the first-
price format with debt minimizes it, over a
general set of auction mechanisms.

In Section III, we consider the case in
which the seller is unable to commit ex ante
to a formal auction mechanism. Instead, he
accepts all bids and chooses the security that
is optimal ex post. Though often not labeled
as “auctions” because they lack a formal
mechanism, we believe that these informal
auctions represent the vast majority of
auction-like activity in practice, since in most
transactions the seller is unable to commit to
a decision rule ex ante. In this case, the task
of selecting the winning bid is not trivial; it
involves a signaling game in which the seller
uses his beliefs to rank the different securities
and choose the most attractive one. Our main
result is as follows:
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e In the unique equilibrium satisfying standard
refinements of off-equilibrium beliefs, bid-
ders use the “flattest” securities available,
e.g., cash or debt. Moreover, the outcome is
equivalent to a first-price auction. As a result,
we conclude that this ex post maximization
yields the worst possible outcome for the
seller.

The intuition is that flattest security provides the
cheapest way for a high type to signal his qual-
ity. Thus, bidders find it optimal to compete
using these securities.

Section IV extends the model by considering
the effects of relaxing liquidity constraints,
moral hazard regarding the bidder’s investment,
reservation prices, and the introduction of affil-
iated as well as common values. We demon-
strate that the main insights of our analysis carry
over to these settings. For example, we show that:

e If the bidder’s investment in the project is
unverifiable and subject to moral hazard,
then it is not optimal for the seller to offer
cash compensation to the winner for this
investment.

e Combining cash payments with bids effec-
tively “flattens” the bids and reduces the ex-
pected revenues of the seller.

e Our conclusions regarding the revenue con-
sequences of the security design carry over to
the case of affiliated values with both private
and common components. The impact of auc-
tion formats is more complicated, especially
with common values. We identify a new way
security-bid auctions affect the winner’s
curse and illustrate the differences in first-
and second-price auctions. Interestingly, rev-
enue equivalence fails even with independent
signals and equity bids.

Section V concludes and the Appendix con-
tains proofs omitted in the text. Proofs of lem-
mas are available at http://www.e-aer.org/data/
sept05_app_demarzo.pdf.

Related Literature.—As mentioned above,
Hansen (1985) and Riley (1988) first demon-
strated the potential advantages of equity versus
cash auctions. In a more recent paper, Matthew
Rhodes-Kropf and S. Viswanathan (2000) focus
on first-price auctions in a setting that is similar
to the model we study in the first part of the
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paper, and show that securities yield higher
revenues than a cash-based auction. However,
none of these papers provides a general means
of comparing sets of nonlinear securities, as we
do here. Nor do they compare auction formats
or consider informal auctions. Finally, the re-
sults in Riley (1988) and Rhodes-Kropf and
Viswanathan (2000) are conditional upon the
existence of a separating equilibrium in which a
higher type bids a higher security. For example,
in Rhodes-Kropf and Viswanathan (2000), there
always exists a pooling equilibrium and in some
cases it is the unique outcome. This is because
they assume that the project does not require
any costly inputs—thus the lowest type can
offer 100 percent of the proceeds to the seller
and break even. Therefore, a low type is always
willing to imitate the bid of a high type. We use
a framework that is closer to Hansen (1985), in
which the project requires costly inputs. In this
case, we show conditions under which the first-
price auction has a unique equilibrium, and it is
separating.

One reason security-bid auctions may not
have received greater attention in the literature
is perhaps due to Jacques Crémer (1987), who
argues that the seller can extract the entire sur-
plus if he can “buy” the winning bidder. Spe-
cifically, the seller can offer cash to the bidder
to cover the costs of any required investment,
ask all bidders to reveal their type, and award
the project to the highest type while keeping
100 percent of the revenues. Initially, we rule
out this solution by assuming the seller is cash
constrained. Then we show in Section IV that,
even if the seller is not cash constrained,
Crémer’s approach does not survive if the bid-
der’s investment is not verifiable. In that case,
moral hazard forces the seller to offer only
compensation that is contingent on the outcome
of the project.

Yeon-Koo Che and Ian Gale (2000), Charles
Z. Zheng (2001), Simon Board (2002), and
Rhodes-Kropf and Viswanathan (2002) con-
sider auctions with financially constrained bid-
ders who use debt, or external financing, in their
bids. Hence, while bids may be expressed in
terms of cash, they are in fact contingent claims
and are thus examples of the security bids that
we examine here. Mark Garmaise (2001) stud-
ies a security-bid auction in the context of
entrepreneurial financing. The entrepreneur
commits to a probability distribution over cash
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flows that he will use to rank securities. He
examines a common value environment and
obtains a partial characterization of the equilib-
rium in a binary model (two bidders, two types,
two values).

Other related literature includes R. Preston
McAfee and John McMillan (1987), who solve
for the optimal mechanism in a model with a
moral hazard problem. The optimal mechanism
is a combination of debt and equity, with the
mixture depending on the distribution of types.
Jean-Jacques Laffont and Jean Tirole (1987)
examine a similar model. Board (2004) ana-
lyzes selling real options to competing buyers
with payments possibly conditional on exercis-
ing the option (where the exercise decision is
subject to moral hazard).

We can interpret our results in a setting in
which the seller needs to raise a fixed amount of
cash by selling a security backed by an asset. In
this case, the security sold is the complement of
the winning bid, and higher auction revenues
correspond to the seller raising the cash using
“cheaper” securities. Thus, our result that call
options are optimal is equivalent to the seller
raising funds by issuing debt, with bidders com-
peting on the loan interest rate. This result
therefore extends results in the security design
literature (e.g., David C. Nachman and Thomas
H. Noe, 1994; DeMarzo and Darrell Duffie,
1999; DeMarzo, 2002) which demonstrate debt
is optimal when the seller is privately informed
to the case in which the bidders have superior
information.? Similarly, our result for informal
auctions suggests that when informed investors
are unconstrained, they will prefer to fund the
firm in exchange for equity or option-like
securities.

I. The Model

There are n risk neutral bidders who compete
for an asset, which we think of as the “rights to a
project.” The winner is required to make an in-
vestment X > 0, which we can interpret as re-
sources required by the project, or as a minimal
amount of cash the seller must raise. In either case,
X is known and equal across bidders.

2 UIf Axelson (2004) derives a related result in a setting
in which the seller has a preference for cash, and can change
the design of the security in response to the bids.
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Conditional on being undertaken by bidder i,
the project yields a stochastic future payoff Z,.
Bidders have private signals regarding Z;,
which we denote by V,. The seller is also risk
neutral and cannot undertake the project inde-
pendently. The interest rate is normalized to
zero. We make the following standard eco-
nomic assumptions on the signals and payoffs:

ASSUMPTION A: The private signals V =
Vy, ..., V) and payoffs Z = (Z,, ... , Z,) satisfy
the following properties:

(a) The private signals V; are i.i.d. with density
Sf(v) with support [v;, vyl

(b) Conditional on V = wv, the payoff Z; has
density h(z|v;) with full support [0, ).

(c) (Z;, V,) satisfy the strict Monotone Likeli-
hood Ratio Property (SMLRP); that is, the
likelihood ratio h(z|v)/h(z|v’) is increasing3
inzifv>v'?

The important economic assumptions con-
tained above are, first, that the private signals of
other bidders are not informative regarding the
signal or payoff of bidder i. (We extend our
results to allow for affiliated and/or common
values in Section IV C). Second, because Z; is
not bounded away from zero, the project payoff
cannot be used to provide a completely riskless
payment to the seller. Finally, the private signal
V; is “good news” about the project payoff Z;
using the standard strict version of the affiliation
assumption (see Paul R. Milgrom and Robert J.
Weber, 1982).

Given the above assumptions, we normalize
(without loss of generality) the private signals
so that

E[Z|V]—-X=V.

Thus, we can interpret the signal as the NPV of
the project, which we assume to be nonnegative.
To simplify our analysis, we make several ad-
ditional technical assumptions:

ASSUMPTION B: The conditional density
function h(z|v) is twice differentiable in z and v.

3 We use increasing/higher/lower in the strict sense and
explicitly note weak rankings.

4 Equivalently, / is log-supermodular, which can be written
as (9%/9zdv)log h(z|v) > 0 assuming differentiability.
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In addition, the functions zh(z|v), |zh (z|v)| and
|zh,,(z|v)| are integrable on 7z € (0, ).

These assumptions are weak and allow us to
take derivatives “through” expectation opera-
tors. An example of a setting that fits our as-
sumptions is the payoff structure:

(D) Z,=0X+V,)

where the project risk 6 is indipendent of Vand
log-normal with a mean of 1.

