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Bidimensional regression is a method for comparing the degree of resemblance
between 2 planar configurations of points and, more generally, for assessing the
nature of the geometry (Euclidean and non-Euclidean) between 2-dimensional in-
dependent and dependent variables. For example, it can assess the similarity be-
tween location estimates from different tasks or participant groups, measure the
fidelity between cognitive maps and actual locations, and provide parameters for
psychological process models. The authors detail the formal similarity between uni-
and bidimensional regression, provide computational methods and a new index of
spatial distortion, outline the advantages of bidimensional regression over other
techniques, and provide guidelines for its use. The authors conclude by describing
substantive areas in psychology for which the method would be appropriate and
uniquely illuminating.

Ever since Tolman (1948) introduced it, the con-
struct of a cognitive map has played an important role
in theorizing about psychological processes. A cogni-
tive map is a representation of the elements of an
environment and their spatial interrelations. The con-
struct has appeared in literature as far ranging as adult
and developmental human cognition, animal cogni-
tion, neuroscience, behavioral geography, behavioral
ecology, and human factors in virtual reality (see
Fagot, 2000; Kitchin & Blades, 2002; Kitchin & Fre-

undschuh, 2000; Newcombe & Huttenlocher, 2000,
for comprehensive reviews). Though the nature and
role of cognitive maps may take on subtly different
meanings in each of these literatures, there is a gen-
eral consensus that these representations play a func-
tional role in many kinds of real-world spatial tasks
for both animals and humans. For animals, spatial
representations must underlie foraging and food cach-
ing, migration, some predatory behaviors, territorial
patrolling, and so on. For humans, cognitive maps are
believed to influence behaviors as diverse as navigat-
ing through familiar environments and learning novel
ones, giving directions, and making decisions about
where to live, work, shop, or spend a holiday. Thus,
describing the nature of cognitive maps, and assessing
their accuracy with respect to the real world, is essen-
tial to understanding how people and animals repre-
sent, reason about, and function in large- and small-
scale spatial environments.

One of the main tools for assessing the configural
relations between cognitive and actual maps is the
bidimensional regression methodology introduced to
the geography literature by Tobler (1965, 1966,
1994). Tobler developed bidimensional regression as
a solution to the general problem of map comparison;
the methodology is virtually unknown in the psycho-
logical literature (for examples from behavioral geog-
raphy, see Kitchin & Blades, 2002; Lloyd, 1989;
Lloyd & Heivly, 1987; Nakaya, 1997; and Wakabaya-
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shi, 1994). The technique provides a unique means of
analyzing the similarity between two or more configu-
rations of points in a plane by postulating a regres-
sion-like relationship between coordinate pairs. In
particular, whereas bivariate, unidimensional regres-
sion assesses the relation between independent and
dependent variables that each measure a single dimen-
sion (e.g., actual and estimated distance in miles),
bivariate, bidimensional regression assesses the rela-
tion between independent and dependent variables
that are each two dimensional (2-D; e.g., actual and
estimated locations in space). Bidimensional regres-
sion models are also inference tools for identifying the
transformation rules between two planes. The analysis
is thus appropriate for any data set in which the in-
dependent and dependent variables can each be de-
scribed by two integral dimensions and for which it
would be useful to understand the nature of the spatial
geometry between them (e.g., comparisons between
normal and brain damaged patients on spatial learning
tasks, effects of different instructions on patterns of
eye movements in scenes, or correlations between
nesting locations from year to year in different species).

Furthermore, the method (a) is not limited to as-
sessing Euclidean spaces; (b) yields parameters that
can be analyzed in their own right (e.g., scale, angle of
rotation, and shear) and that can form part of a psy-
chological process model of either individual or group
differences; (c) is well-suited for comparing two or
more representations extracted through either empiri-
cal or statistical means (e.g., sketch maps and multi-
dimensional scaling, or MDS), so it can be used as a
measure of convergent validity among tasks; and (d)
provides unique information as well as distinct advan-
tages over other statistical techniques used to extract
the dimensional nature of a data set, including MDS
and canonical correlation. Thus, bidimensional regres-
sion is ideal for analyzing cognitive-map data as well
as any data for which the 2-D geometric or spatial
properties are important to evaluate and understand.

Because of the potential utility, but relative obscu-
rity, of bidimensional regression in the psychological
literature, our main intent in the present article is to
introduce its concepts and computational methods and
to demonstrate when and why it is to be preferred over
several other analytical techniques. In addition, be-
cause an important feature of human cognitive maps
is that they are often systematically distorted (e.g.,
Friedman & Brown, 2000a, 2000b; Friedman, Brown,
& McGaffey, 2002; Friedman, Kerkman, & Brown,
2002; Glicksohn, 1994; Stevens & Coupe, 1981;

Tversky, 1981), we briefly describe a measure of dis-
tortion introduced by Waterman and Gordon (1984)
that is an extension of bidimensional regression.
However, the measure is somewhat flawed; we dis-
cuss why and advocate replacing it with a similar one
that is more transparently related to the statistical con-
structs underlying bidimensional regression.

To accomplish these goals, we first briefly review
the background of bidimensional regression and the
index of distortion that was developed from it. Sec-
ond, we provide for the first time, the detailed, formal
correspondence between uni- and bidimensional re-
gression. Doing so serves to make explicit the two
fundamentally different ways in which bidimensional
regression and indices of distortion in cognitive maps
can be implemented. Third, we discuss the advantages
of bidimensional regression compared with other
methods. Fourth, we describe and critique Waterman
and Gordon’s (1984) distortion index (DI ) and offer
our alternative. Fifth, we demonstrate the two imple-
mentations of bidimensional regression with both a
“toy world” and a real-world example, to illustrate
how each implementation provides different informa-
tion that may alter the interpretation of data. Finally,
we provide some methodological guidelines and ex-
amples of substantive areas in psychology—both
within and outside of cognitive mapping—in which
bidimensional regression should provide unique and
useful information.

Background

Tobler (1965, 1966, 1994) introduced bidimen-
sional regression as a means of comparing the degree
of resemblance between two or more representations
of the same configuration of points, given a set of
matching coordinates in each representation. He illus-
trated the method by comparing 37 locations identi-
fied on a 14th century map of the British Isles with
their actual latitudes and longitudes, converted to pla-
nar xy coordinates. Tobler assigned the coordinates
representing the modern latitudes and longitudes to
the status of the independent variable in the bidimen-
sional regression; locations on the 14th century map
thus comprised the dependent variable. These assign-
ments make sense because the variables are not sym-
metric in the statistical sense (e.g., the values of the
independent variable are usually controlled or se-
lected). For example, coordinates representing actual
latitudes and longitudes are unchanging values against
which the corresponding locations in all other maps,
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both physical and cognitive, can be compared accord-
ing to the degree to which they are similar. In both
uni- and bidimensional regression, the terms referent
and variant better capture how the two domains dif-
fer. However, not all treatments of bidimensional re-
gression have implemented it with the referent map as
the independent variable (e.g., Lloyd, 1989; Water-
man & Gordon, 1984).

