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ABSTRACT Empirical mode decomposition (EMD) is a fully data-driven technique designed for multi-

scale decomposition of signals into their natural scale components, called intrinsic mode functions (IMFs).

When EMD is directly applied to perform fusion of multivariate data from multiple and heterogeneous

sources, the problem of uniqueness, that is, different numbers of decomposition levels for different sources,

is likely to occur, due to the empirical nature of EMD. Although the multivariate EMD (MEMD) has been

proposed for temporal data, which employs real-valued projections along multiple directions on a unit

hypersphere in the n-dimensional space to calculate the envelope and the local mean of multivariate signals,

in order to guarantee the uniqueness of the scales, its direct usefulness in 2D multi-scale image fusion is

still limited, due to its inability to maintain the spatial information. To address this issue, we propose a

novel bidimensional MEMD (BMEMD) which directly projects a bidimensional multivariate signal, which

is composed of multiple images, on the unit hypersphere in the n-dimensional space. This is achieved via

real-valued surface projections and the mean surface is estimated by interpolating the multivariate scatter

data so as to extract common spatio-temporal scales across multiple images. Case studies involving texture

analysis andmulti-focus image fusion are presented to demonstrate the effectiveness of the proposedmethod.

INDEX TERMS Empirical mode decomposition (EMD), bidimensional multivariate EMD (BMEMD), real-

valued surface projections, multi-scale image fusion.

I. INTRODUCTION

Image fusion is a process of gathering salient features from

multiple images to produce a single ‘‘fused’’ image, which

is especially important in situations where optical cameras,

due to the limited depth of focus, cannot be focused simul-

taneously on all objects at different distances to gain a clear

image [1]. In such cases, multi-scale images are obtainedwith

each of them containing partial information of a scene of

interest, which can be further merged to present the complete

information in the fused image. To fuse multiple images,

conventional solutions are established based on the assump-

tions that data exhibit some structure (linearity, sparsity) and

The associate editor coordinating the review of this article and approving
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on the subsequent applications of projections onto a set of

predefined basis functions in spatial and/or frequency domain

[2]–[6]. However, the static filter banks and/or fixed basis

functions within the existing approaches prevent fusion of

intrinsic and matched spatial frequency content among multi-

scale input images.

Empirical mode decomposition (EMD) is a fully

data-driven technique, which adaptively decomposes a multi-

scale signal into a finite set of amplitude- and/or frequency-

modulated (AM/FM) components, called intrinsic mode

functions (IMFs), and a residual component [7]–[9]. Unlike

Fourier or wavelet based methods, EMD does not impose

a priori assumptions about the data while decomposing

signals, and hence, it is particularly suitable for the time-

frequency analysis of real-world nonlinear and nonstationary
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signals. Owing to the excellent characterization of intrinsic

scales at local level by EMD, both its multivariate extensions

and bidimensional ones [10]–[20] have been widely applied

in heterogeneous image fusion [21]–[29], for which, a set of

common frequency scales must be determined beforehand.

Multivariate extensions of EMDbased data fusion schemes

aim to address the problem of uniqueness within the original

EMD by considering a multichannel signal as a whole and

using multiple real-valued projections to find the local mean

of the original signal, a key issue to find physically meaning-

ful IMFs [16]–[20]. This is particularly important, given that

univariate EMD processes multichannel signals component-

wise, it cannot guarantee that decompositions of different

data sources are matched, either in number or properties of

local scales, making a multi-scale comparison often difficult.

However, a prerequisite to implement these EMD extensions

in 2D image processing is to vectorize multiple images by

concatenating their columns/rows to form a one-dimensional

multivariate signal [21]–[23]. This preprocessing, however,

unavoidably breaks up the spatial correlation within the orig-

inal images and results in artifacts in the scale images. On the

other hand, although bidimensional EMD (BEMD) is able

to directly decompose an image into several 2D IMFs via a

2D-sifting process, so as for better maintaining of the image

spatial information [10], [11], the problem of uniqueness

still remains due to the univariate nature of BEMD, which

yields inconsistent numbers and scales of IMFs for different

images.

To this end, we propose a bidimensional multivari-

ate EMD (BMEMD) method, which possesses both the

capability of multivariate EMD (MEMD) to address the

problems of uniqueness and mode-mixing and the 2D pro-

cessing nature of BEMD, by directly projecting a bidi-

mensional multivariate signal, e.g., composed of multiple

images, on the unit hypersphere in the multidimensional

space via novel real-valued surface projections and estimating

the mean surface by interpolating the multivariate scatter

data to extract IMFs with matched scales across data chan-

nels. Simulations involving texture analysis and multi-focus

image fusion demonstrate the effectiveness of the proposed

method.