The focus of this paper is on the case in
which bids are securities. Bidders compete for
the project by offering the seller a share of the
final payoff. That is, the bids are in terms of
derivative securities, in which the underlying
asset is the future payoff of the project Z,. Bids
can be described as function S(z), indicating the
payment to the seller when the project has final
payoff z. We make the following assumptions
regarding the set of feasible bids®:

DEFINITION: A feasible security bid is de-
scribed by a function S(z), such that S is weakly
increasing, 7 — S(z) is weakly increasing, and
0=S>1z =z

The set of feasible securities encompasses
standard designs used in practice. However, it is
not completely general. First, S(z) = z can be
viewed as a liquidity or limited liability con-
straint for the bidder; only the underlying asset
can be used to pay the seller. We assume, for
now, that bidders do not have access to cash (or
other liquid assets) that they can pledge as pay-
ment; they can transfer only property rights in
the project.” We make this assumption in order
to focus first on pure security bids and simplify
the exposition. In Section IV we will generalize
the setting to allow for cash payments.

Similarly, S(z) = 0 corresponds to a liquidity
or limited liability constraint for the seller; the
seller cannot commit to pay the bidder except
through a share of the project payoff. For ex-

3 More generally, what is required for the SMLRP is that
log(60) have a log-concave density function.

¢ These assumptions are typical of the security design
literature (e.g., Nachman and Noe, 1994; Oliver Hart and
John Moore, 1995; DeMarzo and Duffie, 1999).

7 Bidders can invest X in the project, but X might corre-
spond to an illiquid asset, such as human capital.
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ample, the seller may not have the financial
resources to do so, and is selling the project to
raise X. Because the seller cannot reimburse the
bidder for the upfront investment, this assump-
tion rules out a solution as in Crémer (1987).
We take this constraint as given for now, but we
show in Section IV that this constraint can fol-
low from an assumption that the bidder’s invest-
ment X is not verifiable.

Finally, we require both the seller’s and the
bidder’s payment to be weakly increasing in the
payoff of the project. Monotonicity is a standard
feature of almost all securities used in practice,
and so is a natural constraint to consider.® Most
importantly, without monotonicity for the bid-
ders, equilibria would not be efficient, and with-
out monotonicity for the seller, the seller would
have incentives to choose other than the highest
bid.

Together, these requirements are equivalent
to S(0) = 0, S is continuous, and S'(z) € [0, 1]
almost everywhere. Thus, we admit standard
sets of securities, including:

(a) Equity: The seller receives some fraction
a € [0, 1] of the payoff: S(z) = az.

(b) Debt: The seller is promised a face value
d = 0, secured by the project: S(z) =
min(z, d).

(c) Convertible debt: The seller is promised a
face value d = 0, secured by the project, or
a fraction o € [0, 1] of the payoff: S(z) =
max(az, min(z, d)). (This is equivalent to a
debt plus royalty rate contract.)

(d) Levered equity: The seller receives a frac-
tion a € [0, 1] of the payoff, after debt with
face value d = 0 is paid: S(z) = a max(z —
d, 0). (This is equivalent to a royalty agree-
ment in which the bidder recoups some
costs upfront.)

(e) Call option: The seller receives a call option
on the firm with strike price k: S(z) =

8 A standard motivation for dual monotonicity is that, if
it did not hold, parties would “sabotage” the project and
destroy output. (Dual monotonicity is also implied if one
party could both destroy and artificially inflate output, e.g.,
if §(zy) > S(z,) for z, < z;, the bidder could inflate the cash
flows from z, to z, via a short-term loan to get payoftf z, —
S(z,).) Whether revenues can be distorted in this way de-
pends on the context. We do not further defend this assump-
tion here, but point out that it is a standard one, includes
typical securities used in practice, and guarantees a well-
behaved equilibrium.
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max(z — k, 0). Higher bids correspond to
lower strike prices. (This is equivalent to
the bidder retaining a debt claim.)

Given any security S, we let
ES(v) = E[S(Z)|V; = v]

denote the excepted payoff of security S condi-
tional on the bidder having value V, = v. Thus,
the expected payoff to the seller if the bid § is
accepted from bidder i is ES(V;). On the other
hand, the bidder’s expected payoff is given by
V; — ES(V)). Thus, we can interpret V; as the
independent, private value for bidder i, and
ES(V)) as the payment offered. The key differ-
ence from a standard auction, of course, is that
the seller does not know the value of the bids,
but only the security, S. The seller must infer the
value of this security. Since the security S is
monotone, the value of the security is increasing
with the signal V, of the bidder, as we show
below:

LEMMA 1: The value of the security ES(v) is
twice differentiable. For S # 0, ES'(v) > 0, and
for S # Z, ES'(v) < 1.

II. Formal Auctions with Ordered Securities

In many auctions, bidders compete by offer-
ing “more” of a certain security. For example,
they compete by offering more debt or more
equity. We begin our analysis by examining
formal auctions in which the seller restricts the
bids to elements of a well-ordered set of secu-
rities. Bidders compete by offering a higher
security.

There are two main reasons why sellers re-
strict the set of securities that are admissible as
bids in the auction. First, it allows them to
use standard auction formats—such as first- or
second-price—to allocate the object and to de-
termine the payments. Without an imposed
structure, ranking different securities is difficult
and depends on the beliefs of the seller. There is
no clear notion of the “highest” bid.

The second reason a seller may want to re-
strict the set of securities is that it can enhance
revenues. We will demonstrate this result by
first (in this section) studying the revenues from
auctions with ordered sets of securities and then
(in Section III) comparing them to the revenues
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TABLE 1—EXPECTED REVENUES FOR DIFFERENT SECURITY
DESIGNS AND AUCTION FORMATS IN EXAMPLE 1

Expected seller revenues

Security type  First-price auction  Second-price auction

Cash 50.00 50.00
Debt 50.05 50.14
Equity 58.65 58.65
Call option 74.53 74.49

from auctions in which the seller cannot commit
to a restricted set and bidders can bid using any
feasible security.

Example 1: Comparison of Revenues across
Securities and Auction Formats.—Before pre-
senting the technical details of the analysis, we
consider an example that illustrates our main
results. Two bidders compete for a project that
requires an upfront investment of X = 100. The
NPV of the project if run by bidder i is V,,
where V; is uniform on the interval [20, 110].
The project is risky with final value Z;, which is
lognormal with mean X + V; and volatility of 50
percent.

Total surplus is maximized by allocating the
project to the highest type, in this case leading
to an expected value of E[max(V,, V,)] = 80.
This is the maximum expected revenue achiev-
able by any mechanism. On the other hand,
using a cash auction, the expected revenue is
given by E[min(V,, V,)] = 50 (which is the
same for first- and second-price auctions by
revenue equivalence). Table 1 shows the reve-
nues for different security designs and auction
formats.

Several observations can be made, which co-
incide with our main results of this section:

(a) Fixing the auction format (first- or second-
price), revenues increase moving from debt
to equity to call options. In Section II B we
will define a notion of “steepness” for se-
curities and show that steeper securities lead
to higher revenues, and that all security
designs yield higher revenues than cash
auctions.

(b) The auction format is irrelevant for a cash
auction and for an equity auction. While the
format does make a difference for debt and
call options, the rankings are reversed. In Sec-
tion IT C we will generalize these observations
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and show precisely when revenue equiva-
lence will hold or fail. Overall, though, the
impact of the auction format on revenues is
minor compared to the security design.

(c) Among the mechanisms examined, the first-
price auction with debt yields the lowest
expected revenues, while the first-price auc-
tion with call options yields the highest
expected revenues. In Section II D we shall
see that these are the worst and best possible
mechanisms in a broad class of security-bid
auctions, and that all security-bid auctions
dominate cash auctions.

A. Securities, Auctions, and Mechanisms

The first step in our analysis is to formalize
the notion of an ordered set of securities. An
ordered collection of securities can be defined
by a function S(s, z), where s € [sy, ;] is the
index of the security, and S(s, ) is a feasible
security. That is, S(s, z) is the payment of
security s when the output of the project has
value z. As before we define ES(s, v) = E[S(s,
Z)IV, = v].

For the collection of securities to be ordered,
we require that its value, for any type, is in-
creasing in s. Then, a bid of s dominates a bid of
s if s > s'. We would also like to allow for a
sufficient range of bids so that for the lowest
bid, every bidder earns a nonnegative profit,
while for the highest bid, no bidder earns a
positive profit. This leads to the following for-
mal requirements for an ordered set of
securities:

DEFINITION: The function S(s, z) for s € [s,
s,] defines an ordered set of securities if:

(a) S(s, ) is a feasible security.
(b) For all v, ES (s, v) > 0.
(c) ES(sy, v;) = v, and ES(s;, vy) = vy

Examples of ordered sets include the sets of
(levered) equity and (convertible) debt, indexed
by the equity share or debt amount, and call
options, indexed by the strike price. Given an
ordered set of securities, it is straightforward to
generalize the standard definitions of a first- and
second-price auction to our setting:

First-Price Auction: Each agent submits a se-
curity. The bidder who submitted the highest
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security (highest s) wins and pays according to
his security.