The Euclidean version of bidimensional regression
shown in Equation 1 yields four parameters. When
these parameters are applied to the coordinates of the
referent map, they yield the “best fit” shape (i.e., set
of A�B� coordinate points) between the two maps,
much as a regression line in the unidimensional case
is the best-fit line between a single set of points.

�A�

B�� = ��1

�2
� + ��1 − �2

�2 �1
� � �X

Y� (1)

Two parameters capture the magnitude of the hori-
zontal (�1) and vertical (�2) translation between the
referent and the least squares solution. The remaining
two parameters (�1 and �2) are used to derive the
scale (�) and angle (�) values by which the original
coordinates are transformed to derive the least squares
fit. The scale transformation indicates the magnitude
of contraction or expansion, and the angle determines
how much and in which direction the predicted shape
rotates with respect to the referent. Figure 1 shows
four examples of the application of these transforma-
tions in a situation in which the bidimensional corre-

Figure 1. Bidimensional regression of a set of data in which the correlation between XY and
AB is perfect. a: A simple translation of the XY coordinates. b: A scale increase. c: A rotation
from the origin. d: All three transformations combined. Note that in this example, the XY
coordinates serve as the independent variable in the regression.
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lation between referent and variant is assumed to be
perfect. It is clear that though a perfect correlation
implies that the original and predicted configurations
are identical, they can nevertheless be located in dif-
ferent places and be of different sizes and angles of
rotation around the origin.

Tobler proposed a family of four bidimensional re-
gression models (Tobler, 1966, 1994); thus far, only
the Euclidean and affine models have provided useful
descriptions of psychological data (Lloyd, 1989; Na-
kaya, 1997). The Euclidean model is a rigid transfor-
mation: The original XY coordinates are scaled, ro-
tated, and translated by the same values so the overall
configuration retains the same shape. In the affine
transformation, X and Y can be scaled independently,
and the entire configuration of points can exhibit
shear (e.g., when a square becomes a parallelogram).
In the projective transformation, the size, shape, and
orientation of a configuration can change as a function
of viewpoint. For example, the 2-D projection of a
cube can become a quadrilateral shape in which no
three points are collinear. The Euclidean, affine, and
projective transformations form a hierarchy, and each
provides a linear mapping between the independent
and dependent coordinates: Straight lines in the origi-
nal space are straight lines in the transformed space.
In addition, parallel lines remain parallel in the Eu-
clidean and affine transformations, but they may not
in the projective transformation.

Tobler’s (1994) fourth model is curvilinear and can
take many forms. Because it can always fit the obser-
vations exactly, given a sufficiently high order (see
also Nakaya, 1997), it is likely to be too general to be
of practical use and will not be considered further
here. We illustrate the points in the present article
with the Euclidean model and elaborate the affine and
its computational methods in the Appendix. We pro-
vide a Microsoft Excel spreadsheet to compute the
Euclidean bidimensional regression on the Web at dx
.doi.org/10.1037/1082.989X.8.4.468.supp.

There is a complete analogy between uni- and bi-
dimensional regression. Nakaya (1997) capitalized on
the analogy to derive inferential statistics for testing
differences among parameter estimates in the bidi-
mensional case. In the current context, one of the most
important aspects of the analogy derives from the fact
that in the unidimensional case one can regress either
A on X or X on A (Figure 2). The two regression lines
intersect at the same point as the means for the inde-
pendent and dependent variables (see Hays, 1994, pp.
616–618).

Analogously, it is possible in principle to regress a
variant on the referent map or the referent on the
variant, as shown in Figures 3 and 4. A comparison of
these figures makes it clear that in the Euclidean case,
even with an imperfect correlation the best-fit shape is
formally similar to whichever shape’s coordinates are
used as the independent variable. If, for example, the
XY coordinates are the referent, then the best fit looks
like the referent has been mapped into the variant’s
“space” (Figure 3).

For both uni- and bidimensional regression, it
makes no difference in principle which variables take
on the role of the independent variable. However, the
parameter estimates necessarily change when the vari-
ables exchange roles; this affects the interpretation of
the results. That is, the two regression equations and
their parameters in both the uni- and bidimensional
cases are not simply inverses. We elaborate the con-
sequences of this below.

Waterman and Gordon (1984) extended bidimen-
sional regression to devise a measure that permitted
comparisons of distortions among different cognitive
maps (or other variants). They proposed computing a
distortion distance (D) using each variant’s coordi-
nates as the independent variable in the bidimensional
regression. The true map’s coordinates were then used
to compute the denominator of a distortion index (DI
� D/Dmax) for each cognitive map.1 However, this

1 Waterman and Gordon (1984) multiplied DI by 100 to
be able to discuss the percentage of distortion. In this article

Figure 2. A set of unidimensional data (gray dots) show-
ing the two possible regression lines: one when X is used as
the independent variable and the other when A is used as the
independent variable.
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definition of Dmax disrupts the strict analogy between
uni- and bidimensional regression when the true
map’s coordinates are used as the independent vari-
able, which is the more conventional case. Thus, we
describe and advocate an alternative measure that we
believe is both warranted and elegant because it rein-
states the analogy.

The Formal Analogy Between Unidimensional
and Bidimensional Regression

In this section, we highlight the correspondences
between uni- and bidimensional regression. For ease
of exposition and to facilitate the comparison, Table 1
shows the equations relevant to the two implementa-
tions of unidimensional regression, and Table 2 shows
their analogs in bidimensional regression.

Unidimensional Regression

In the default notation for the unidimensional case,
X refers to values of the independent variable, A refers
to values of the dependent variable, and A� refers to
the predicted values of the dependent variable that fall
on the regression line, given a set of X values.