II. ORIGINAL MEMD

The key issue to implement EMD is the computation of

local mean of the original signal, a step which critically

depends on finding local maxima and minima. For multi-

variate signals, however, it is not straightforward to detect

the local extrema and to estimate the mean envelope, since

the fields of complex and hyper-complex numbers are not

ordered. MEMD overcomes this difficulty by employing

real-valued projections in an n-dimensional space, known

as n-dimensional real-valued projections, where projection

direction vectors start from the origin of n-dimensional coor-

dinates and end at the points, which are uniformly dis-

tributed on the unit sphere, also known as the (n− 1)-sphere,

in the n-dimensional space [16]–[20]. Two approaches have

Algorithm 1 The Original MEMD Algorithm

1. Calculate projections of s(t) along projection vectors

uθk , denoted by pθk (t).

2. Extract time instants tθk which correspond to maxima

of the projection signal pθk (t).

3. Interpolate
[

tθk , s(tθk )
]

to obtain the multivariate enve-

lope eθk (t), where eθk (t) = [e
θk
1 (t), e

θk
2 (t), · · · , e

θk
n (t)]

and e
θk
l (t) refers to the envelope of sl(t) along the

projection vector uθk , for l = 1, 2, . . . , n.

4. Repeat the above steps for all k from 1 to K .

5. Calculate the mean envelope of s(t), that is,m(t), as

m(t) =
1

K

K
∑

k=1

eθk (t). (3)

6. Extract the detail d(t) using d(t) = s(t) − m(t). If d(t)

fulfills the stoppage criterion for a multivariate IMF,

apply the above procedure to s(t) − d(t), otherwise,

apply it to d(t).

been provided in [16] on how to generate uniform point

sets on the (n − 1)-spheres, which employ either uniform

angular coordinates or low-discrepancy point sets stem-

ming from quasi-Monte Carlo methods in order to obtain

a suitable set of direction vectors. Once the projection

matrix U =
[

uθ1 ,uθ2 , . . . ,uθK
]

is obtained for the original

n-variate signal s(t) = [s1(t), s2(t), . . . , sn(t)]
T , where uθk =

[

u
θk
1 , u

θk
2 , . . . , u

θk
n

]T
is kth projection vector along the angle

θk on the unit (n − 1)-sphere for k = 1, 2, . . . ,K and K is

the total number of projection vectors, the n-dimensional real-

valued projection of s(t) on uθk can be achieved as

pθk (t) = sT (t)uθk =

n
∑

l=1

sl(t)u
θk
l . (1)

The iterative decomposition process of MEMD for general

n-variate signals can be described in Algorithm 1.

Now, consider a 2D n-variate signal I, which, for instance,

consists of n heterogeneous images. Then, its lth channel, that

is, Il , is given by

Il =







Il(1, 1) Il(1, 2) · · ·

Il(2, 1) Il(2, 2) · · ·
...

...
. . .






, (2)

where Il(i, j) is the value of the pixel at the coordinate (i, j).

When dealing with such a 2D n-variate signal, the orig-

inal MEMD first vectorizes the lth image by concatenat-

ing its pixels by columns/rows to form sl(t) for l =

1, 2, . . . , n [23], [24]. After obtaining the 1D n-variate signal

s(t), the iterative decomposition steps discussed above are

subsequently applied on s(t) to obtain 1D n-variate IMFs;

a set of common frequency scales prepared for multi-scale

image fusion.

Although the simulations in [23], [24] illustrate the poten-

tiality of MEMD in fusion of multi-focus images and pan-
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FIGURE 1. Artificially generated multi-focus images of Iris ensata. The focus on the images is respectively in the upper left, the upper right,
the lower left, the lower right, and the center of the image.

