
����������
�������

Citation: Donisi, L.; Ricciardi, C.;

Cesarelli, G.; Coccia, A.; Amitrano, F.;

Adamo, S.; D’Addio, G.

Bidimensional and Tridimensional

Poincaré Maps in Cardiology: A

Multiclass Machine Learning Study.

Electronics 2022, 11, 448. https://

doi.org/10.3390/electronics11030448

Academic Editor: Pawel Strumillo

Received: 14 December 2021

Accepted: 30 January 2022

Published: 2 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Bidimensional and Tridimensional Poincaré Maps in
Cardiology: A Multiclass Machine Learning Study
Leandro Donisi 1,2 , Carlo Ricciardi 2,3 , Giuseppe Cesarelli 2,4,* , Armando Coccia 2,3 ,
Federica Amitrano 2,3 , Sarah Adamo 2,3 and Giovanni D’Addio 2

1 Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy;
leandro.donisi@unina.it

2 Bioengineering Unit, Institute of Care and Scientific Research Maugeri, 82037 Telese Terme, Italy;
carloricciardi.93@gmail.com (C.R.); armando.coccia@unina.it (A.C.); federica.amitrano@unina.it (F.A.);
sarah.adamo@icsmaugeri.it (S.A.); gianni.daddio@icsmaugeri.it (G.D.)

3 Department of Electrical Engineering and Information Technologies, University of Naples “Federico II”,
80125 Naples, Italy

4 Department of Chemical, Materials and Production Engineering, University of Naples “Federico II”,
80125 Naples, Italy

* Correspondence: giuseppe.cesarelli@unina.it

Abstract: Heart rate is a nonstationary signal and its variation may contain indicators of current
disease or warnings about impending cardiac diseases. Hence, heart rate variation analysis has
become a noninvasive tool to further study the activities of the autonomic nervous system. In this
scenario, the Poincaré plot analysis has proven to be a valuable tool to support cardiac diseases
diagnosis. The study’s aim is a preliminary exploration of the feasibility of machine learning to classify
subjects belonging to five cardiac states (healthy, hypertension, myocardial infarction, congestive
heart failure and heart transplanted) using ten unconventional quantitative parameters extracted
from bidimensional and three-dimensional Poincaré maps. Knime Analytic Platform was used to
implement several machine learning algorithms: Gradient Boosting, Adaptive Boosting, k-Nearest
Neighbor and Naïve Bayes. Accuracy, sensitivity and specificity were computed to assess the
performances of the predictive models using the leave-one-out cross-validation. The Synthetic
Minority Oversampling technique was previously performed for data augmentation considering the
small size of the dataset and the number of features. A feature importance, ranked on the basis of the
Information Gain values, was computed. Preliminarily, a univariate statistical analysis was performed
through one-way Kruskal Wallis plus post-hoc for all the features. Machine learning analysis achieved
interesting results in terms of evaluation metrics, such as demonstrated by Adaptive Boosting and k-
Nearest Neighbor (accuracies greater than 90%). Gradient Boosting and k-Nearest Neighbor reached
even 100% score in sensitivity and specificity, respectively. The most important features according to
information gain are in line with the results obtained from the statistical analysis confirming their
predictive power. The study shows the proposed combination of unconventional features extracted
from Poincaré maps and well-known machine learning algorithms represents a valuable approach
to automatically classify patients with different cardiac diseases. Future investigations on enriched
datasets will further confirm the potential application of this methodology in diagnostic.

Keywords: cardiology; electrocardiography; heart-rate variability; machine learning; Poincaré plot

1. Introduction

This paper is an extension of the work originally presented in the 2020 11th conference
of the European Study Group on Cardiovascular Oscillations [1].