Second-Price Auction: Each agent submits a
security. The bidder who submitted the highest
security (highest s) wins and pays the second-
highest security (second-highest s).”

Are the equilibria in these auction formats
efficient? That is, does the highest value bidder
win the auction? For second-price auctions the
answer is straightforward; the standard charac-
terization of the second-price auction with pri-
vate values generalizes to:

LEMMA 2: The unique equilibrium in weakly
undominated strategies in the second-price auc-
tion is for a bidder i who has value V; = v to
submit security s(v) such that ES(s(v), v) = wv.
The equilibrium strategy s(v) is increasing in v.

In words, similarly to a standard second-price
auction, each bidder submits bids according to
his true value. We now turn our attention to the
first-price auction. Incentive compatibility in
the first-price auction implies that no bidder
gains by mimicking another type, so that s(v)
satisfies

(2) U(v) = max,F*~(9)(v — ES(s(9), v))
= F""'(v)(v — ES(s(v), v))

where U(v) is the expected payoff of type v. The
first-order condition of (2) then leads to a dif-
ferential equation for s. However, an additional
assumption is required to guarantee optimality:

ASSUMPTION C: For all (s, v) such that the
bidder earns a positive expected profit, i.e.,
v — ES(s, v) > 0, the profit function is log-
supermodular:

2

Py log[v — ES(s, v)] > 0.

Under this assumption, we have the following
characterization:

° Note that with private values, the second-price auction
is equivalent to an English auction.
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LEMMA 3: There exists a unique symmetric
equilibrium for the first-price auction. It is in-
creasing, differentiable, and it is the unique
solution to the following differential equation:

(n = f(v)
F(v)

[v — ES(s(v), v)]
ES, (s(v), v)

s'(v) =

together with the boundary condition ES(s(v,),
U) = .

Assumption C is a joint restriction on the set
of securities and the conditional distribution of
Z.'° Tt can be shown to hold generally in the
lognormal setting (1) in the case of debt, equity,
and levered equity securities with d = X. It can
be established numerically for other types of
securities, such as call options, under suitable
parameter restrictions: for example, it holds in
the numerical example computed earlier.
Throughout our analysis, we assume that it
holds for all sets of securities under
consideration.

The first- and second-price auctions are two
standard auction mechanisms. They share the
features that the highest bid wins, and only the
winner pays. The first property is necessary for
efficiency, and the second is natural in our set-
ting, since only the winner can use the assets of
the project to collateralize the payment. One can
construct many other auction mechanisms,
however, that share these properties. For exam-
ple, one can consider third-price auctions, or
auctions where the winner pays an average
of the bids, etc. Below we define a broad class
of mechanisms that will encompass these
examples:

DEFINITION: A General Symmetric Mecha-
nism (GSM) is a symmetric incentive compati-
ble mechanism in which the highest type wins
and pays a security chosen at random from a
given set S. The randomization can depend on
the realization of types, but not on the identity of
the bidders (so as to be symmetric).

19 Assumption C is the same condition imposed on util-
ity functions in the auction literature, e.g., Eric S. Maskin
and Riley (1984) use it to show existence and uniqueness of
equilibria with risk-averse bidders. The requirements of
symmetry and Assumption C underscore the fact that effi-
ciency is more fragile in first-price than in second-price
auctions.
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The first-price auction fits this description,
with no randomization (the security is a func-
tion of the winner’s type). In the second-price
auction, the security paid depends upon the re-
alization of the second-highest type. GSMs also
allow for more complicated payment schemes
that depend on all of the bids.

It will be useful in what follows to derive a
basic characterization of the incentive compat-
ibility condition for a GSM. We show that any
GSM can be converted into an equivalent mech-
anism in which the winner pays a security that
depends only on his reported type without fur-
ther randomization.

LEMMA 4: Incentive compatibility in a GSM
implies the existence of securities S, in the
convex hull of S such that"!

v € arg max, F"~'(v")(v — ES, (v)).

Thus, it is equivalent to a GSM in which the
winner pays the non-random security S,

This observation will allow us to compare rev-
enues across mechanisms by studying the rela-
tionship between the set of securities S and its
convex hull.

B. Ranking Security Designs

Recall from Table 1 that the seller’s revenues
varied greatly with the security design. As we
will show, the revenues of different designs
depend upon the steepness of the securities. To
do so, we need to formalize the notion of steep-
ness of a set of securities. A simple comparison
of the slopes of the securities is inadequate:
comparing debt and equity, debt has higher
slope for low cash flows and lower slope for
high cash flows. Rather, our notion of steepness
is defined by how securities cross each other.
Intuitively, one security is steeper than another
if it crosses that security from below. Thus, we
introduce the following definition:

DEFINITION: Security S, strictly crosses se-
curity S, from below if ES(v*) = ES,(v*)
implies ES|(v*) > ES}(v*). An ordered set of

' S is in the convex hull of S if S(z) = =, m,S,(z) for all
z, with m, = 0, S, € S, and 2, m, = 1.
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securities S, is steeper than an ordered set S, if
forall S, € Sy and S, € S,, S, strictly crosses
S, from below.

The following useful lemma shows that
steepness is naturally related to the shape of the
underlying securities—if the payoffs of the se-
curities cross from below, then their expected
payoffs strictly cross:

LEMMA 5 (Single crossing): A sufficient con-
dition for S, to strictly cross S, from below is
that S, # S,, and there exists z* such that
S1(z2) = S,(2) for z < z* and S,(2) = S,(z2) for
7> 7%

Comparing standard securities, note that a call
option is steeper than equity, which in turn is
steeper than debt. See Figure 1.

Why is steepness related to auction revenues?
Consider a second-price auction, where the win-
ning bidder with type V' pays the security bid
by the second highest type V2. That is, the
winner pays ES(s(V?), V'). Since bidders bid
their reservation value in a second-price auc-
tion, ES(s(V?), V?) = V2 Hence, the security
design impacts revenues only through the dif-
ference

ES(s(V?), V) — ES(s(V?), V?)

which is just the sensitivity of the security to the
true type. So to compare two securities we need
to compare their slopes where the expected pay-
ments are the same and equal to V2. By our
definition, steeper securities are more sensitive
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at the crossing point, and so lead to higher
revenues.

More generally, steepness enhances competi-
tion between bidders since even with the same
bid, a higher type will pay more. This is the
essence of the Linkage Principle, first used by
Milgrom and Weber (1982) to rank auction
formats for cash auctions when types are affil-
iated.'? Applying the envelope theorem to the
incentive condition (2) for a first-price auction,
we get

(3) U'(v) = F" '(v)(1 — ES,(s(v), v)).

To compare expected revenues in (efficient)
auctions with different sets of securities, it is
sufficient to rank expected payoffs of bidders. If
ES,(s, v) are ranked for every s and v, then
U’(v) are ranked and hence so are U(v) (using
the boundary condition U(v;) = 0). In general,
we cannot rank ES,(s, v) everywhere, but it is
sufficient to rank ES,(s, v) at securities with the
same expected payments. Our definition of
steepness again captures that ranking. This
leads to the following main result:

PROPOSITION 1: Suppose the ordered set of
securities S is steeper than S,. Then for either
a first or second-price auction, for any realiza-
tion of types, the seller’s revenues are higher
using S, than using S,.

As a result, flat securities, like debt, lead to
low expected revenues, and steep securities, like
call options, lead to high expected revenues. In
fact, since debt and call options are the flattest'?
and steepest possible securities, they represent
the worst and best designs for the seller. We can
also extend the logic of Proposition 1 to cash
auctions, as a cash bid is flatter than any secu-
rity. Thus, we have the following:

COROLLARY: For a first- or second-price
auction, standard debt yields the lowest possi-

12 See also Vijay Krishna (2002). The linkage principle
is typically used to compare formats when signals are affil-
iated. In security-bid auctions, unlike cash auctions, even
with independent types the winner’s expected payment de-
pends on his true type, as pointed out by Riley (1988) in the
context of royalty rates.

13 By flattest, we mean that all other sets of securities are
steeper.
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ble revenues, and call options yield the highest
possible revenues, of any security-bid auction.
All security-bid auctions yield higher revenues
than a cash auction.

Note that in all cases, these rankings are for any
realization of types, and hence are stronger than
the usual comparison based on an expectation
over types.

C. Ranking Auction Formats

In our setting of symmetric independent
private values and risk neutrality, a well-
known and important result for cash auctions
is the Revenue Equivalence Principle. It
implies that the choice of the auction for-
mat is irrelevant when the ultimate alloca-
tion is efficient.'* We now turn to examining
the revenue consequences of the choice of
auction format in a security-bid auction. As
we have seen from the numerical analysis
of Example 1 in Table I, revenue equiva-
lence seems to hold for some security de-
signs but not for others. To develop some
further intuition, we begin with two simple
examples.