FIGURE 2. Partial IMFs obtained by MEMD for the five multi-focus images shown in Fig. 1, where (a), (b), (c), (d), and (e) represent the five data
channels, respectively. Originally, MEMD yielded 17 IMFs. For illustration purpose, several IMFs were accumulated together, and the first four
sets of IMFs are presented. Images in the first row correspond to the sum of first 3 IMFs in different channels, images in the second row
represent the sum of the 4th to the 6th IMFs, images in the third and fourth rows are the sum of the 7th to the 9th IMFs and that of the 10th to
the 12th IMFs.

sharpening of multi-spectral images, an inherent obstacle

encountered by applying a 1D algorithm on image process-

ing lies in the loss of spatial information within original

images. When columns of pixels are concatenated, spatial

relations between pixels in neighboring rows are broken up

and vertical artifacts are likely to appear in IMF images

of one dimensional EMD based fusion methods [21]. This

deficiency becomes clear when the original MEMD was

applied to decompose the five multi-focus images of Iris

ensata in Fig. 1. Its partial IMF components are illustrated

in Fig. 2 in a descending order of the spatial frequency by

rows. Obviously, the detail of flower leaves in the upper

panels is difficult to recognize due to the contamination from

vertical stripes. These artifacts arose because MEMD cannot

maintain the spatial correlation within 2D images, and they

became more pronounced in the low-frequency IMF compo-

nents, as shown in the lower panels of Fig. 2. This is then

expected that the undesirable decomposition deficiency of

MEMD unavoidably deteriorates the quality of multi-scale

image fusion.
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III. PROPOSED BIDIMENSIONAL MEMD

Inspired by n-dimensional real-valued projections used in

MEMD, the proposed bidimensionalMEMD (BMEMD) first

converts the bidimensional n-variate signal I into several

bidimensional and univariate signals via novel n-dimensional

surface projections. Recall that in (2), the lth channel of I, that

is, Il , can be regarded as a 1-dimensional surface, so that, I

is an n-dimensional one. In this way, given a unit projection

vector uθk along the angle θk and distributed on the unit

(n − 1)-sphere, the projection of I on uθk , denoted by Pθk ,

can be described as

Pθk =



















n
∑

l=1

u
θk
l Il(1, 1)

n
∑

l=1

u
θk
l Il(1, 2) · · ·

n
∑

l=1

u
θk
l Il(2, 1)

n
∑

l=1

u
θk
l Il(2, 2) · · ·

...
...

. . .



















. (4)

Similar to the original MEMD, the mean surface of I

can now be estimated by averaging all mean surfaces of its

projections obtained by using (4), in which the uniformity

of the direction set on the (n − 1)-sphere plays a impor-

tant role. As discussed in [16], and two solutions exist to

generate a suitable set of direction vectors, based on either

uniform angular coordinates or low-discrepancy point sets

which stem from quasi-Monte Carlo simulations. It is shown

that a set of direction vectors based on uniform sampling

in the angular coordinate system is convenient to deal with,

however, it yields non-uniformly distributed direction vec-

tors, for which, a further calibration procedure is required.

On the other hand, the approach based on low-discrepancy

pointsets [30] provides a more uniform distribution of direc-

tion vectors [31], and hence, it is employed in the proposed

BMEMD to yield projection vectors for more accurate local

mean estimates on the (n− 1)-sphere.

A convenient way to generate multidimensional low-

discrepancy sequences is to use the Hammersley sequence,

which is proven to show considerable improvement in

terms of error bounds, over standard Monte Carlo methods.

Moveover, the set of direction vectors generated by the Ham-

mersley sequence also yields improved generalized discrep-

ancy estimates as compared with other sampling methods,

and hence, are uniformly distributed on a sphere; for more

detail, we refer to [31]. In order to generate the Hammers-

ley sequence, we first briefly refresh the concept of radical

inversion. Let c be an integer greater than zero, its base-b

representation is given by

c =
L−1
∑

λ=0

aλb
λ. (5)

Accordingly, the base-b radical inversion of c, denoted by gbc ,

is defined as [32]

gbc =
L−1
∑

λ=0

aλb
−λ−1. (6)

For example, we have g21 = 0.5, g22 = 0.25, and g23 = 0.75.

Next, since the total number of projection directions K can

be predefined a priori and K ≥ n, the lth sample, where l =

1, 2, . . . , n, within the Hammersley sequence, denoted by hrl ,

is calculated as

hrl =

[

l

K
, g

b1
l , . . . , g

bK−1

l

]

, (7)

where the radicals b1, b2, . . . , bK−1 are typically the first

K − 1 prime numbers. In this way, the whole Hammersley

sequence can be expressed in an n× K matrix H, given by

H =

[

(hr1)
T , (hr2)

T , . . . , (hrn)
T
]T

=























1

K
g
b1
1 · · · g

bK−1

1

2

K
g
b1
2 · · · g

bK−1

2

...
...