In ordinary bivariate regression, the regression line
in Equation 1.1 is specified by a slope, � (Equation
1.2), and an intercept, � (Equation 1.3). Each value of
the independent variable is scaled by the slope and
shifted by the intercept to achieve the corresponding
value on the regression line. The degree of associa-
tion, or correlation, between the independent and de-
pendent variables is given by Equations 1.4 and 1.5.
The correlation is necessarily identical whether X is
regressed on A or A is regressed on X, but the values
of the parameters (� and �) necessarily change; that
is, they are not inverses. This is because if X is re-
gressed on A, then Equations 1.1–1.3 in Table 1 be-
come Equations 1.7–1.9.

we want to emphasize DI as a proportion of unexplained
variance, so we do not multiply it by 100.

Figure 3. The toy world: The XY (true map) coordinates (black dots) were the independent
variable, and the AB (cognitive map) coordinates (white dots) were the dependent variable.
The gray dots represent the least squares solution. The numbers beside or inside the dots
indicate corresponding coordinates.
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Squaring Equation 1.5 expresses the proportion of
the total variability of the scores that is a function of
either the explained variability of the predicted values
around the mean of the scores or the difference be-
tween a perfect correlation and the residual (unex-
plained) variability. The relation among these three
types of sums of squares is given by Equation 1.6.

Bidimensional Regression

To move from the 1- to the 2-D case, the indepen-
dent variable X, dependent variable A, and predicted
value of the dependent variable A�, are each repre-
sented by a point in a 2-D space: XY, AB, and A�B�,
respectively. Vectors represent the slope and inter-
cept. The bidimensional regression equation is thus
(A�B�) � � + � � (XY), where � is given by Equation
2.2 and � by Equation 2.3.

Representing the slope and intercept as vectors em-
phasizes that they each comprise two components.
For the intercept, each component represents a trans-

lation relative to the origin of the referent’s axis sys-
tem: left or right, denoted by �1; and up or down,
denoted by �2. For the slope, one component indicates
whether and by how much the variant’s points have
expanded or contracted with respect to the referent
(the magnitude or scale transformation �). The inter-
pretation of this parameter is similar to that of the
slope in the unidimensional case: � < 1 indicates a
contraction, and � > 1 indicates an expansion relative
to the referent. The second component of the slope
(the angle, �) indicates whether and by how much the
variant’s points (the AB plane) have been rotated with
respect to the referent’s (the XY plane): counterclock-
wise if � is positive or clockwise if � is negative.

In the definitional equation for the bidimensional
correlation (Equation 2.4), complex numbers repre-
sent the XY and AB coordinates; the second term in the
numerator is the complex conjugate of the indepen-
dent variable. The complex conjugate of a complex
number is given by changing the sign of the imaginary

Figure 4. The toy world: The AB (cognitive map) coordinates (black dots) were the inde-
pendent variable, and the XY (true map) coordinates (white dots) were the dependent variable.
The gray dots represent the least squares solution. The numbers beside or inside the dots
indicate corresponding coordinates.
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part (e.g., the conjugate of z � a + ib is z* � a − ib).
That the complex conjugate of the independent vari-
able is used in the bidimensional covariance is an
important point: In the unidimensional case, �(A −
MA) � (X − MX) and �(X − MX) � (A − MA) return the
same result, but in the bidimensional case, the conju-
gated variable provides the base from which the other
variable is rotated by � degrees. Thus, the order of
terms is relevant, and the coordinates representing the
reference plane must become the complex conjugate.

The degree of association between the XY and AB
coordinate pairs is given by the magnitude of the vec-

tor in Equation 2.4 and by Equation 2.5. The angle
components of r, �, and cov AB, XY have the identical
value. An interesting consequence of the fact that the
bidimensional correlation is the magnitude of a vector
is that it cannot be negative.

As in the unidimensional case, r2 expresses the ra-
tio of either the explained, or one minus the unex-
plained variance to the total variance among the de-
pendent variable’s scores. Thus, extending the
analogy from the unidimensional case, the relation
among the three sums of squares in Equation 2.5 is
given by Equation 2.6.

Table 1
Equations for Unidimensional Regression When X or A Is the Independent Variable

Equation Variable assignment

X independent, A dependent

1.1 A� = � + � � X

1.2 � =
cov AX

var X
= ��A − MA� � �X − MX�

��X − MX�2

1.3 � = MA − � � MX

1.4 r =
cov AX

�var X � var A
= ��A − MA� � �X − MX�

���X − MX�2 � ��A − MA�2

1.5
r =���A� − MA�2

��A − MA�2
=�1 − ��A − A��2

��A − MA�2

1.6 ��A − MA�2 = ��A� − MA�2 + ��A − A��2

Total = Explained + Unexplained

A independent, X dependent

1.7 X� = � + � � A

1.8 � =
cov XA

var A
= ��X − MX� � �A − MA�

��A − MA�2

1.9 � = MX − � � MA

1.10 r =
cov XA

�var A � var X
= ��X − MX� � �A − MA�

���A − MA�2 � ��X − MX�2

1.11
r =���X� − MX�2

��X − MX�2
=�1 − ��X − X��2

��X − MX�2

1.12 ��X − MX�2 = ��X� − MX�2 + ��X − X��2

Total = Explained + Unexplained
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Once again, though the value of r does not change
when the variables exchange roles, the values of the
parameters (� and �) do. Furthermore, as in unidi-
mensional regression, as r decreases from 1 to 0, the
scale factor (or slope, �) necessarily decreases, until
the projected referent’s shape becomes a point (i.e.,
the mean of the dependent variable’s coordinates; see
Figures 3 and 4). Of course, this does not preclude

scale values greater than 1. For example, in Figure 1d,
the scale value begins at 1.5 when r � 1 and remains
greater than 1 until r < .70.

Solving for the Parameters: (XY Independent)

Tobler (1994) provided a means of solving for the
bidimensional regression parameters using matrices.

Table 2
Bidimensional Regression Equations When XY or AB Is the Independent Variable

Equation Variable assignment

XY independent, AB dependent

2.1
�A�B�� = � + � � �XY�, or �A�

B�� = ��1

�2
� + ��1 −�2

�2 �1
� � �X

Y� in matrix form.

2.2 � = �1 + i�2 =
cov AB, XY

var X + var Y
= ���A − MA� + i�B − MB�� � ��X − MX� + i�Y − MY��*

���X − MX�2 + �Y − MY�2�

2.3 � = �1 + i�2 = �MA + iMB� − � � �MX + iMY�

2.4 r =
cov AB, XY

��var X + var Y� � �var A + var B�
= ���A − MA� + i�B − MB�� � ��X − MX� + i�Y − MY��*

����X − MX�2 + �Y − MY�2� � ���A − MA�2 + �B − MB�2�

2.5 r =����A� − MA�2 + �B� − MB�2�

���A − MA�2 + �B − MB�2�
=�1 − ���A − A��2 + �B − B��2�

���A − MA�2 + �B − MB�2�

2.6 ���A − MA�2 + �B − MB�2� = ���A� − MA�2 + �B� − MB�2� + ���A − A��2 + �B − B��2�

Total = Explained + Unexplained

AB independent, XY dependent

2.7
�X�Y�� = � + � � �AB�, or �X�

Y�� = ��1

�2
� + ��1 −�2

�2 �1
� � �A

B� in matrix form.