Example 2: Equity Auctions and Revenue
Equivalence.—There are two bidders with in-
dependent types V, distributed uniformly on
[0, 1]. Upfront investment is X = 1. The
distribution of Z; has full support with mean
X + V.

Consider a second-price equity auction. As
we know, it is a dominant strategy to bid the
reservation value: o5F2(v) = [v/(v + 1)],
which is increasing in v. In a first-price auc-
tion it is an equilibrium strategy for agents to
bid &(v) = 1 — [In(1 + wv)/v], which is
also increasing.'?

Now observe that both auctions yield equal
payoffs to the auctioneer, as in both auction
formats the highest type wins and the average
losing bid in a second-price auction equals the
highest bid in the first-price auction:

' William Vickrey (1961), Roger B. Myerson (1981),
Riley and William F. Samuelson (1981).

!5 The payoff of a type v who pretends to be v’ is
o {[In(1 + v)/v'](1 +v) — 1} = (1 + »In(l + v') — v,
which is maximized by setting v’ = wv, verifying an
equilibrium.
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Vi
E[aSPA(Vz)Wz =y]= E[VZH‘VZ = Ul]

1 ln(] + 'Ul)

U

While in this example revenue equivalence
holds, as the next example shows this is not the
case for all securities.

Example 3: Second-Price Auctions Yield
Higher Revenues for Debt.—Consider a debt
auction. There are two bidders, types V; are
independent and uniform on [0, 1], X = 0, and
the distribution of Z; given V; is uniform on [0,
2V,]."° If a bidder wins and pays according to a
debt bid with face value b, the payoff to the
seller is min(b, z), which for a type v yields on
average:

4 E[Z; — min(b, Z)|V; = v]

2v B (2"{) _ b)z

1
=3 (z—b) dz y

b

In a second-price auction it is an equilibrium
strategy for agents to bid their reservation val-
ues: b°"(v) = 2v. In a first-price auction it is an
equilibrium strategy to bid 6™ *(v) = %5 v."”

Suppose bidder 1 wins the auction. In a first-
price auction, his payoff is

(2U1 - bFPA(Ul))2 . (2U1 - 2U1/3)2 . 4
4v, B 4y, 9

U1,

while in a second-price auction, his payoff is

20, — bPAV,))
E[( | - (V2)) stvl]

20, — 2V,)?
:E[(l%lz) VZSvI]

'© While this example violates some of our technical
assumptions (X > 0 and Z has full support), it provides a
simple closed-form solution (and suggests that our results
are more general). We thank a referee for this example.

7 To verify that this is an equilibrium, note from (4) that
the payoff of a type v who pretends to be v’ is v'[(2v —
2v'/3)*/4v], which is maximized for v’ = v.
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We conclude that bidders’ welfare is higher in
the first-price auction and, since in both auction
formats the highest type wins, revenues are
higher in the second-price auction. Thus, reve-
nue equivalence fails.

To gain some insight into why revenue
equivalence fails, note that in the second-price
auction, the winner pays a random security (de-
termined by the second highest bid). The win-
ner’s payment is equivalent to paying the
“expected security”

ZZ

S.u(2) = Elmin(z, 2V,)|Va = ] =2 = ;
1

in a first-price auction.'® This security is not a
debt security, and therefore is steeper than
debt.'® As a result of this steepness, the seller’s
revenues are enhanced. On the other hand, in
the case of equity, a convex combination of
securities is also an equity security. Thus, there
is no change in steepness, and so no change in
revenues.

Sub- and Super-Convex Sets of Securities.—
The previous examples suggest that the revenue
differences across auction formats will stem
from the differences in steepness between the
set of securities and its convex hull. This moti-
vates the following formal classification:

DEFINITION: An ordered set of securities S =
{S(s, ) s € [sg, 5]} is super-convex if it is
steeper than any nontrivial convex combination
of the securities in S. It is sub-convex if any
nontrivial convex combination of the securities
in 8 is steeper than S.*°

'¥ In this example the support of Z, is bounded by 2v,,
so the security is monotone. Note that the bidder’s expected
payoff with this security is E[Z, — Sz/|(Zl)|Vl =] =
E[Z}/4v,|V, = v,] = ©v,/3, as before.

9 In general, a convex combination of debt securities is
steeper than debt. For example, a 50-50 mix of debt with
face value 50 and face value 100 has slope 2 for z € (50,
100), and so crosses debt from below.

20 A nontrivial convex combination puts positive weight
on more than one security.
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Not every set falls into one of the categories
above. Still, there are some important examples
of sub- and super-convex sets:

LEMMA 6: The set of standard debt contracts
is sub-convex. The set of convertible debt con-
tracts indexed by the equity share a, the set of
levered equity contracts indexed by leverage,
and call options are super-convex sets.

Based on the characterization above, we can
again use the Linkage Principle to rank the
expected revenues of first- and second-price
auctions. Here the proof relies on Lemma 4,
which allows us to interpret the second-price
format as a first-price mechanism in the convex
hull of the set of securities:

PROPOSITION 2: [f the ordered set of secu-
rities is sub-convex, then the first-price auction
vields lower expected revenues than the second-
price auction. If the ordered set of securities is
super-convex, the first-price auction Yyields
higher expected revenues than the second-price
auction. (This revenue comparison also holds
conditional on the winner’s type, for all but the
lowest type.)

One subtlety in the proof of Proposition 2 is
that the security paid by the lowest type is the
same for both auction formats (and is defined by
the zero-profit condition). Thus, neither format
employs a “‘steeper” security for that type. We
get around this problem by slightly perturbing
the support of the types for one of the auction
formats, comparing revenues, and taking the
limit.

Proposition 2 reveals that the auction format
can have an impact on revenues. As we have
seen, however, this revenue impact stems from
the difference in steepness between the set of
securities and their convex hull. This difference
is always less extreme than the difference in
steepness that can be obtained by changing the
security design directly. In that sense, the design
of the securities is much more important than
the design of the auction format in determining
revenues.

Revenue Equivalence for Convex Sets of Se-
curities.—While revenue equivalence does not
hold for general security auctions, it does hold
for cash, and holds for equity in our examples.
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Here we ask whether it can be recovered for
some classes of securities—that is, what is spe-
cial about cash?

From Proposition 2, revenue equivalence
fails in one direction for a super-convex set, and
in the opposite direction for a sub-convex set.
Hence, a natural candidate is a set in the middle,
i.e., a convex set:

DEFINITION: An ordered set of securities S is
convex if it is equal to its convex hull.

In fact, convex sets of securities have a sim-
ple characterization—each security is a convex
combination of the lowest security s, and the
highest security s,. Thus, each security can be
thought of as s, plus some “equity shares” of the
security (s; — ), and so it can be thought of as
a generalization of a standard equity auction.
Our main result in this section is that under
convexity, the Revenue Equivalence holds.

PROPOSITION 3 (Revenue equivalence): Ev-
ery efficient equilibrium of a GSM with securi-
ties from an ordered convex set yields the same
expected revenues. (This equivalence also holds
conditional on the winner’s type.)

Note that this is a stronger statement than
equivalence between a first- and second-price
auction, as it holds for any symmetric mecha-
nism. Also note that the standard envelope ar-
gument behind Revenue Equivalence does not
extend directly to security auctions. For cash,
there is no linkage between the true type and the
bidder’s expected payment when types are in-
dependent, so revenues depend only upon the
allocation.?’ That is not the case with security
bids, as we have seen. However, when the se-
curity set is convex, because paying a random
security is equivalent to paying the expected
security drawn from the same set, the expected
linkage across all mechanisms is identical.

D. Best and Worst Mechanisms
We can combine the results of the previous

two sections to determine the best and worst
security design and format combinations. Note

2! That is, in the case of cash auctions, (3) reduces to
U'(v) = F" (v).
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that, since debt is a sub-convex set, from Prop-
osition 2 the first-price auction is inferior to the
second-price auction, and conversely for call
options, which are super-convex. The following
proposition establishes that a first-price auction
with debt and with call options provides lower
and upper bounds for the seller’s revenue across
a broad class of mechanisms.

PROPOSITION 4: A first-price auction with
call options yields the highest expected reve-
nues among all general symmetric mechanisms.
A first-price auction with standard debt yields
the lowest expected revenues among all general
symmetric mechanisms.

Proposition 4 establishes that the design of the
security is more important than the specific auc-
tion format: the revenue consequences of shift-
ing from debt to call options in a first-price
auction exceeds the consequences of any
change in the auction mechanism.