. . .
...

n

K
g
b1
n · · · g

bK−1
n























(8)

On the other hand, the Hammersley sequence matrixH in (8)

can be viewed column by column as

H =
[

hc1,h
c
2, . . . ,h

c
K

]

. (9)

Each column vector hck , where k = 1, 2, . . . ,K , contains

the coordinates of a point in R
n, and each coordinate is

guaranteed to span over (0, 1] [33]. Next, in order to obtain the

projection vectors uniformly distributed on the unit (n − 1)-

sphere, the points generated by the Hammersley sequence

should be further normalized as follows [33]. Firstly, let hck =

[x1, x2, . . . , xn]
T , the corresponding angular coordinates, that

is, θk = [ϕ1, ϕ2, . . . , ϕn−1]
T , are calculated as



























































































ϕ1 = tan−1
(
√

(2xn − 1)2 + (2xn−1 − 1)2 + · · · + (2x2 − 1)2

2x1 − 1

)

ϕ2 = tan−1
(
√

(2xn − 1)2 + (2xn−1 − 1)2 + · · · + (2x2 − 1)2

2x2 − 1

)

· · ·

ϕn−2 = tan−1

(
√

(2xn − 1)2 + (2xn−1 − 1)2

2xn−2 − 1

)

ϕn−1 = tan−1

(

2xn − 1

2xn−1 − 1

)

(10)

where tan−1 (·) is the inverse function of tan (·).
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Algorithm 2 The Proposed Bidimensional MEMD

(BMEMD) Algorithm

1.

1) Calculate the projections of I along the unit projection

vector uθk by using (4), denoted by Pθk .

2) Extract the locations
(

i
θk
max , j

θk
max

)

and
(

i
θk
min, j

θk
min

)

,

which correspond to the local maxima and the local

minima of Pθk , respectively.

3) Interpolate I(i
θk
max , j

θk
max) and I(i

θk
min, j

θk
min) to obtain the

n-dimensional maximal and minimal surfaces, denoted

by e
θk
max and e

θk
min, respectively.

4) Repeat the above steps for all k from 1 to K .

5) Estimate the n-dimensional mean surface of I, that is,

M, as

M =
1

2K

K
∑

k=1

(

eθk
max + e

θk
min

)

. (12)

6) Extract the detail D using D = I − M. If D fulfills

the 2D stoppage criterion [10], [11] for a bidimensional

n-variate IMF, apply the above procedure to I − D,

otherwise apply it to D.

Then, the n-dimensional projection vector uθk which cor-

responds to hck is computed as







































u
θk
1 = cos(ϕ1)

u
θk
2 = sin(ϕ1) cos(ϕ2)

u
θk
3 = sin(ϕ1) sin(ϕ2) cos(ϕ3)

· · ·

u
θk
n−1 = sin(ϕ1) · · · sin(ϕn−2) cos(ϕn−1)

u
θk
n = sin(ϕ1) · · · sin(ϕn−2) sin(ϕn−1)

(11)

The original bidimensional multivariate signal I can

now be converted into K bidimensional univariate signals,

i.e., Pθk , for k = 1, 2, . . . ,K , by projecting I along uθk

via (4). The neighboring window method is next employed

to identify local maximum and minimum pixels of each Pθk

in the sense that a pixel is considered as a local maximum

(minimum), if its value is strictly higher (lower) than all of

its neighbors. This facilitates the construction of the maximal

surface and the minimal one corresponding to each uθk by

interpolating the extreme scatter data using Delaunay trian-

gulation [34], [35] in order to compute the mean surface and

extract bidimensional multivariate IMFs. The above oper-

ation can be considered as a multivariate extension of the

2D-sifting process within BEMD [10], [11]. The detailed

iterative process of the proposed bidimensional MEMD

(BMEMD) to extract IMFs is outlined in Algorithm 2.

IV. SIMULATIONS

Simulations were next conducted to investigate the poten-

tiality of the proposed BMEMD on multi-scale multi-focus

FIGURE 3. Two synthetic texture components (STCs) and three synthetic
texture images (STIs), as well as their corresponding 1D diagonal intensity
profiles (DIPs).

image fusion.1 For all the images, the low-discrepancy Ham-

mersley sequence was used to generate a set of K = 16

direction vectors for taking signal projections.