2.8 � = �1 + i�2 =
cov XY, AB

var A + var B
= ���X − MX� + i�Y − MY�� � ��A − MA� + i�B − MB��*

���A − MA�2 + �B − MB�2�

2.9 � = �1 + i�2 = �MX + iMY� − � � �MA + iMB�

2.10 r =
cov XY, AB

��var A + var B� � �var X + var Y�
= ���X − MX� + i�Y − MY�� � ��A − MA� + i�B − MB��*

����A − MA�2 + �B − MB�2� � ���X − MX�2 + �Y − MY�2�

2.11 r =����X� − MX�2 + �Y� − MY�2�

���X − MX�2 + �Y − MY�2�
=�1 − ���X − X��2 + �Y − Y��2�

���X − MX�2 + �Y − MY�2�

2.12 ���X − MX�2 + �Y − MY�2� = ���X� − MX�2 + �Y� − MY�2� + ���X − X��2 + �Y − Y��2�

Total = Explained + Unexplained

Note. The asterisks in Equations 2.2, 2.4, 2.8, and 2.10 denote the term in the numerator that is the complex conjugate.
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For the Euclidean model in Equation 1, the system of
equations that yields the regression parameters when
XY is the independent variable is given above; N is the
number of coordinate pairs.2

Given a set of coordinate pairs, XY and AB, the
entries in the first and third matrices in Equation 3 can
be computed and the parameters obtained by taking
the inverse of the first matrix and postmultiplying it
by the third matrix. Solving this system of equations
for the four parameters yields the following relations,
which can be used to find the parameters directly:

�1 =
cov AX + cov BY

var X + var Y
,

�2 =
cov BX − cov AY

var X + var Y
,

and

�1 = MA − �1 · MX + �2 · MY ,
�2 = MB − �2 · MX − �1 · MY .

The form of the numerator in the equations for �1 and
�2 is a direct result of expressing the bidimensional
covariance as a complex number; that is, AX + BY is the
real part of the bidimensional covariance, and BX −
AY is the imaginary part.

�1 and �2 are used to compute the scale and angle
values, according to the equations

Scale = � = ��1
2 + �2

2

Angle = � = tan−1 ��2

�1
� .

Because the arctangent function (tan−1) covers only
the range between −90° and 90° (i.e., two quadrants)
it is necessary to add 180° to � if �1 < 0. This extends
the range of the tan−1 function from −90° to 270°,
covering all four quadrants.3

Each predicted pair of coordinates can be computed
using either the regression parameters or the scale and
angle transformations. This is illustrated in Equations
4 and 5 for the situation in which XY is the indepen-

dent variable and in Equations 6 and 7 for the situa-
tion in which AB is the independent variable. Note
that the values of �1, �2, �1, and �2 in Equations 4
and 5 are different from those in Equations 6 and 7:

A� = �1 + �1�X� − �2�Y�

B� = �2 + �2�X� + �1�Y�, (4)

A� = �1 + ��Xcos� − Ysin��

B� = �2 + ��Xsin� + Ycos��, (5)

X� = �1 + �1�A� − �2�B�

Y� = �2 + �2�A� + �1�B�, (6)

X� = �1 + ��Acos� − Bsin��

Y� = �2 + ��Asin� + Bcos��. (7)
Inferential statements about the relation between

two configurations can be supported in at least two
ways. First, the bidimensional correlation coefficient
can be tested to see whether it is significantly different
from zero:

F =
2N − p

p − 2
�

r2

1 − r2, df = �p − 2�, �2N − p�,

(Nakaya, 1997, Equation 50) where N is the number
of coordinate pairs, and p is the number of parameters
in the model being tested (Euclidean, affine, projec-
tive, or curvilinear). Second, the difference between

2 There is a slight error in Tobler’s (1994) original ma-
trix, which was supposed to provide the parameters for the
case when the true map was the independent variable; the
result is that � has the wrong sign. We have adapted To-
bler’s matrix equation so that it gives the same result as
Equation 2.4 in Table 2.

3 Tan−1 is the arctangent, or inverse tangent, for the point
XY relative to the origin (0,0). It returns the counterclock-
wise angle from the X-axis in the range from −90° to 90°. In
Microsoft Excel, the ATAN2 function automatically adjusts
for the situation when �1 < 0.

�
N 0 � X −� Y

0 N � Y � X

�X �Y ��X2 + Y2� 0

−�Y �X 0 ��X2 + Y2�
� ��

�1

�2

�1

�2
� =�

�A

�B

��AX + BY�

��BX − AY�
� (3)
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two nested models in the amount of variance ac-
counted for can be tested:

F12 =
2N − p2

p2 − p1
�

r2
2 − r1

2

1 − r2
2 , df = �p2 − p1�, �2N − p2�,

(Nakaya, 1997, Equation 58) where Model 1 has
fewer parameters than Model 2.

Advantages of Bidimensional Regression

The first, and perhaps most important, advantage of
bidimensional regression over other uni- or multivari-
ate methods of analyzing 2-D data is that it is sensitive
to, and provides measures of, the geometry of the
spatial relations between two 2-D variables that (a)
form a plane and (b) can be identified with the same
locations.4 Thus, pragmatically, bidimensional regres-
sion is a statistical method of comparing any two or
more sets of planar coordinates, however they may
have been generated, so long as they can be digitized.
For example, a configuration of landmarks from a set
of sketch maps can be compared with one that is
inferred from a multidimensional scaling (MDS) so-
lution generated from a list of all possible pairs of
distances between the landmarks, and the accuracy of
the maps produced by these two methods can be com-
pared with the actual map from which they were pre-
sumably derived. This means that the bidimensional
r2 can be used to measure the convergent validity
between various tasks (e.g., Kitchin, 1996).