We remark that Proposition 4 is stated with
respect to the particular set of feasible securities
we have allowed thus far. It can be extended in
the obvious way: for any feasible set, if there is
a steepest set of securities which is (super-)
convex, then a (first-price) auction using this set
yields the highest possible revenues. Similarly,
if there is a flattest set which is (sub-)convex,
then a (first-price) auction using this set yields
the lowest possible revenues.

For example, if bidders can pay cash, a cash
auction is the worst possible auction for the
seller. This is because cash, which is insensitive
to type, is even flatter than standard debt secu-
rities. Alternatively, the seller may be able to
increase revenues by using securities that are
even more leveraged than call options. For ex-
ample, the seller might pay the bidder cash for
additional equity. (See Section IV A for a fur-
ther discussion of this case.)

III. Informal Auctions: The Signaling Game

In the previous section we considered formal
auctions in which bidders are restricted to
choose securities from a specific well-ordered
set. In reality, there is often no such restriction.
That is, the seller is unable to commit to ignore
offers that are outside the set. As a result, the
seller will consider all bids, choosing the most
attractive bid ex post. In this case, the “security
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design” is in the hands of the bidders, who can
choose to bid using any feasible security.

Without the structure of a well-ordered set,
once the bids are submitted there is no obvious
notion of a “highest” bid. In this case, the seller
faces the task of choosing one of the submitted
bids. Since there is no ex ante commitment by
the seller to a decision rule, the seller will
choose the winning bid that offers the highest
expected payoff. Since the payoff of the secu-
rity depends on the bidder’s type, the seller’s
choice may depend upon his beliefs regarding
the bid each type submits in equilibrium. Thus,
this setting has the features of a signaling game
that takes the form:

(a) Bidders submit simultaneous bids that are
feasible securities.

(b) The seller chooses the winning bid.

(c) The winner pays his bid and runs the
project.

We consider a sequential equilibrium of this
game. We argue that in the informal auctions,
bidders will choose the flattest securities possi-
ble. That is, they will bid with cash, if it is
feasible; otherwise, they will bid with debt.
Thus, Proposition 4 implies that the seller’s
expected revenues are the lowest possible from
any general auction mechanism.

To gain some insight, consider first a case in
which bidders can use cash. We argue that in
equilibrium bidders use only cash. The intuition
for this result is as follows. Let S, be the secu-
rity bid by type v. When a bidder of type v
decides on his bid, he has the option to mimic
other types. In particular, he can mimic a type
v' = v — dv just below him. Such a deviation
has two effects. First, it will reduce his proba-
bility of winning to that of type v’. Second, it
will lower his expected payment if he wins from
ES,(v) to ES,(v). On the margin, these two
effects must balance out (otherwise there is a
profitable deviation).

But now suppose types just below v use se-
curity bids rather than cash. Consider the devi-
ation by type v to a cash bid of amount b(v") =
ES_.(v"). Since the seller values this cash bid
the same as the bid S, by type v’, the marginal
effect on the probability of winning is the same
as if he deviates to S,,. However, because the
expected value of the security is increasing in
the true type, the expected payment is b(v') =
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ES, (v') <ES, (v). Thus, if type vis indifferent
to a deviation using securities, he will profit
from a deviation using cash. As a result, an
equilibrium will involve only cash bids.

The second step of the logic above can be
applied even when cash bids are not available.
When mimicking a lower type, it is cheaper for
a higher type to use a security that is less sen-
sitive to the true type—i.e., a flatter security—
than that used in the proposed equilibrium. This
reasoning suggests an equilibrium will involve
the flattest securities available.

However, there is a difficulty with extending
this result when cash is not available. The gain
from a deviation depends crucially on the sell-
er’s evaluation of the bid. The argument we
gave above is simplified by the fact that the
value of a cash bid is unambiguous; the seller
does not need to rely on his beliefs. But when
bidders do not use cash, the value of any off-
equilibrium bid depends on the seller’s off-
equilibrium beliefs. As with general signaling
games, there are many equilibria of this game if
we do not impose any restrictions on the beliefs
of the seller when an “unexpected” bid is ob-
served.”?> We turn to such restrictions next.

A. Refining Beliefs: The DI Criterion

To rule out equilibria supported with arbi-
trary off-equilibrium beliefs, the standard re-
finement in the signaling literature is the notion
of strategic stability, introduced by Elon Kohl-
berg and Jean-Francois Mertens (1986). For our
purposes, a weaker refinement, known as D1, is
sufficient to identify a unique equilibrium.
The D1 refinement (see In-Koo Cho and David
M. Kreps, 1987; Cho and Joel Sobel, 1990) is a
refinement commonly used in the security de-
sign literature.?* Intuitively, the D1 refinement
criterion requires that if the seller observes an
out-of-equilibrium bid, the seller should believe

22 If the seller believes all off-equilibrium bids are made
by the lowest type, the gain from deviating is minimized.
These beliefs seem unreasonable, however, since many se-
curities would be unprofitable for the lowest type.

23 Strictly speaking, D1 is defined for discrete type
spaces. However, it can be naturally extended to continuous
types (see, e.g., Garey Ramey, 1996).

24 See, e.g., Nachman and Noe (1994) and DeMarzo and
Duffie (1999).
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the bid came from the type “most eager” to
make the deviation.

In order to define the DI criterion in our
context, we introduce the following notation.
First, let §' be the random variable representing
the security bid by bidder i, which will depend
on V,. For any feasible security S, let R'(S) be
the scoring rule assigned by the seller, repre-
senting the expected revenues the seller antici-
pates from that security, given his beliefs.
Along the equilibrium path, the seller’s beliefs
are correct, so that the scoring rule satisfies

(5) R(S) = E[ES(V))|S' = S].

Given the seller’s scoring rule, R', it must
also be the case in equilibrium that bidders are
bidding optimally. That is, conditional on V; =
v, S’ solves

6)  U'(v) = maxsP(R(S))(v — ES(v))

where P'(r) is the probability that r is the high-
est score.? Thus, U'(v) is the equilibrium ex-
pected payoff for bidder i with type v.
Suppose the seller observes an out-of-
equilibrium bid, so that the score is not deter-
mined by (5). Which types would be most likely
to gain from such a bid? For each type v, we can
determine the minimum probability of winning,
Bi(S, v), that would make bidding S attractive:

B(S, v) = min{p : p(v — ES(v)) = U'(v)}.

Then the D1 criterion requires that the seller
believe that a deviation to security S came from
the types which would find § attractive for the
lowest probability of winning?®:

(7) R(S) € ES(arg min B'(S, v)).

Thus, a sequential equilibrium satisfying the
D1 criterion for the auction game can be de-
scribed by scoring rules R' and bidding strategy
S for all i satisfying (5)—(7).

23 If there are ties, we require that P’ be consistent with
some tie-breaking rule.

26 We have economized on notation here. If the set of
minimizers is not unique, the score is in the convex hull of
ES(v) for v in the set of minimizers.
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B. Equilibrium Characterization

Using the D1 refinement, we can now extend
the argument we made for cash deviations to
other securities. Suppose type v mimics type
v’ = v — dv. The cost of doing so for type v is
ES, (v). Now suppose v instead deviates to a
security S that is flatter than S, and such that
ES(v") = ES,(v"). Because the security is flat-
ter, it has a lower cost for type v, ES(v) <
ES, (v). How would the seller respond to the
deviation S?

Because S is flatter than S, it is a more
expensive security for types below v’, and
cheaper for types above v’, than S,,. Therefore,
the types that are “most eager” to deviate to S
must be above v’. By D1, this implies that the
seller will evaluate S as at least as valuable as
S,. Therefore, if type v is indifferent to a de-
viation to S, he will profit from a deviation to
a flatter security S. As a result, an equilibrium
will involve only the flattest possible securities.

We now proceed with a formal statement of
our results. As is standard in the auction setting,
we will focus on symmetric equilibria.’” We
maintain Assumption C for the flattest securi-
ties, so that existence of an efficient equilibrium
of the first-price auction is assured. Then we
have:

PROPOSITION 5: Given symmetric strategies,
there is a unique equilibrium of the informal
auction satisfying D1. This equilibrium is equiv-
alent, in both payoffs and strategies, to the
equilibrium of a first-price auction in which
players bid with the flattest securities feasible.
In particular, if they can bid with cash, they will
use only cash; if cash is not feasible, they will
bid with standard debt contracts.

Again, we can now combine this result with
the result of the previous section to formalize
the value of the seller’s ability to commit to a
restricted set of securities.

COROLLARY: [f the seller can commit to a
formal auction with an ordered set of securities

27 That is, we restrict attention to equilibria in which the
bidders use symmetric strategies and the seller uses the
same scoring rule for all players.
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other than debt contracts, then expected reve-
nues are higher than without such commitment.

PROOF:
Follows immediately from Proposition 4 and
Proposition 5.