A. TEXTURE ANALYSIS

In most EMD based fusion applications, a major requirement

lies in a careful synchronization and alignment of information

among different data channels. However, applying univariate

EMD methods separately to different data channels typically

fails to align (synchronize) the respective common oscillatory

modes and also suffers from the mode-mixing problems,

represented by themixing of different frequency scales within

a single IMF and/or a single scale spread across different

IMFs [16], [17], [21], since there exists a prerequisite that

same-index IMFs contain the information pertaining to the

same scale when using EMD based data fusion schemes.

In order to illustrate the problems discussed above, sim-

ilar to the analysis in [36], [37], we considered two syn-

thetic texture components (STCs), that is, STC 1 and STC 2,

which were generated from horizontal and vertical sinu-

soidal waveforms with different spatial frequencies and are

shown in the upper panels of Fig. 3(a) and (b), respectively.

Their corresponding 1D diagonal intensity profiles (DIPs)

are plotted in the lower panels, whose position started from

the upper left corner of the image. Three synthetic texture

images (STIs) were constructed as weighted combinations of

the two STCs, where their horizontal and vertical sinusoidal

waveforms were shifted by random phase values. Moreover,

STI 2 and STI 3 were corrupted by different realizations

of additive white Gaussian noise with the same statistics

(mean, variance). The considered three STIs and their DIPs

are shown in Fig. 3(c), (d) and (e), respectively. By applying

1The Matlab source code for BMEMD is downloadable at
https://www.mathworks.com/matlabcentral/fileexchange/72343-
bidimensional-multivariate-empirical-mode-decomposition.
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FIGURE 4. IMFs and their corresponding DIPs, obtained by applying
BEMD to the three STIs.

BEMD to STIs separately, different numbers of IMF images

were obtained in each case, due to the nonuniqueness of the

resulting decompositions. Fig. 4 shows all the three IMFs and

a residue for STI 1 and the first four IMFs for STIs 2 and 3.

Mode mixing is clearly visible between IMFs 3 and 4 in both

STIs 2 and 3, where the low frequency texture information

spread across. Moreover, the three sets of IMF images are not

aligned. On the other hand, the proposed BMEMD is able

to attenuate the above problems of mode mixing and mode

misalignment within IMFs owing to the manner in which the

2D images are collectively processed in a multidimensional

nature. This is supported by Fig. 5, where mode mixing

has been largely eliminated within the resulting multivariate

IMFs. In addition, IMFs from different image channels are

also shown to be well aligned with respect to their respective

scales. Both features together enable the proposed BMEMD

to provide a meaningful comparison between scales and to

form a robust basis for image fusion. Note that, although

MEMD possesses similar mode alignment and mode match-

ing capabilities, they make less sense in image fusion due to

the inability of MEMD to maintain the spatial information

of 2D data, as shown in Fig. 2.

FIGURE 5. IMFs and their corresponding DIPs, obtained by the proposed
BMEMD applied on the same STI set.

FIGURE 6. Proposed framework for pixel-level multi-scale image fusion
based on BMEMD.

B. MULTI-SCALE IMAGE FUSION

The framework of the proposed BMEMD based multi-scale

image fusion at the pixel level is illustrated in Fig. 6.

A bidimensional multivariate signal I, which is composed

of n images, is first decomposed by the proposed BMEMD

method to obtain a set of Q n-variate IMF images, denoted

by I
q
l , where q = 1, 2, . . . ,Q and l = 1, 2, . . . , n. For

114266 VOLUME 7, 2019
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FIGURE 7. Decomposition results by the proposed BMEMD for the five multi-focus images in Fig. 1, where (a), (b), (c), (d), and (e) represent the
five channels of the four 2D multivariate IMFs and one residue component obtained by BMEMD, respectively. The spatial frequencies of IMF
images decrease gradually from top to bottom.

mathematical convenience, the residue is considered as the

last IMF. In the next stage, an efficient windowed-based

weighting averaging method for pixel fusion is adopted [21],

[24]. At each pixel location (i, j) of the lth image channel

with the qth IMF, that is, I
q
l , the local variance of the pixels is

computedwithin a slidingwindow of size (2z+1)×(2z+1) as

V
q
l (i, j) =

z
∑

α=−z

z
∑

β=−z

[

I
q
l (i+ α, j+ β) − µ

]2
, (13)

where µ denotes the mean of all the pixel values inside the

sliding window, given by

µ = 1
(2z+1)2

z
∑

α=−z

z
∑

β=−z

I
q
l (i+ α, j+ β). (14)