A second advantage of using bidimensional regres-
sion is that its parameters provide the basis for com-
puting the transformations required to perform the
mapping between the two planes under consideration.
Thus, the parameters derived from the bidimensional
regression (�1, �2, �1, �2) permit the computation of
transformations (scale and rotation) that can be com-
pared across individuals and groups; the transforma-
tions could form part of a psychological process
model that specifically addresses how geometric dis-
tortions arise in spatial representations. For example,
Lloyd (1989) used bidimensional regression analyti-
cally to compute differences in the patterns of dis-
tance and directional errors between groups of par-
ticipants who had learned a city primarily through
navigation or by studying a map. He used the bidi-
mensional regression parameters to compute and then
make inferences about different underlying alignment
and rotation heuristics (transformations) used to scale
the cognitive maps in the two groups.

Third, as pointed out by Nakaya (1997, p. 174),
bidimensional regression is unique in supposing a
one-to-one mapping between two point distributions.
Yet, assuming independent normal error and constant
variance, orthodox computational procedures for re-
gression analysis can be used for parameter estimation
as well as for computing confidence intervals and
significance tests. Equally, the strengths and limita-
tions of unidimensional regression are applicable to
bidimensional regression. Thus, they should be rela-
tively familiar to psychologists.

What About Other Methods?

Because bidimensional regression presupposes that
the dependent and independent variables are planar
coordinates, the issue of how many dimensions best
describe the data is moot—it is always two. Thus,
methods designed to discover how many dimensions
describe a set of data, such as factor analysis or ca-
nonical correlation, are not necessarily germane to
data appropriate for bidimensional regression. In ad-
dition, because of the bidimensional, as opposed to
multivariate, nature of data appropriate for bidimen-
sional regression, other common methods that might
be entertained for its analysis are not appropriate. We
discuss two of these below, and then turn to a com-
parison between bidimensional regression and MDS,
because though the MDS methodology is appropriate
(in principle) for analyzing cognitive mapping and
other 2-D data, it may not be ideal.

Individual regressions for each dimension. It
should be clear that separately correlating the X and A
(horizontal) and the Y and B (vertical) values misses
the essential point that XY and AB are integral coor-
dinates that represent a single location in space; that
is, location is a 2-D variable. Separate correlations on
each dimension do not yield configural information
and are also insensitive to relative stretching. Further-
more, separate slope and intercept parameters com-
puted for the regression of X on A (or Y on B) cannot
be used to derive scale or angle parameters that trans-
form the configuration between planes.

4 In the present article we have focused on situations in
which there is one independent variable and one dependent
variable. Tobler (1994) extended the formal analysis to
cases where there is more than one dependent variable; for
example, the features of more than one child’s face can be
compared with those of a parent, provided corresponding
locations on each are converted to planar coordinates.
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Canonical correlation. Canonical correlation is
among the most general of the multivariate tech-
niques; its goal is to analyze the relationships between
two or more sets of variables (Tabachnick & Fidell,
2001). Thus, canonical correlation at first seems ap-
propriate for analyzing the relation between, for ex-
ample, 2-D location estimates and actual locations.
However, in canonical correlation, each participant is
typically measured on two sets of variables and the
analysis determines how the sets are related to each
other (e.g., one set of variables might be scores on
various measures of scholastic ability, and the other
set might be measures of success in school). Thus, a
data set appropriate for this kind of analysis should
have participants measured on a minimum of four
variables (two independent and two dependent). Be-
cause the XY and AB coordinate pairs are inextricably
linked together, they do not qualify. Again, X and Y
are two dimensions of a location marker (mental or
physical), not two different variables.

Multidimensional scaling (MDS). Unlike separate
unidimensional correlations or canonical analysis,
metric and nonmetric MDS are techniques that can be
used to recover the 2-D structure embedded within a
matrix of proximities (for example, participants might
provide similarity or difference ratings for all possible
pairs of stimuli). As such, MDS is an appropriate
candidate for assessing cognitive-mapping data and
has been used in this manner in the geography litera-
ture (e.g., Buttenfield, 1986; Gatrell, 1983; Kitchin,
1996; Magaña, Evans, & Romney, 1981). MDS takes
a matrix of proximities and displays it in Euclidean
space such that there is a minimal degree of distortion
between the distances in the matrix and the distances
in the MDS solution.

Stress measures how well any given MDS solution
fits the original matrix from which it was generated.
Thus, stress is not a measure of accuracy of the solu-
tion “map” with respect to the real world (or any other
referent) but only with respect to the original proxim-
ity matrix. This means that MDS by itself cannot pro-
vide a measure of accuracy between the experimental
data generated (by whatever technique) and the actual
distances in the geometric environment. By contrast,
bidimensional regression provides exactly this kind of
accuracy measure. For example, Kitchin (1996) used
bidimensional regression to compare the cognitive
maps inferred from using MDS procedures (e.g., fill-
ing in a matrix of all possible distance estimates) with
those obtained using several other methods, including
drawing, spatial cuing, and cloze procedures. He

found that the maps produced by subjecting the dis-
tance estimates to MDS were substantially less accu-
rate than the maps produced by the other methods.
Additional drawbacks are that MDS (a) assumes that
participants are equally familiar with all the locations,
which limits its empirical use; (b) might introduce
geometric distortion into the data (Buttenfield, 1986);
and (c) might not be a valid technique to infer a latent
2-D configuration. This is because people might not
know where places are in relation to each other in a
map-like sense yet still be able to generate a distance
estimate, perhaps using travel times as a proxy (Kit-
chin and Blades, 2002, p. 133).

Furthermore, the similarity judgments required to
generate an MDS solution typically constitute a large
amount of information that is time consuming to col-
lect. The method is not suitable, therefore, for certain
participant populations (e.g., young children or ani-
mals). Even if one were to infer the proximity matrix
by, say, computing all possible distances between
points generated on a sketch map of landmarks, the
MDS solution would still need to be compared with
the real-world configuration for accuracy using bidi-
mensional regression or some other technique (for a
further critique of MDS as a method for investigating
the mental representation of space, see Hunt &
Waller, 1999; Kitchin, 1996; and Waller & Haun, in
press). In summary, MDS is not in any sense substi-
tutable for bidimensional regression.

Distortion Distance and DI

Throughout the remainder of this article, we always
refer to the XY coordinates as locations on an actual
map and the AB coordinates as the participants’ loca-
tion estimates, either singly or in aggregate. Either set
of coordinates can play the role of dependent or in-
dependent variable. As noted previously, Waterman
and Gordon’s (1984) proposed distortion distance, D,
was unconventional both conceptually and statisti-
cally. In particular, to compute D, they assigned the
cognitive coordinates (AB) to the role of independent
variable and the true map’s coordinates (XY) to the
role of dependent variable. Thus, Waterman and Gor-
don explicitly chose to have “the coordinates of the
mental map undergo a transformation so that the sum
of squares of the distances from the ‘true’ or given
points to the ‘transformed’ points is minimal” (p.
327). The assignment of coordinates to fixed roles
meant that “The best-fit solution always brings the
mean center of the mental map to the mean center of
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the true map” (p. 328). Their index thus reflects the
situation depicted in Figure 4 and does not allow for
the case in which the participants’ coordinates are the
dependent variable.