Developments in the measurement and available devices have led to even more
accurate observations on the heart rate and its variations; this led to defining heart rate
variability (HRV) as a diagnostic tool for heart disease evaluations.
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Traditionally, HRV analysis from short-term laboratory recordings is based on time
and frequency domains measurements [2,3]. Other methodological approaches, mainly
based on nonlinear dynamics properties of the heart rate variability signal, are applied to
long-term time series, owing to the need for large amount of data to derive the desired
indexes [4,5]. The Poincaré plot is a simple and robust graphical technique which can
be applied both to long- and short-term HRV recordings, in order to extract relevant
information on beat-to-beat signal dynamics [6].

Machine learning (ML) is a branch of artificial intelligence whose aim is to recognize
hidden patterns automatically from data. Recently, it has been frequently used to deal with
biomedical issues in several contexts: cardiology [7,8], fetal monitoring [9–11], medical
imaging analysis [12,13], oncology [14–16] and in several other medical specialties [17–19].
Problems regarding regression or classification have been solved by applying state-of-art
algorithms which proved to help clinicians in handling difficult tasks.

Previous studies have shown that abnormal Poincaré maps, classified by visual exami-
nation, are better predictors of cardiac mortality in heart failure patients than conventional
indexes [20,21]. To overcome the limitation of subjective evaluation of the plots, our group
introduced new signal-processing procedures to automatically quantify major morphologi-
cal characteristics of these plots [22,23].

The question remains whether it is possible to use Poincaré maps—2D and 3D—and
new unconventional quantitative features extracted from Poincaré maps to discriminate
different cardiac issues since, to the best of our knowledge, there are no existing similar
systems which have used these parameters to perform a 5-group classification in cardiology.
Indeed, our aim was to prove the feasibility of the proposed parameters in distinguishing
five types of cardiac issues. To reach this scope, we fed ML algorithms using the above-
mentioned features through a dedicated software developed by the authors [23].

Our preliminary findings indicate that the proposed combination of features and
algorithms represents a valuable approach to automatically discriminate several cardiac
conditions. This finding confirms the potential application of this methodology as a
valid tool to support the clinical decision making of patients affected by different cardiac
pathologies.

Several publications have appeared in recent years showing how ML algorithms
contributed to classifying cardiac pathologies. For example, Isler and co-workers [24] inves-
tigated the best features subset for a binary classification problem (namely, congestive heart
failure (CHF) versus healthy controls) but setting up a multi-stage classification strategy to
accomplish the highest diagnosis accuracy. The authors considered different typologies
of features (even some extracted from Poincaré maps), preliminary outcomes following a
one-step classification process by means of several ML algorithms and results comparisons
related to these algorithms evaluating the differences of different cross-validation meth-
ods [25]. Gong and co-workers [26] presented a similar work whose last scope was to find
out eventual enhancements in the testing stage runtime of the proposed ML classification
strategy. The authors assessed whether a precise feature subset (in which they included
3 Poincaré maps features out of 10)–Adopted following a histogram-manual feature se-
lection, where they were extracted from segmented 5 min ECG acquisitions–Fed neural
network to provide evidence to distinguish arrhythmia and normal state ECG in few (about
200) milliseconds. Finally, Zhao and co-workers [27] analyzed, instead, the concomitant
extraction of features from HRV and pulse transit time variability to assess potential im-
provements in CHF investigation using a ML strategy. The authors observed the features
extracted from pulse transit time variability helped to increase the classification scores.

Although ML strategies proved effective in many binary classification problems, most
of the previous studies do not focus on multi-group classifications and, moreover, do not
investigate as potential features non–Standard ones extracted from Poincaré maps. With this
goal, this work integrates the preliminary findings observed in [1] exploring improvements
in the classification performance of 5 classes of patients using the quantitative features
extracted from Poincaré maps (Figure 1).
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Figure 1. Study workflow. ECG recordings are processed to achieve Poincaré maps from which
specific features are extracted. Finally, ML strategies are fed (using these features) to demonstrate
that the selected algorithms are capable to suitably classify the group to which each Holter record
belongs to. Attributions: 2022 electrocardiogram from Wikimedia and ecg machine by ProSymbols
from the Noun Project.