IV. Extensions
A. Relaxing the Liquidity Constraints

We have assumed that both the seller and the
bidders are liquidity constrained. We now ex-
plore implications of either the seller or bidders
having access to cash.

Moral Hazard: Non-Contractible Invest-
ment.—The main setting for our model is the
case in which the seller is liquidity constrained;
indeed, we can interpret X as an amount of cash
the seller must raise. But if X corresponds to
resources required for the project, and if the
seller has surplus cash, securities in which the
seller reimburses the winner for a portion of the
initial investment (and thus have S(0) < 0) are
feasible. Importantly, these securities can be
steeper than call options and so increase reve-
nues. For example, the seller could auction off
the rights to a fraction € of the cash flows and
reimburse the winner directly for the investment
(1 — &)X. By making e arbitrarily small, the
seller can extract the entire surplus. While this
theoretical mechanism was proposed by Crémer
(1987), it is not observed in practice. A likely
reason is moral hazard: if the winner’s invest-
ment is not fully contractible, and if the winner
receives only a small fraction of future reve-
nues, then he may underinvest.”®

For example, suppose that after the auction the
winning bidder i can choose whether to invest X.
If X is invested, the payoff of the project is Z; as
before, and his payment to the seller is S(Z). If X
is not invested, the payoff is 0, and his payment to
the seller is S(0). If S(0) = 0, the bidder’s payoff
is nonpositive without investment, and so the op-

28 For example, in several oil lease auctions run by the
U.S. Department of the Interior in which the bidders bid
high royalty rates, the oil fields were left undeveloped (and
the government received almost no revenues) because bid-
ders did not capture enough of the revenues to warrant their
private investment (see Ken Binmore and Paul Klemperer,
2002).
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tion not to invest is irrelevant. But suppose a bid
with S(0) < 0 is accepted with positive probabil-
ity. Then every bidder, including the lowest type,
can earn positive profits by making such a bid and
not investing. Yet if bidders do not invest and
S(0) < 0, the seller loses money. As a result, the
seller would choose not to accept such securities,
as shown below:

PROPOSITION 6: Suppose that the seller is
not liquidity constrained and the investment X is
not contractible. Then:

(a) In a first- and second-price formal auction
(with an ordered set of securities):

(i) If a security without reimbursement is
allowed, then with probability 1 the
winning bid satisfies S(0) = 0. That is,
competition between bidders rules out
reimbursement.

(ii) If all securities involve reimbursement,
then all bidders bid the highest allowed
security and do not invest, leading to
negative revenues for the seller.

(b) Any mechanism in which bids with S(0) <0
win with positive probability cannot be
efficient.

(¢) In an informal auction, securities with
S(0) < 0 are used with probability 0.

Thus, when X is not contractible, even if the
seller has cash we can rule out reimbursement
from the seller: it would either not occur in
equilibrium or not be in the seller’s best interest.

Partial Cash Bids.—Suppose bidders have
cash equal to B, where B is known and common
to all bidders.?° Cash relaxes the limited liabil-
ity restriction for bidders so that the flattest
securities are now debt claims on the total assets
of the bidder (cash + project), defined by

SP(d, z) = min(d, B + z)
= min(d, B) + min((d — B)", 2).
As the decomposition above reveals, we can

think of this security as an immediate cash
payment (up to B), plus a standard debt claim on

2% Che and Gale (2000), Zheng (2001), and Rhodes-
Kropf and Viswanathan (2000) consider models where the
cash amount is heterogeneous and privately known.
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the project (for amounts above B). Because
these securities become flatter as B increases,
the seller’s expected revenues decrease with B.
A pure cash auction, yielding the lowest possi-
ble revenues, is possible for a second-price auc-
tion if B exceeds vy, and for a first-price auction
if B exceeds the expected maximum type for
n — 1 bidders (which is less than v,). Thus, a
first-price auction yields lower revenues for the
seller as long as B < wvy. These results are
consistent with Board (2002), who considers
debt auctions and shows that they yield higher
revenues than cash auctions, with the smallest
effect for first-price auctions.

B. Reservation Prices

In this section we discuss briefly how reserva-
tion prices can be incorporated into our analysis.
Commitment to a reservation price can improve
the seller’s revenues, and even absent commit-
ment, a reservation price may be relevant if selling
the project entails an opportunity cost.

In the case of formal auctions, we assumed
earlier that the lowest security, s,, was such that
all types earn nonnegative profits; that is, ES(s,,
v;) = v;. A reservation price is equivalent to
assuming that s, restricts that set of types that
can profitably participate. In particular, if we
choose s, so that

ES(SO7 'U,) =Y

for some type v, € [v;, vyl, then v, is the
reservation price, and types below v, will not be
allocated the project. All of our results general-
ize to this case. In case of informal auctions,
since there is no commitment, we interpret v, as
the outside opportunity for the seller.

C. Affiliated Private and Common Values

Our model thus far is based on the classic
independent private values framework. We dis-
cuss here how our results generalize when val-
ues are affiliated (see Milgrom and Weber,
1982) and may have common, as well as pri-
vate, components.*® Formally we assume that:

30 Affiliation (essentially, the log-supermodularity of the
joint density function) implies that “good news” about one
of the variables (learning it lies in a higher interval), raises
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ASSUMPTION D: The private signals V =
Vi, ..., V) and payoffs Z = (Z,, ..., Z,) satisfy
the following properties:

(a) The private signals V; are affiliated and
distributed symmetrically with full support
[v., vyl

(b) Conditional on V = wv, the payoff Z; has
density h(z|v;, v_;) with full support [0, ).
The distribution is symmetric in the last n —
1 arguments.

(c) (Z, V) are strictly affiliated.

First we consider formal auctions with a fixed
auction format. Under appropriate conditions
there exists a unique symmetric increasing equi-
librium for both the first- and the second-price
auction.?! Given an efficient equilibrium, we
can generalize our result regarding the impact of
the security design on the seller’s revenues>>:

e Given a symmetric increasing equilibrium,
then fixing the mechanism (first- or second-
price), steeper sets of securities yield higher
revenues for the seller.>

The intuition for this result is the same as be-
fore—steeper securities increase the effective
competition between bidders since they are
more costly for higher types.

What about the comparison of auction for-
mats? Here it is useful to consider first the case
of affiliated private values (i.e., h(z|v;, v_;) does
not depend on v_,). In this setting, revenue
equivalence fails even for cash auctions, as
shown by Milgrom and Weber (1982). In our
setting:

e With affiliated private values, for both convex
and sub-convex sets of securities, second-
price auctions generate higher expected rev-
enues than first-price auctions.

the expectation of any monotone function of the variables.
With two random variables, it is equivalent to the MLRP.

3! For a second-price auction we do not need extra con-
ditions. For a first-price auction, we again need log-super-
modularity of the winner’s profit, which becomes more
complicated in this case.

32 See Appendix for proofs.

33 In this case, the notion of steepness is that given in
Lemma 5, which, combined with affiliation, will imply that
securities strictly cross in terms of their expected costs.
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This result again follows from the linkage princi-
ple, since the second-highest bid is affiliated with,
or “linked” to, the winner’s value. This linkage
creates an advantage for the second-price auction.

On the other hand, if there is a common value
component to the asset, this can have an oppos-
ing effect regarding the optimal auction format,
and create an advantage for a first-price auction.
We show this below for a case of independent
signals and common value:

e Suppose V, are independent, and E[Z,|V] =
3, V,.>* Then for an equity auction, the
first-price auction generates higher expected
revenues than a second-price auction.

The intuition for this result is that, since the
equity-share is increasing with the bidder’s
type, and therefore correlated with the asset’s
value, to generate the same expected revenues
the expected equity-share in the second-price
auction is lower than in the first-price auction.
But the lower average equity share reduces the
linkage to the winner’s own type, reducing rev-
enues in the second-price auction.

Finally, consider the setting of an informal
auction. With affiliated private values, our con-
clusions regarding the informal auction hold—
high types prefer to use flat securities to
separate from lower types:

e In the unique D1 equilibrium, bidders use the
flattest possible securities leading to the low-
est revenues for the seller.”

With common values the signaling game
becomes much more complex. Now, after ob-
serving the bids, the seller is potentially more
informed than the bidder. Thus the bidder
faces an adverse selection problem. This ad-
verse selection is mitigated by making the
seller’s payoff sensitive to revenues, poten-
tially leading bidders to bid using steeper
securities. We leave the analysis of this case
for future research.