In contrast to Waterman and Gordon (1984), be-
cause there are two possible implementations of bidi-
mensional regression, we believe D should always be
defined in terms of whichever coordinates are to be
the dependent variable; on this view, when AB is de-
pendent, as in Figure 3,

DAB � √∑[(A − A�)2 + (B − B�)2], (8)

and when XY is dependent, as in Figure 4,

DXY � √∑[(X − X�)2 + (Y − Y�)2]. (9)

It should be noted that Equation 9 is identical to
Waterman and Gordon’s (1984) definition yet is con-
sistent with the notation we have been using through-
out this article.5 It is also important to note, from
Equation 2.6, that D2

AB is simply the unexplained vari-
ance between the coordinates of the cognitive map
and their predicted values. Analogously, from Equa-
tion 2.12, D2

XY is the unexplained variance between
the coordinates of the true map and their predicted
values. Thus, allowing D to be defined in terms of the
dependent variable’s coordinates brings its interpreta-
tion meaningfully into the bidimensional regression
analysis.

Waterman and Gordon (1984) realized that D had
limited utility because its value does not indicate
whether a given amount of distortion is large or small.
To standardize the amount of distortion among dif-
ferent cognitive maps of the same place, they pro-
posed that the true map’s coordinates be used to com-
pute Dmax, which they defined as “the maximum
value that D can achieve . . . obtained when all the
points on the mental map coincide in a single point”
(p. 328; see also their Appendix). That is, they pro-
posed that

Dmax � √∑[(X − MX)2 + (Y − MY)2]. (10)

They then proposed that DI � D/Dmax be com-
puted for each individual (or for the means across
individuals). Because D for Waterman and Gordon
(1984) is always computed using the cognitive map as
the referent, DI thus reinstated the true map’s coordi-
nates as a kind of referent. That is, on their analysis,
DI is a dimensionless value whose magnitude indi-
cates the amount of distortion in a mental map relative
to the true map regardless of scale.

However, from Equation 2.12, Dmax2 as defined
by Waterman and Gordon (1984) is identical to the
total variance among the coordinates of the true map.
Thus, DI2 defined by their method is simply the pro-
portion of variance in the bidimensional regression
that is unexplained. However, this relation between r2

and DI2 holds only when the estimated locations (AB)
are the independent variable, and the true coordinates
(XY) are the dependent variable. If the estimated co-
ordinates are used as the dependent variable but Dmax
is still computed using the coordinates of the true
map, the correspondence between the bidimensional
regression and DI necessarily breaks down. In par-
ticular, though D2

AB is still equivalent to the unex-
plained variance (now between the AB and A�B� co-
ordinates), Dmax defined in terms of the true map has
no meaning in this implementation of the regression.

In contrast, if D and Dmax are both defined as a
function of whichever coordinates are used as the de-
pendent variable (DV), then DI2

DV becomes the pro-
portion of total variance in the dependent variable
scores that remains unexplained by the bidimensional
regression. Furthermore, if DI is defined this way,
then this residual value remains equivalent irrespec-
tive of which set of coordinates (XY or AB) is used as
the independent variable, and the relation between the
bidimensional correlation coefficient and DI becomes

DIDV
2 =

DDV
2

DmaxDV
2 = 1 − r2. (12)

Assessing the Configural Similarity Between
Sets of 2-D Coordinates

The Toy World

As noted earlier, Figures 3 and 4 depict the situa-
tion when either the true map’s coordinates (XY) or
the participants’ judgments (AB), respectively, serve
as the independent variable. Table 3 shows the data

5 Waterman and Gordon (1984) used the notation A�B� to
represent the predicted values, even though they used the
AB (data) coordinates as the independent variable in the
computations (see their Appendix). We believe it is less
confusing and more consistent with the regression analysis
to use the notation X�Y� to refer to the least squares solution
when the AB coordinates are independent and the XY coor-
dinates are dependent, and that is what we do in the present
article.
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that were used in the figures, the regression parameter
estimates, the predicted values based on those param-
eters, and the distortion parameters. We have high-
lighted in the table those values that are identical in
the two analyses. It should be noted that these analy-
ses are functionally equivalent to item (aggregate)
analyses because there was no averaging conducted to
obtain the AB values.

Several things are notable about Table 3. For the
regression parameters, only the value of r2 is identi-
cal between the two analyses, though � is the same
except for the sign. Because the parameter estimates
differ, the description of the data and nature of the
inferences one might make also differs. For instance,
when the true map’s coordinates (XY) are the inde-
pendent variable, transforming them to the predicted
values for the cognitive map (A�B�) requires shift-
ing the XY coordinates to the north and east by ap-
proximately the same amount, scaling them by about
half, and rotating them clockwise by about 6°. In
contrast, when the AB coordinates are the indepen-
dent variable, transforming them to the predicted
values for the true map (X�Y�) requires a westerly

translation that was about half as much as the neces-
sary southerly translation, a scale difference of about
65%, and a 6° rotation counterclockwise. Clearly,
the two descriptions are not symmetric, reflecting
the fact that the parameters are not inverses. Further-
more, even if the true and cognitive maps were
centered on the origin prior to conducting the regres-
sion, though the translation parameters become zero
in both analyses, the scale and magnitude values still
differ.