The implementation of ML-based tools in physiology, e.g., in the cardiovascular field,
has attracted attention and is influencing the biomedical community. The introduction of
parameters (i.e., those extracted from Poincaré maps) could represent a potential support
for physiologists called to make specific decisions which can save patients’ lives.

2. Materials and Methods
2.1. Dataset

The non-linear time series analysis (NOLTISALIS) database was collected by the coop-
eration of several university departments and rehabilitation clinics in Italy. The NOLTI-
SALIS database includes RR series of 50 patients (extracted from 24-h Holter recordings)
of subjects marked by the following health states: normal (N), hypertension (H), (after)
myocardial infarction (M), CHF (C) and heart transplanted (T). The RR data were grouped
accordingly in the 5 different classes, after the subsequent analyses: firstly, ECG data
were recorded using different Holter devices. Later, beats were labelled using automated
procedures through a proper analysis software. The detected beats were: N (normal), V
(ventricular ectopic), S (supraventricular ectopic) or X (artifacts). As confirmation, expe-
rienced Holter scanning technicians manually verified the annotations. Finally, artifact
detection and a correction on ectopic beats were performed as reported in [28].

2.2. Poincaré Plot Analysis

The technique is based on the analysis of the maps constructed by plotting each RR
interval against the previous one. Usually bi-dimensional plots are visually classified into
three typical patterns: a comet-shaped pattern, a torpedo-shaped pattern and a fan-shaped
pattern [20]. This approach (based on a visual classification) is marked by an intrinsic
limitation: plots evaluation results subjective.

To overcome this issue, several investigations were designed to extract features from
signals [29]; a pertinent example in the Poincaré field was proposed by D’Addio and co-
workers who developed a dedicated software able to automatically quantify morphological
features of bi-dimensional and three-dimensional Poincaré maps; the technical details
are described elsewhere [30]. The software is able to extract 10 features. About the 2D
Poincaré plot, algorithms for binary image analysis were applied in order to eliminate
salt and pepper noise (isolated points or points below a default degree of connection),
the presence of which would have incorrectly altered the estimation of the parameters.
To reach this aim, all connected components, namely objects, that have fewer than four
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pixels from the binary image (namely, the 2D Poincaré Plot) were removed through an
operation known as area opening. Moreover, a flood fill operation on background pixels
of the input binary image was executed starting from the points specified. The features
extracted from bidimensional plot (Figure 1) are measures of the extension and dispersion
of the ellipsoidal cloud of points around the bisecting line, namely: Length (L), Area (A),
Highest Variability Extension (HVE)–Obtained by scanning the bidimensional plot with
a vertical line and generating a curve which represents the measure of the scatter plot
width at different RR intervals–and the percentage of the length which corresponds to the
maximum plot wideness (P). Three-dimensional plots consider the RR couples repetition’s
number and the times this condition has been repeated. The features extracted from three
dimensional plots are measures related to the plot’s height, as shown in Figure 1: the peak
number (Np) is the RR couple’s repetition number, Dp is the mean peaks distance from
the bisecting line and the triplet (ρx, ρy, ρz) is the length of the three radii of inertia of the
semi-ellipsoidal three-dimensional cloud of points by looking at the 3D plot (Figure 1),
as composed of point masses of a discrete material system of N points [31]. The peaks
shown in Figure 1 were identified by a threshold value defined in percent of the maximum.
To select a threshold as independently as possible from the number of identified peaks, a
threshold value equal to half the maximum was set.