Since the variance measure can be used to quantify the

degree of local detail in input images that need to be trans-

ferred to the final fused image, all the pixels I
q
l (i, j) are

assigned to local weighting factors, which are directly pro-

portional to their local variance estimates. The idea behind

this operation is that the IMF images which locally exhibit

greater "activity of interest" are assigned larger weights than

those exhibiting lower activity; this is in order to maximize

their contribution to the fused image. The local weight fac-

tors, denoted by W
q
l (i, j), are calculated through the follow-

ing relations:

W
q
l (i, j) =

V
q
l (i, j)

n
∑

l=1

V
q
l (i, j)

, (15)
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FIGURE 8. Ideal all-in-focus image and fused results obtained by MEMD,
BEMD, and BMEMD.

and the qth IMF of the fused image, denoted by Îq, can be

computed as

Îq =

n
∑

l=1

W
q
l ⊗ I

q
l , (16)

where the symbol⊗ denotes a point-wisemultiplication oper-

ation between twomatrices. This procedure is repeated for all

Q IMFs to obtain a set of fused IMFs Îq, for q = 1, 2, . . . ,Q,

which are added together to yield the fused image Î, i.e., Î =
∑Q

q=1 Î
q.

Similar data processing procedures have been adopted by

EMD based image fusion [21]–[27]. However, for those uni-

variate ones, they need to be applied on all the input images,

separately. In this sense, the problem of uniqueness, that is,

different numbers of IMFs for different images, is likely to

occur, due to the empirical nature of EMD. Although this

problem can be partially addressed by forcing the iterative

process of EMD to stop once a predefined number of IMFs

are obtained, the residue may still maintain physically mean-

ingful AM/FM components which would violate the fully

data-driven property of EMD.

The proposed BMEMDmethod was applied to decompose

the five multi-focus images shown in Fig. 1. The so-produced

four 2D multivariate IMFs and a residue are shown in Fig. 7,

displayed in the descending order of the spatial frequency.

As compared with their counterparts obtained by the original

MEMD in Fig. 2, they were much more meaningful for

the image spatial analysis in the sense that the image edge

information was well contained in the high frequency scales

while the illumination information was better preserved in the

low frequency components and without artifacts, owing to the

TABLE 1. Quantitative fusion results.

.

2D data processing nature of BMEMD. This is evidenced by

the high-frequency IMF images in both the first and second

rows, where the essential differences among different IMF

channels, corresponding to different focus areas of the orig-

inal images in Fig. 1, can be clearly observed. On the other

hand, as expected, the low-frequency IMF images in the third

and fourth rows and the residue image had very similar spatial

structures in different image channels.

We next performed fusion of the multi-focus images

in Fig. 1 using BMEMD and compared the results with those

obtained from BEMD and MEMD based fusion approaches.

The ideal all-in-focus image and fused results are shown

in Fig. 8. Observe that in Fig. 8(b), MEMD still produced

several vertical artificial stripes, similar to its IMFs shown

in Fig. 2, due to the loss of spatial information, although it

was not that obvious after fusion. Moreover, the detail of

leaves of Iris ensata and the image background in upper

corners was unclear compared with the ideal image. In case of

BEMD, there are several deficiencies occurring on the stem

of Iris ensata on the right-hand side of Fig. 8(c). As desired,

the fusion image of the proposed BMEMD in Fig. 8(d)

retained almost all the detail of the ideal image and any

spurious fusion artifacts were kept to a minimum. This is

further supported by Table 1, where several quantitative met-

rics covering both the spatial and spectral quality of the fused

image were considered, including entropy, spatial frequency

(SF), root mean square error (RMSE), correlation (Corr.), and

structural similarity (SSIM) [1], [38], [39]. The closest match

obtained by BMEMD to the ideal image can be observed.

V. CONCLUSION

A bidimensional multivariate EMD (BMEMD) has been pro-

posed for multi-scale image analysis. The critical step within

BMEMD lies in n-dimensional surface projections, which

directly convert a bidimensional n-variate signal into several

bidimensional and univariate signals along multiple direc-

tions in the n-dimensional space, so that the spatial infor-

mation within images is well-preserved. It has been shown

that the proposed method has the ability to extract common

spatio-temporal scales across multiple images. This mode

alignment property together with the 2D processing nature

suggests BMEMD as a better candidate for multi-scale image

fusion than the conventional BEMDandMEMD. Simulations

on synthetic texture sets and multi-focus images support the

analysis.
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