3 This is the so-called “Wallet Game”; see Jeremy Bu-
low and Klemperer (2002).

3 The proof is the same as that of Proposition V with a
minor modification to step 3. Intuitively, affiliation provides
the seller with information about the bidder’s type after
observing other bids, but this plays no role in a separating
equilibrium.
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V. Conclusion

We have examined an aspect of bidding rel-
atively ignored in auction theory—the fact that
bidders’ payments often depend on the realiza-
tion of future cash flows. This embeds a security
design problem within the auction setting. First
we analyzed formal auctions in which the seller
chooses the security design and restricts bidders
to bid only using securities in an ordered set.
This enables a simple ranking of the securities
and the use of standard auction formats. We
showed conditions for which Revenue Equiva-
lence holds, and determined the optimal and
worst format and security design combinations.
In particular, we showed that revenues are in-
creasing in the steepness of the securities, and
demonstrated that the first-price debt auction
yields the lowest revenues, whereas a first-price
auction with call options yields the highest
revenues, across a broad class of possible
mechanisms.

Next, we considered informal auctions in
which the seller does not restrict the set of
securities or the mechanism ex ante, but
chooses the most attractive bid ex post. In this
case, security design is in the hands of the
bidders. We show that this yields the lowest
possible expected revenues for the seller, and is
equivalent to a first-price auction using the flat-
test feasible securities, such as debt or cash.
Thus, there are strong incentives for the seller to
be actively involved in the auction design and
select the securities that can be used.

Finally, we generalized our results to include
relaxed liquidity constraints (incorporating as-
pects of moral hazard), partial cash bids, reser-
vation prices, and affiliated and common
values. All of our main insights and results are
robust to these features.

There are a number of natural extensions to
our framework. For example, the role of the
security design often extends beyond the auc-
tion to determine the winner’s and seller’s in-
centives ex post. While we discuss a simple
moral hazard setting in Section IV A, more
general settings can be considered. Some of
these can be modeled as further restrictions on
the set of feasible securities. For example, con-
sider the case in which the winner has the op-
portunity to divert cash flows from the project,
with each dollar diverted generating a private
payoff of 6 < 1. In this case, by the usual
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revelation principle argument, we can restrict
attention to securities that do not induce diver-
sion, i.e., such that 1 — S’(z) = 6. Because this
limits the steepness of the security, it lowers the
revenues the seller can achieve using the opti-
mal formal auction. On the other hand, it also
rules out debt. So if bidders are cash con-
strained, the flattest possible securities have the
form S(d, z) = min(d, (1 — )z). Because these
securities are not as flat as standard debt, the
revenues of the seller are in fact enhanced by
this restriction.*®

More generally, our analysis provides clear
intuition for the way in which moral hazard
concerns will interact with competition and rev-
enues in the auction. For example, if the reve-
nues of the project are costly to verify, we know
from Robert Townsend (1979) that it is optimal
for the party who observes the cash flows to be
the residual claimant. Thus, if the seller ob-
serves the cash flows, the optimal agency con-
tract is a call option, which also maximizes the
auction revenues. If the winner observes the
cash flows, there is a tradeoff between verifica-
tion costs, which are minimized with debt se-
curities, and auction revenues.

For mergers and acquisitions, tax implica-
tions and accounting treatment are likely to be
important. For example, the deferral of taxes
possible with an equity-based transaction may
give rise to the use of equity bids even in an
unrestricted setting. Our results imply that this
tax preference can also lead to enhanced reve-
nues for the seller.

It would be useful to allow for more compli-
cated information structures. For example, bid-
ders may have private information not only
about V but also about X, or the seller may have
private information. Another extension of our
model that would be useful in applications
would be to allow for asymmetries in bidders’
valuations and costs. One difficulty is that in
such a setting, it may be impossible to ensure an
efficient outcome (see, for example, recent work

36 Similarly, if the seller can divert cash flows, the con-
straint becomes S’(z) = &, which rules out cash or debt and
enhances revenues in an informal auction. Other moral
hazard settings can also be considered. If the winner can add
arbitrary risk (see, e.g., S. Abraham Ravid and Matthew 1.
Spiegel, 1997), then bidders are restricted to using convex
securities. See also Samuelson (1987) for a discussion of
other potential constraints on the security design.
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by Sandro Brusco et al., 2004, in the context of
mergers).

APPENDIX

Proofs of all technical lemmas are available
from the AER Web Appendix. We provide here
the proofs of all propositions in the text.

PROOF OF PROPOSITION 1:

The reasoning for the second-price auction
was provided in the text. For the first-price
auction, let U’(v) be the equilibrium payoff for
type v, and §, the security bid, with the set S;.
Efficiency implies U'(v,) = U*(v;)) = 0. By
condition (2), if U'(v) = U*(v), we have
ES!(v) = ES*(v). If 8, is steeper than S,, then
ES, (v) > ESf,’(v). Thus, from the envelope
condition,

U"(v) = F"~'(v)(1 — ES}'(v))
< F""Y(v)(1 — ES¥(v) = U*(v).

Hence, U'(v) < U*(v) for v > v,. Since bid-
ders’ payoffs are lower, the seller’s expected
revenue is higher for each realization of the
winning type under S;.

PROOF OF COROLLARY TO
PROPOSITION 1:

Since debt has slope 1 and then 0, it strictly
crosses any other nondebt security from above.
Call options have slope 0 and then 1, and so
strictly cross any other nonoption security from
below. The result then follows directly from
Proposition 1.

What about the comparison of debt securi-
ties to other sets that may include debt? The
proof for second-price auctions is unchanged.
But for first-price auctions, we have the minor
difficulty that a debt security does not strictly
cross another debt security. In that case we
modify the set of debt securities by adding &
in cash, i.e., the security payoff is S(z) =
min(z, d) + e. This set strictly crosses any
other set from above, and so the revenues can
be ranked as in Proposition 1. The result then
follows from the continuity of the equilibrium
strategies and payoffs in the first-price auc-
tion as we take the limit as ¢ — 0. We can do
the same for call options by subtracting cash
e from each security.
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PROOF OF PROPOSITION 2:

Consider the direct revelation game corre-
sponding to the two auctions. Let S! be the
security bid in the first-price auction, and let 2
be the expected security payment in the second-
price auction for a winner with type v, defined
as in Lemma 4. Then, if the set of securities is
super-convex, S! crosses S2 from below, and a
nearly identical argument to that used in the
proof of Proposition 1 for first-price auctions
can be applied to prove that the seller’s ex-
pected revenues are higher in the first-price
auction.

The only complication is that the securities
issued by the lowest types are identical in the
first- and second-price auctions, so that the
securities do not strictly cross and U''(v;) =
U?'(v;). To resolve this, we can change the
support in the first-price auction to [v, + &,
vyl, with an atom at v, + & with mass equal
to that originally on the set [v,, v, + &].
Now, U'(v, + &) = 0 < U*(v, + €), and by
the same argument as in the proof of Propo-
sition 1, U'(v) < U*(v) for all v = v, + &.
Then by the continuity of the strategies and
payoffs in the boundary of the support v, +
g, the first-price auction has weakly higher
revenues. However, since the securities
strictly cross for higher types, the revenues
cannot be equal.

The proof for sub-convex sets is identical,
with the inequalities reversed (and taking the
limit of the support for the second-price
auction).

PROOF OF PROPOSITION 3:

In a GSM, the winner pays according to a
random security. From Lemma 4, the expected
payment by type v reporting v’ can be written as
ES, (v), where S is in the convex hull of the
ordered set of securities S. Since S is convex, we
can define s*(v") such that

S(s*(v'), ) = 8,0).

Because S is ordered, incentive compatibility
implies s*(v) must be increasing; otherwise a
bidder could raise the probability of winning
without increasing the expected payment. Thus,
s*(v) defines an efficient equilibrium for the
first-price auction. The result then follows from
the uniqueness of equilibrium in the first-price
auction.
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PROOF OF PROPOSITION 4:

The proof follows that of Proposition 2,
except that instead of the second-price auc-
tion we consider a general symmetric mech-
anism over some subset of the feasible
securities. The result follows, as a call op-
tion contract is steeper and a standard debt
contract is flatter than any convex combina-
tion of feasible securities (where we use the
same trick as in the proof of the Corollary
to Proposition 1 if the sets of securities
intersect).

PROOF OF PROPOSITION 5:

We focus on the no-cash case, as the argu-
ment with cash is similar (and even simpler as
off-equilibrium beliefs do not play any major
role). In step 1, we show existence of a debt-
based equilibrium that survives the D1 refine-
ment. In steps 2 and 3, we show that no other
equilibrium exists. In step 2, we prove that
any equilibrium is equivalent to the equilib-
rium of a first-price auction in debt contracts.
In step 3, we use the envelope condition to
argue that the securities used in the original
equilibrium must have been debt as well.

The proof differs somewhat from the intuition
in the text, which considers deviations by type v
to mimic type v’ = v — dv. This “local devia-
tion” is more intuitive but is not precise since
types are not discrete and therefore there is no
nearby type v’ that type v is truly indifferent
toward mimicking.

Step 1: The equilibrium from a first-price
debt auction is a D1 equilibrium in the unre-
stricted auction (with appropriate off-equilibrium
beliefs).