2.3. Statistical Analysis

A univariate statistical analysis was performed for each parameter extracted from the
Poincaré maps for each patient (File S1). Due to the low amount of data, the analysis was
led with non-parametric tests. Indeed, Kruskal Wallis ones were conducted to distinguish
the classes of cardiac pathologies; specifically, the test’s aim was to find at least one
different group compared with all the others. Furthermore, a post-hoc test was performed
when the previous ones proved significant (p-value < 0.05); specifically, the post-hoc aim
was to compare each couple of features when the Kruskal-Wallis is significant. Then,
a multinomial logistic regression was performed on the as-is dataset to understand the
feasibility in distinguishing the classes without employing any artificial augmentation of
the data. A correlation among the variables was computed and those correlated with a
coefficient lower than 0.70 were kept; no outliers were removed and the goodness of fit
with the confusion matrix were computed. The whole analysis is shown in the “Statistical
analysis” subsection of the “Results” section.

2.4. Machine Learning Tool and Algorithms

The following four machine learning algorithms were implemented.
Gradient boosting (GB) re-defines boosting as a numerical optimization problem. GB

aim is to minimize the loss function of the model by adding weak learners using gradient
descent, namely a first-order iterative optimization algorithm for finding a local minimum
of a differentiable function. In this work, the tool used is a combination of decision trees
measure and boosting technique. This method will raise the sample weight of the previous
decision tree classified wrongly, which pays them more attention in the training of the next
decision tree; thus, with more trees built, less and less samples are misclassified [32]. In our
paper, one hundred models were employed with a learning rate of 0.1 and a maximum tree
depth of four.

AdaBoost algorithm (ADA-B), short for Adaptive Boosting, is a meta-algorithm (for-
mulated by Yoav Freund and Robert Schapire [33]) used as an ensemble method in machine
learning. It reassigns the weights to each instance with higher values to incorrectly classify
the instances. ADA-B allows to reduce bias as well as the variance for the supervised
learning. An ensemble of decision stump (decision tree with only one node and two leaves)
were considered in the present study. In this paper, J48 was unpruned, and the Minimum
description length criterion was set on while the number of iterations for the ADA-B was
set to 10.
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K Nearest Neighbor (kNN) is one of the oldest and simplest methods for pattern
classification. Nevertheless, it often produces competitive results. The kNN rule classifies
each unlabelled instance by the majority label class among its k nearest neighbors in
the training set. Thus, its performance depends crucially on the distance metric used to
identify the nearest neighbors. In the absence of prior knowledge, most kNN classifiers
use simple Euclidean metric to measure the dissimilarities between instances represented
as vector inputs [34], as in the case under study. The traditional kNN usually assumes
that the training samples are equally distributed among different classes: this assumption
matches with our dataset where classes are perfectly balanced. Furthermore, applying the
stratification, the assumption is valid in the training set too. Finally, it is worth highlighting
k is the most important parameter in a classification system based on kNN, because the
classification performance is very sensitive to the choice of the parameter k [35]. In this
work, k was set equal to 3 without a weight for the distance and the algorithmic search for
the neighbour was linear.

Naive Bayes (NB) is a probabilistic learning algorithm, based on Bayes’ theorem. The
algorithm computes the probability of each class for a specified instance and then outputs
the class with the highest probability. NB requires few data for training and little storage
space; this is a positive aspect for the case under study, because we analyzed a small
dataset. Furthermore, it is worth highlighting the algorithm results quick in the training
phase and does not require setting many parameters; nevertheless, it is based on a strong
assumption, i.e., the conditional independence of the features (more precisely, all features
are independent given the value of the class). Despite this basic assumption, NB shows
good performances in the case of dependence between features, even if it shows decreasing
performances when there is a strong correlation between two or more features [36].

Synthetic Minority Oversampling technique (SMOTE) was implemented to augment
data considering the small size of our initial dataset. SMOTE selects potential examples
that are close in the feature space, draws a line between the examples in the feature space
and finally designates a new sample at a point along that line [37,38].

Leave-one-out cross-validation (LOOCV) was performed to validate the four predic-
tive models. LOOCV is a special case of cross-validation where the number of folds equals
the number of instances in the data set [39]. Thus, the learning algorithm is applied once
for each instance, using all other instances as a training set and using the selected instance
as a single-item test-set.