Though it seems counterintuitive that both scale
values are contractions, this is the result of conducting
two regressions with different independent variables,
even though the data are identical. Normally, only one
set of coordinates (true or cognitive) is selected to
function as the independent variable, and the psy-
chological interpretation of the single computed scale
value can be made in terms of either the value itself
or its inverse. For example, in the unidimensional
case, once X is chosen as the independent variable,
there is only one relevant regression line, specified
by XA� coordinates. If any X must be multiplied by
0.5 to find the corresponding predicted value of the

Table 3
Data, Predicted Values, Regression Parameters, and Distortion Parameters for the Toy Worlds Depicted in Figures 3
and 4

Case 1: XY independent

Independent Dependent Predicted Parameters

X Y A B A� B� Regression Distortion

0 0 12 16 14.5247 15.8580 �1 � .4753 D2
AB � 41.25

10 0 19 19 19.2778 15.3642 �2 � −.0494 Dmax2
AB = 59.75

8 5 21 18 18.5741 17.8395 �1 � 14.5247 Dmax2
XY = 81.00

6 5 18 14 17.6235 17.9383 �2 � 15.8580 DI2
AB = .6903

6.00 2.50 17.50 16.75 17.50 16.75 � � −5.9315° DI2
XY � .5088

� � .4779
r2 = .3095

Case 2: AB independent

Independent Dependent Predicted Parameters

A B X Y X� Y� Regression Distortion

12 16 0 0 2.5063 1.6485 �1 � .6444 D2
XY � 55.92

19 19 10 0 6.8159 4.0502 �2 � .0669 Dmax2
AB = 59.75

21 18 8 5 8.1715 3.5397 �1 = −4.1458 DmaxXY
2 = 81.00

18 14 6 5 6.5063 0.7615 �2 � −9.4644 DI2
AB � .9359

17.50 16.75 6.00 2.50 6.00 2.50 � � 5.9315° DI2
XY = .6903

� � .6478
r2 = .3095

Note. Boldface indicates values that agree in both analyses. Numbers in italics are means for each column. D � distortion distance; Dmax
� maximum value of D; DI � distortion index.
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dependent variable on the regression line (i.e., A� ),
then conversely, any value of A� must be multiplied
by 2 to find the corresponding value of X on that
same regression line. Given the same original data,
if A were chosen as the independent variable the
slope (and its inverse) would be different because
the regression line would be different. Similarly, for
the bidimensional case, if XY is independent and
the computed scale value is 0.5 (as it is in the toy
world example), it is correct to say that to trans-
form the predicted A�B� points back to the original
XY referent map requires multiplying the predicted
values by 2. However, different values are obtained
for the scale and its inverse when AB is indepen-
dent (indeed, in the toy world example those values
are 0.65 and 1.5, respectively). This is why the
selection of which map’s coordinates are to provide
the independent variable is fundamentally so impor-
tant.

Because of the different parameter estimates and
because it is a reasonable assumption that cognitive
maps are formed from participants’ experience with
actual maps (among many other things; Friedman &
Brown, 2000a, 2000b; Friedman, Brown, & Mc-
Gaffey, 2002; Friedman, Kerkman, & Brown, 2002),
it would normally (though not always) make more
sense to describe the parameters that show how the

true map has been transformed into the cognitive map
rather than the other way around.

D can be computed only one way in each analysis
(Equations 8 or 9), but we computed both Dmax and
DI assuming that either XY or AB was the dependent
variable (the squared values are shown in Table 3).
Only when Dmax is based on the dependent variable’s
coordinates does the value of DI remain the same
across the analyses. This symmetry is the main reason
we advocate replacing Waterman and Gordon’s
(1984) method with our own. In contrast, if Dmax
were always computed from the true map’s coordi-
nates, DI necessarily changes. This is illustrated in
Table 4, which shows the values for each sum of
squares in each analysis. These values are related ac-
cording to the equation below:

r2 = � 38.712

�81.00� · �59.75�
� = �18.50

59.75�
= �1 −

41.25

59.75� = �25.08

81.00� = �1 −
55.92

81.00� = .309.

In summary, if the measure of distortion is to main-
tain a transparent relation to the bidimensional regres-
sion, then D must be the root of the unexplained vari-
ance, and Dmax must be the root of the total variance

Table 4
Sums of Squares and Corresponding Terms in Regression and Distortion Analyses for the Toy Worlds Depicted in Figures
3 and 4

Sum of squares Value Regression Distortion index

Case 1: XY independent

�[(A − MA) + i(B − MB)] � [(X − MX) + i(Y − MY)]* 38.71 Cov AB, XY
�[(X − MX)2 + (Y − MY)2] 81.00 Total SS (IV) Dmax2

XY (true map)
�[(A − MA)2 + (B − MB)2] 59.75 Total SS (DV) Dmax2

AB (cognitive map)
�[(A� − MA)2 + (B� − MB)2] 18.50 Explained SS
�[(A − A�)2 + (B − B�)2] 41.25 Unexplained SS D2

AB

�[(X − A�)2 + (Y − B�)2] 1,363.75
�[(X − A)2 + (Y − B)2] 1,405.00

Case 2: AB independent

�[(X − MX) + i(Y − MY)] � [(A − MA) + i(B − MB)]* 38.71 Cov XY, AB
�[(X − MX)2 + (Y − MY)2] 81.00 Total SS (DV) Dmax2

XY (true map)
�[(A − MA)2 + (B − MB)2] 59.75 Total SS (IV) Dmax2

AB (cognitive map)
�[(X� − MX)2 + (Y� − MY)2] 25.08 Explained SS
�[(X − X�)2 + (Y − Y�)2] 55.92 Unexplained SS D2

XY

�[(A − X�)2 + (B − Y�)2] 1,349.08
�[(A − X)2 + (B − Y)2] 1,405.00

Note. The asterisks in the first equation in each section indicate that the second term is a complex conjugate. SS � sum of squares; IV �
independent variable; DV � dependent variable; D � distortion distance; Dmax � maximum value of D.
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among the dependent variable’s coordinates. The
value of DI will then be the same irrespective of
which coordinates are independent, and which analy-
sis one chooses depends on a variety of factors.

In the toy world example, r2 � .309 for the Eu-
clidean model and .885 for the affine model (see Ap-
pendix). There are only four sets of points in the con-
figurations, so neither of these correlations were
significantly different from zero, F(2, 4) � 0.89, p <
1, and F(4, 2) � 3.87, p < 1, respectively. The dif-
ference between the Euclidean and affine models was
also not significant, F(2, 2) � 5.03, p < 1.

The Real World

For unidimensional regression, when a constant set
of values is used as the independent variable for all
participants, then the slope and intercept averaged
across individuals is identical to the slope and inter-
cept calculated from the item means. Similarly, for
bidimensional regression, if only one referent map’s
coordinates are used as the independent variable then
the average of the participants’ individual regression
parameters (�1, �2, �1, and �2) have identical values
to those obtained by averaging location estimates over
individuals for each place and computing the regres-
sion parameters from the analysis of the item means.
This is because the denominator of � is the same
constant for both the item and participant analyses,
and all four parameter estimates are derived from this
vector. In contrast, when the cognitive map’s coordi-
nates are used as the independent variable, the param-
eter estimates from the participant and item means
differ. This disparity is illustrated with actual location
estimates.