We need to demonstrate that given the strate-
gies from the debt auction, there is a set of
beliefs satisfying D1 that support this equilib-
rium in the unrestricted auction. We construct
the beliefs R using (5) and (7). If (7) does not
produce a unique score, we can choose the
lowest one. We now show that this supports the
equilibrium.

Step 1la: For debt contracts, the score is in-
creasing in the face value of the debt. That
is, R(S%) is increasing in d, where Sz =
min(d, z).
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Note that
v — ESY(v)
arg min,B(S¢, v) = arg max, UG

Because the objective function is strictly log-
supermodular by Assumption C, from Donald
M. Topkis (1978) we know that v is weakly
increasing with d. Thus, (7) implies R(S) is
increasing in d.

Step 1b: R supports an equilibrium in the un-
restricted auction.

Consider any deviation to a debt contract. From
Step la, the probability of winning the auction
is the same as in a first-price auction. Since we
have a first-price equilibrium, there is no gain to
the deviation. Consider a deviation to a nondebt
contract S. To show it is not profitable for any
type, we must show that P(R(S)) = min, B(S, v).
Let v be the highest type in the set that mini-
mizes B(S, v). Then ES(v) = R(S). It is suffi-
cient to show that type v does not find the
deviation to § profitable, i.e., to show that
P(R(S)) = B(S, v).

Find d such that ES%v) = ES(v). Then B(S%,
v) = B(S, v). From Lemma 5, types v’ < v find
S¢ more expensive than S, so that B(S¢, v') >
B(S, v') = B(S, v). Therefore, arg minv,B(Sd,
v') = v, and so from (7),

R(S9) = ES“(v) = R(S).

Thus, if a deviation to S is profitable, so is a
deviation to $?. But this contradicts the fact that
no deviation to a debt contract is profitable.

Step 2: A symmetric D1 equilibrium in the
unrestricted auction has the same payoffs as the
equilibrium of a first-price debt auction.

Our method of proof is to show that any non-
debt bids can be replaced with an equivalent
debt bid without changing the equilibrium.

Step 2a: If S is not a debt contract, then at most
one type uses this security.

Suppose not, so that v; < v, are the lowest and
highest types that use S. Then, by (5), R(S) =
ES(v*) for some v; < v* < w,. Consider the
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debt contract S with the same cost for type v*,
i.e., such that ESY(v*) = ES(v*). From Lemma
5, types v < v* find the S more expensive than
S, so that B(S%, v) > P(R(S)). Therefore, arg
min, B(S?, v) = v*. Thus, from (7), R(SY) =
ES“(v*) = R(S). But this contradicts an equilib-
rium, as type v, finds S strictly cheaper than §
with a weakly higher score.

Step 2b: Suppose type v uses contract S, and let
d(v) be the debt level that for type v has equal
cost, i.e., ES"?(v) = ES(v). Then bidding $9
has the same payoff as bidding S, and so is also
optimal for type v. Because S is an equilibrium
bid, P(R(S™”)) = P(R(S)) by (6). However, by
the same argument used in the previous step,
lower types find S“” more costly than S so that
B(S“”, v") > P(R(S)) for v' < v. Hence,
R($“?) = ES““(v) = R(S). Thus, P(R(S"")) =
P(R(S)). The result follows since the cost and
probability of acceptance of bidding debt with
face value d(v) and bidding S are the same for

type v.

Step 2c: d(v) is the unique symmetric equilib-
rium for a first-price debt auction and it is
increasing. From Step 2b, bidding debt d(v) is
optimal and so solves

U(v) = P(R(S""))(v — ES""(v))
= max,P(R(S) (v — ES“(v)).

Using the same logic as in step la, R(S9) is
increasing in d. Therefore, this maximization
problem is identical to the problem faced by
bidders in a debt-only first-price auction.
Uniqueness and monotonicity follow from
Lemma 3.

Step 3: In a symmetric D1 equilibrium in the
unrestricted auction, almost every bid is a debt
contract. From Step 2 and Lemma 3, the equi-
librium payoff of type v in the first-price auction
with debt is

U(v) = F'~'(v)(v = ES"(v)),
and U is differentiable. Suppose v € (v;, vy)

bids S in equilibrium. By a standard envelope
argument,

U'(v) = F' '(v)(1 — ES'(v)).
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Thus, ES(v) = ES“’(v) and ES'(v) =
ES“*'(v). Therefore by Lemma 5, § = §%*.

PROOF OF PROPOSITION 6:
Case 1: First- and second-price auctions

Let 5" be a bid that wins with positive prob-
ability such that S(s’, 0) < 0. Due to the
moral hazard problem, submitting this bid
earns strictly positive profits for any type,
since any type can simply not invest and
collect —S(s’, 0) in a first-price auction, or
even more in a second-price auction (since
the second highest bid is below s’). Thus, by
incentive compatibility, all equilibrium bids
earn positive profits.

Let s be the lowest bid submitted. Then the
above implies this bid must win with positive
probability. Since it is the lowest bid, this im-
plies a tie—that is, s is submitted with positive
probability. But then raising the bid slightly
would lead to a discrete jump in the probability
of winning and hence in profits. Incentive com-
patibility therefore implies s = s,, the highest
possible bid. If S(s,, 0) = 0, this contradicts the
existence of s". If S(s;, 0) < 0, then all types bid
s;. But at 5, all types lose money if they run the
project. Therefore, all types bid s,, do not in-
vest, and collect —S(s;, 0) > 0 from the seller.

Case 2: General mechanisms

In an efficient mechanism, the lowest type wins
with zero probability and so earns zero expected
profits. Since lowest type can claim to be any
type and not invest, it must be the case that no
type with positive probability of winning pays a
security with S(0) < 0 with positive probability.

Case 3: Informal auctions

Here the result follows immediately from our
result that an equilibrium will always use the
flattest possible securities. If S(0) < 0, we can
“flatten” the security by raising S(0) and flat-
tening it elsewhere.

PROOF OF RESULTS IN SECTION IV C:

Result 1: Consider a first-price auction and two
sets of securities A and B where A is steeper
than B. Let §% and S? be the equilibrium bid
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for type v using these two sets. Consider the
expected payments of a type v who bids as type
v’

Mj(v’ U’) = E[Sjv’(zt)|vt = U, V>El = U/]
forj=A, B.
Suppose M*(v, v) = M®(v, v). Given affiliation,
a direct generalization of Lemma 5 implies that
M (v, v) > M%(v, v). The conclusion then fol-

lows from the same linkage principle argument
as in the proof of Proposition 1.

Now consider a second-price auction. The equi-
librium bid satisfies the zero profit condition:

E[S/v(zz)|v1 =, Vﬂil = U]
=E[Z,— X|V,= v, V¥, = v].

The proof follows the same logic as in Propo-
sition 1; the seller’s revenues depend on the set
of securities through the difference

E[Si;z(zi)|‘4 =0, V5 =10]

- E[S/vz(zl)"/l = 'Uz, wi = vz].

Again, affiliation implies this difference will be
larger for steeper securities.

Result 2: Consider a set A of securities that is
convex or sub-convex. Let §’ be the bid of
type v in a j-price auction. The expected
payment for type v who bids as v’ in a first-
price auction is

M'(v, v') = E[S} (Z)|V. = v, V¥, = 7]
= E[SL'(ZI‘)|VI‘ = v]

where the second equality follows from the pri-
vate value assumption. For a second-price auction,

M(v, v') = E[S3+(Z)|V; = v, V¥, = ']

= E[52 ’(Zi)|Vi =]

U,

where S2,,(z) = E[Sy(2)|Vi = v, V¥, = v'] for
all z; the security 2 . is in the convex hull of A.

Suppose M'(v, v) = M*(v, v). To apply the
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linkage principle, we must show that M} (v, v) <
M3 (v, v). But this follows since (a) Sf,’v is in the
convex hull of A and therefore is steeper than
S! and (b) affiliation and the monotonicity of
bids implies that E[S,Zj’vr(Zi)|Vi] is increasing
in v.

Result 3: Let o/(v) be the equity bid of type vin
a j-price auction. Then

M (v, v') = E[a'(v")Z|V, = v, V¥, = v']

a'(v)E[Z|V: = v, V¥, = 0]
M* (v, v') = E[az(vﬂii)zh/i =0, V¥, < ¢']
> E[a*(VE)|VE, = v']

X E[Z|V;= v, V¥, =]

where the inequality follows since o*(V* ) and
Z are positively correlated, and we use the as-
sumption that types are independent. Therefore,
M'(v,0")=M?*(v,v") implies that

a'(v') > E[o*(VE)|VE, = v'].
But since E[Z]V] = 3, V,,
Mi(v, v') = a'(v') > M3 (v, v')
= E[a*(VE)|V,= v, V¥, = v'].

Thus, the result follows from the linkage
principle.
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