Furthermore, a subsequent investigation using the wrapper method was employed in
order to find the best subset of features that could maximize the accuracy of the model by
building iteratively a model and adding/subtracting features during each cycle of learning.
Indeed, the usefulness of this method relies on the elimination of useless features and the
building of a more reliable model based on a reduced set of features. A hold out cross-
validation (70% for training and 30% for test) was used and the wrapper was applied on
the training set while the evaluation metrics were computed on the test set [39]. Indeed, the
use of the feature selection method has shown great potential in previous papers [40–43].

Knime analytics platform (v. 4.2.0) was chosen to conduct the ML analysis in light
of its consideration in literature [44,45] as the best platform for advanced ML users. It
allows to create workflows of ML analysis by combining nodes and without the need
for programming languages. Several recent biomedical studies have been conducted
by choosing this platform [46–49], even to analyse data regarding the actual pandemic
scenario [50,51].

3. Results
3.1. Statistical Analysis

Table 1 reports the results obtained by applying the Kruskal Wallis test on each
parameter (Par) among the 5 classes extracted through the Poincaré plot analysis, while
Table 2 shows the results of the post hoc test for the variables resulting significant in Table 1.
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Table 1. Univariate statistical analysis performed through one-way Kruskal Wallis plus post-hoc for
all the variables.

Par C H M N T p-Value

L 540.0 ± 113.2 801.0 ± 138.2 640.0 ± 111.6 803.0 ± 107.7 360.0 ± 95.8 ***
HVE 143.6 ± 66.2 232.6 ± 70.2 176.4 ± 42.2 227.9 ± 73.8 118.4 ± 39.7 ***

P 55.3 ± 12.0 60.3 ± 13.3 61.9 ± 14.7 61.5 ± 5.7 50.1 ± 16.8 0.296
A # 8.0 ± 4.4 17.4 ± 6.4 10.5 ± 2.9 16.9 ± 6.4 4.4 ± 1.5 ***
Np 15.7 ± 11.7 24.9 ± 7.6 36.8 ± 18.5 44.3 ± 20.6 6.1 ± 3.9 ***
Dp 3.1 ± 2.0 1.1 ± 1.1 5.2 ± 2.6 5.1 ± 1.5 0.6 ± 1.3 ***

V ## 1.1 ± 0.2 1.1 ± 0.1 1.0 ± 0.2 1.0 ± 0.1 1.2 ± 0.1 0.118
ρx 49.9 ± 9.0 41.1 ± 3.4 41.7 ± 10.6 39.1 ± 4.6 75.5 ± 22.6 ***
ρy 100.4 ± 13.5 139.9 ± 36.7 110.0 ± 12.5 136.8 ± 19.8 106.7 ± 17.8 ***
ρz 88.1 ± 19.2 136.6 ± 38.6 103.4 ± 17.8 134.6 ± 20.8 71.2 ± 27.2 ***

Legend: #: Values must be multiplied to 103; ##: values must be multiplied to 106; *** = significance at “<0.001”.

Table 2. Post-hoc for all the significant variables resulting from the Kruskal Wallis test.

Par Classes p-Value

L

T-M 0.034
T-H <0.001
T-N <0.001
C-H 0.031
C-N 0.018

HVE
T-N 0.009
T-H 0.002
C-H 0.039

A

T-N <0.001
T-H <0.001
C-N 0.034
C-H 0.022

Np

T-M <0.001
T-N <0.001
C-N 0.020

Dp

T-M 0.001
T-N <0.001
I-M 0.012
H-N 0.006

ρx

T-M <0.001
T-N <0.001
T-H 0.001

ρy
T-N 0.021
C-H 0.010
C-N 0.001

ρz

T-H 0.002
T-N <0.001
C-H 0.021
C-N 0.002

Excluding P and V, the other 8 variables demonstrated statistically significant in distinguishing the 5 categories.

None of the variables were able to distinguish each group from all the others al-
though several differences were detected through the post-hoc analysis. The class with the
greatest number of significances was the T (17 significances), followed by the normal one
(14 significances), C and H (both 10 significances). Therefore, according to the statistical
analysis, subjects who underwent a heart transplantation and healthy subjects were the
most recognizable by the Poincaré maps.
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Then, the multinomial logistic regression was performed; L, P, Np, Dp and V were
kept after the correlation analysis. Table 3 shows the confusion matrix of such model.

Table 3. Confusion matrix of the multinomial logistic regression model computed on the as-is dataset.

Observed
Predicted Correctness

PercentageC H M N T

C 7 0 2 0 1 70,0%
H 0 10 0 0 0 100.0%
M 3 0 5 2 0 50.0%
N 1 0 1 8 0 80.0%
T 2 0 0 0 8 80.0%

The overall accuracy of the model was 76.0%, while the goodness of fit test showed a
p-value = 1.000 indicating a good match between the model and the real data. T patients
were the most recognizable while M patients were the least recognizable.

3.2. Machine Learning Analysis

First, the ML analysis was performed on the as-is dataset by employing a LOOCV:
10 patients for 5 groups for a total of 50 subjects. The small sample size and the low number
of subjects per class did not allow us to obtain–ss expected–reliable results (data not shown).
Therefore, the analysis was repeated on the dataset augmented through SMOTE to obtain
more insights. In any case, it should be reminded the multinomial logistic regression
already proved in advance the feasibility of our features in distinguishing the 5 classes.

SMOTE was implemented to augment the dataset with artificial data, thus increasing
the number of records from 50 to 100 (each group was doubled). Then, a LOOCV step was
implemented to compute the evaluation metrics for the proposed ML algorithms. Table 4
reports these using the normal class as reference for each algorithm, while Table 5 shows
the confusion matrix of the best algorithm.

Table 4. Evaluation metrics per each algorithm.

Algorithms Accuracy [%] Sensitivity [%] Specificity [%]

GB 85.0 100.0 97.5
ADA-B 91.0 90.0 97.5

kNN 92.0 95.0 100.0
NB 76.0 65.0 93.8

Table 5. Confusion matrix for the algorithm with the highest accuracy, kNN.

Real/Predicted N H M C T

N 19 0 0 1 0
H 0 19 1 0 0
M 0 1 16 2 1
C 0 0 1 18 1
T 0 0 0 0 20

Excluding NB, which achieved lower performances (accuracy of 76% yet a good
specificity of 93.8%) mainly due to the strong correlation between several of the considered
features (correlation study data not shown), the other algorithms showed successful results.
ADA-B and KNN obtained metrics greater than 90%; indeed, the former showed an
accuracy of 91% with a specificity of 97.5%, while the latter an accuracy of 92% and a
perfect specificity (100%). Furthermore, it was even remarkable GB sensitivity (100%).
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Finally, the features importance, according to the information gain, was computed
and illustrated in Figure 2 after a transformation into percentage values. The top-3 features
to perform the classification resulted L, Np and ρx.

Figure 2. Bar plot representing feature importance. Abbreviations. A: area. Dp: mean peaks distance
from the bisecting line. L: length. Np: peaks number. P: percentage of the length which corresponds
to the maximum plot wideness. (ρx, ρy, ρz): length of the three radii of inertia of the semi-ellipsoidal
three-dimensional cloud of points; V: volume. W: plot wideness.

Table 6 shows the evaluation metrics of the algorithms after applying the wrapper
method. The ranking of the algorithms was the same obtained with the other workflow:
KNN obtained the highest accuracy (96.7%) followed by ADA-B (93.3%) and GB (90.0%).
The sensitivity and the specificity were computed using the normal class as reference.

Table 6. Evaluation metrics, using the normal class as reference, per each algorithm after performing
a feature selection method.

Algorithms Accuracy [%] Sensitivity [%] Specificity [%]

GB 90.0 100.0 100.0
ADA-B 93.3 100.0 95.8

kNN 96.7 100.0 100.0
NB 86.7 100.0 91.7

4. Discussion

In this paper, the aim was to distinguish healthy subjects from patients affected by
four different cardiac pathologies by using first a univariate statistical analysis and then
ML algorithms applied on features extracted from Poincaré maps.

The initial part (namely, the Kruskal Wallis test) of the statistical analysis showed
promising results by highlighting the statistically significance of 8 out of 10 parameters,
while the second part (post-hoc tests) enhanced which type of pathology was the most
discernible according to the analyzed parameters: T was the most different class according
to our features. These results were particularly surprising because, despite having only
10 subjects per group, almost all the features resulted highly statistically significant and
therefore strongly showed to distinguish the presented subject classes. The performed
statistical analyses are an extension of these presented in our previous work [1] and
corroborate the feature importance evidence reported in Figure 2; indeed, P and V proved
non-significant and of less importance.

The ML analysis aimed at creating reliable models to classify the 50 patients; the KNN
algorithm achieved the highest evaluation metrics followed by ADA-B. Both overcame a
90% overall accuracy, demonstrating the average reliability of the tested algorithms was
overall high. There were two reasons for preferring a ML analysis rather than a logistic
regression: first, the logistic regression requires 3 assumptions–Multicollinearity, absence of
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outliers and a ratio 1:10 between variables and patients [52]. While there are no assumptions
for a ML analysis; furthermore, it has been demonstrated empirically that a ML analysis
can outperform a multinomial logistic regression [17].

In the “Introduction” and “Poincaré plot analysis” sections we described the moti-
vations which have pushed investigations to perform objective evaluations of Poincaré
maps to derive new quantitative parameters; these could support to reveal hidden pat-
terns in various disease conditions. Moridani and co-workers also presented novel 2D
features extracted from Poincaré maps (and related graphs which the authors labeled
“return maps”) of 80 cardiovascular patients. The three presented features demonstrated
the most appropriate (compared to traditional and conventional Poincaré ones) to predict
differences in HRV signals of patients in different time windows before death, representing
a potential tool to save intensive care units patients in the future [53].

Considering similar intentions, the combination of goals, analyses and the chosen
Poincaré-related features offers a novel solution for the application of ML strategies in the
cardiovascular field. Indeed, to our best knowledge, this is the first research study which
proposes the opportunity to classify healthy subjects and patients affected by 4 different
cardiac pathologies considering only a set of geometrical 2D and 3D parameters extracted
from Poincaré maps. The following paragraphs will validate the previous claims presenting
similar studies which investigated ML multi-group classifications but investigating also
features belonging to the temporal and spatial domain of HRV.

Rezaei and co-workers assessed in a recent conference paper the potential use of
kNN to distinguish 4 classes of subjects, one of normal sinus rhythm patients and others
collecting subjects affected by three pathologies, namely atrial fibrillation, acute myocardial
infarction and CHF, respectively. The authors extracted from Poincaré maps 16 features
which were subsequently statistically evaluated and fed to a kNN algorithm. A combination
of 2 conventional and 2 unconventional Poincaré based parameters proved to correctly
separate (with scores higher than 90%) the cardiac signals belonging to different patients’
classes [54].

Agliari and co-workers investigated a similar multi-group classification using a multi-
layer feed-forward neural network [50]. The study considered more than 2200 patients
with 4 possible outcomes: healthy, atrial fibrillation, congestive decompensation and other
pathologies (among which it can be highlighted the I class). The authors considered only
one of the 2 Poincaré parameters (described also by Rezaei and co-workers [54]) after a
correlation analysis between the 49 initial collected features [55].

Another remarkable example has been proposed by Devi and co-workers. They con-
sidered the same 2 “classical” Poincaré parameters yet mentioned (and their ratio too)
as potential indicators for the prediction of sudden cardiac death. The authors analyzed
several archived ECG of normal subjects and patients (which suffered/non suffered of
sudden death) affected by cardiovascular diseases. Although the authors initially included
the Poincaré parameters in the feature set, a subsequent feature selection step (using a
hybrid approach of unsupervised and sampling-boosting ensemble learning techniques)
excluded such features from the optimal subset. However, the overall approach demon-
strated effective to distinguish sudden death patients from merely heart failure ones and
healthy controls with a satisfactory accuracy of 83.33% using fine and weighted kNN
algorithms [56].

Recently, Leite and co-workers investigated the NOLTISALIS database designing
a multi-group study to classify H, C and T patients. The authors used an improved
recurrent neural network fed by six “time sequences of features”. The methodology
achieved promising results for both the training set (96.7%) and the test set (86.7%) [57].
When comparing these results with those in this paper, on the test set the authors accuracies
result lower than ours, while we both have achieved 100% of sensitivity; nevertheless, a
direct comparison is not completely fair since we considered five groups and we applied
SMOTE for data augmentation.
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The most recent, similar contribution was presented by D’Addio and co-workers [58]
where the authors showed NB, ADA-B and KNN (listed considering increasing sensitivities)
effectively classified C patients’ severity based on New York Heart Association functional
classification, using the same unconventional features extracted from bi-dimensional and
three-dimensional Poincaré Plots. Their accuracies and, generally, the overall evaluation
metrics are lower than ours in this study but, again, a direct comparison is not completely
fair since we considered a different target and we applied SMOTE for data augmentation.

However, these studies should be considered as pilot ones, because the respective
authors always highlighted new investigations with larger dataset should be carried out as
verifications.

5. Conclusions

In conclusion, this paper demonstrates–Again, corroborating the promising results
obtained in our previous conference papers for the same [1] or a similar goal [58,59]–ML
strategies could be effectively implemented to support specialists in discriminating healthy
subjects from patients which are potentially affected by either H, M or C, or underwent
a T previously. kNN, ADA-B and GB proved fully valid for the scope presenting high
performances with score peaks in different indicators which could potentially suggest the
adoption of a precise algorithm between those proposed. Additionally, we also found
the multinomial logistic regression demonstrated useful to prove–without using any ML
algorithm–the goodness of the Poincaré related features.

We remark the main novelty is represented by the implementation of a 5-class investi-
gation using only unconventional geometrical Poincaré parameters; to best of the authors’
knowledge, the paper presented by Pinho and co-workers is the only example in the field
of a multi-group classification considering more than 5 categories of heart diseases [60].
Nevertheless, the authors do not consider features extracted from Poincaré maps for their
scope; therefore, a direct comparison is not possible.

Despite not pursuing the same aims of our research, we compared other works found
in literature with ours. Rezaei and co-workers obtained evaluation metrics compatible with
the result presented in this manuscript [54]. Differently, Devi and co-workers achieved an
83.3% of accuracy in detecting patients suffering from sudden death, while Agliari and
co-workers exhibited an accuracy up to 85% with a multi-group classification by means of
neural networks [55,56]. Finally, Leite and co-workers achieved with a similar methodology
comparable result on the NOLTISALIS database (similar objective, but different features),
nevertheless excluding the H and M groups [57].

Of course, even our study exhibited limitations. First, the dataset was clearly small,
and this could represent a limitation for both the statistical analysis and ML analyses. For
this reason, SMOTE was applied allowing us to conduct the modeling analysis through
ML, although SMOTE itself could be considered a limitation, too. Nevertheless, both these
could be addressed in the future by increasing the number of patients. Another part of the
strategy, which could provide our methodology with more value, could be even the use of
shorter ECG acquisitions (e.g., up to a minimum of 30 min) as to strengthen the predictive
power of our features.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/electronics11030448/s1, File S1: dataset (which includes the Poincaré variables and the
classes relating to each instance) used to support several of the findings of this study (specifically, the
multinomial logistic regression and the ML results).
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