We obtained location estimates from 32 partici-
pants who had lived in Edmonton, Alberta, Canada
for a minimum of 5 years (M � 16.40 years, SE �
1.00). An important geographic feature of the city of
Edmonton is the North Saskatchewan river, which
meanders from the southwest to the northeast (see
Figure 5). In addition, Edmonton uses a numeric street
and avenue grid system in which the streets and av-
enues are orthogonal. The centre of downtown is lo-
cated at 100th Street and 100th Avenue; the streets
run from 1st Street at the eastern border to approxi-
mately 200th Street at the west; and the avenues run
from 1st Avenue at the southern border to about 200th
Avenue at the north. This numbering scheme allowed
us to obtain absolute location estimates (i.e., street
and avenue numbers), rather than having participants
estimate locations relative to reference points. This

was advantageous because landmarks and other ref-
erence points often distort cognitive maps (Holyoak &
Mah, 1982; McNamara & Didwakar, 1997). How-
ever, numeric estimates per se are not required for
bidimensional regression; any data that can be con-
verted to xy coordinates can be used.

The participants estimated the street and avenue
location nearest to the centroid of 44 public places.
They were tested individually; place names appeared
one at a time on a computer screen; half the partici-
pants entered the value of the street before the avenue,
and the remainder did the reverse. The places esti-
mated included shopping malls, theaters and audito-
riums, museums, sports centers, high schools, and
popular restaurants and bars. Most of the locations
spanned at least one city block, so the centroid esti-
mate was prima facie reasonable. The locations were
selected to represent places that would reflect a range
of familiarity; that this was achieved was corroborated
by knowledge ratings: On a 0 (no knowledge) to 9 (a
lot of knowledge) scale, the mean rating for the 44
places was 4.30 (SD � 0.26). The knowledge ratings
were collected before the location estimates, using a
similar procedure. Because of the variation in rated

Figure 5. Actual (black circles) and mean estimated (white
circles) locations of 44 places in the city of Edmonton,
Alberta, Canada. The actual and estimated locations for
each place are connected by a line. They were converted to
pixel coordinates by hand and superimposed on a digitized
map of Edmonton. The solid line running through the graph
represents the actual location of the North Saskatchewan
river.
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knowledge, the selected locations would not be ap-
propriate for an MDS analysis.

The mean estimated and actual locations are shown
in Figure 5. When averaged across participants, the
bidimensional correlation based on the Euclidean
model was .487 [r2 (explained variance) � .237; DI2

(unexplained variance) � .763], whereas for the item
means it was .839 (r2 � .703, DI2 � .297). Both of
these values were significantly different from zero,
F(2, 84) � 13.05, p < .01, and F(2, 84) � 99.41, p <
.01, respectively. The difference in r2 values between
the participant and item analysis reflects the well-
known point that item means usually overestimate the
strength of the association between variables, com-
pared with averaging r2 over participants. Conversely,
DI will be underestimated with item means.

Table 5 shows the bidimensional regression and
distortion parameters computed from the average of
the participants’ estimates as well as from the item
means. In addition, the table shows the parameter val-
ues obtained when either the true map or the cognitive
map coordinates were treated as independent. The pa-
rameter values computed from the item means were
used to compute the predicted values displayed in
Figures 6 and 7, so that these figures are completely
analogous to Figures 3 and 4, respectively. Thus, no-
tably, the regularity apparent between the connected
points in Figures 6 and 7, compared with Figure 5,
reflects the fact that the configurations of predicted
values (gray dots) in Figures 6 and 7 are formally
similar to the referent configurations from which they
were transformed (black dots). That is, in the Euclid-

ean model, the predicted values and their predictors
have identical global configurations.

The transformation from the actual locations to the
predicted values on the cognitive map (XY indepen-
dent; Figure 6) required a scale shift of 0.52 (with the
inverse direction for that implementation requiring a
shift of 1.92), whereas the transformation from the
cognitive map to predicted values on the actual map
(AB independent; Figure 7) entailed an expansion of
1.35 (with the inverse being 0.75). Again, these are
very different descriptions. In contrast to the toy-
world example, there was almost no rotation observed
between the actual and predicted configurations (� �
0.25° or −0.25°); thus, our participants functionally
preserved the known canonical orientation of the
streets and avenues of Edmonton in their estimates.

From the statistical point of view, it is clear from
the two leftmost columns of Table 5 that when the

Table 5
Regression and Distortion Parameter Estimates for
Participant and Item Analyses of Experiment 1

Parameter

XY independent AB independent

Item
means

Participant
means

Item
means

Participant
means

�1 .5221 .5221 1.3472 .4161
�2 .0023 .0023 −.0059 −.0012
�1 40.6262 40.6262 −22.2823 66.3934
�2 38.9062 38.9062 −24.5402 54.6260
� .2506° −10.6258° −.2506° 10.6258°
� .5221 .5542 1.3474 .4374
r2 .7034 .2375 .7034 .2375

D 80.96 231.996 130.01 198.60
Dmax 148.70 276.2243 238.8322 238.8322
DI 54.46 83.1544 54.46 83.1544

Note. D � distortion distance; Dmax � maximum value of D; DI
� distortion index.

Figure 6. Actual (black circles) and predicted (gray
circles) locations of 44 places in the city of Edmonton,
Alberta, Canada. The parameter estimates were obtained by
assuming that the XY (true map) coordinates were the inde-
pendent variable. The actual and predicted locations for
each place are connected by a line. The actual street and
avenue locations were converted to pixel coordinates by
hand, and the scale and angle transformations from Table 5,
Column 1, were applied to the pixel values. The translation
parameters were found by converting the mean actual and
estimated street and avenue values to pixel units by hand
and using the results in Equation 2.3. The final predicted
values were superimposed on a digitized map of Edmonton.
The solid line running through the graph represents the ac-
tual location of the North Saskatchewan river.

BIDIMENSIONAL REGRESSION 483



referent map’s coordinates (XY ) are the independent
variable, �1, �2, �1, and �2 are identical for both items
and participants; � and � are not. Recall that � and �
are the magnitude and angle of �, respectively; when
these transformations are computed separately for
each participant and averaged over participants, as we
have done in the second column of Table 5, it is
functionally the same as averaging the magnitudes
and angles of vectors, which is not usually meaning-
ful. Because �1 and �2 are identical across partici-
pants and items when XY is independent, we believe
the values of � and � computed from these parameters
are the ones that should be reported and tested (via
Nakaya’s [1997] methods).

The two rightmost columns in Table 5 show the
regression and distortion parameters when partici-
pants’ judgments were the independent variable.
Here, none of the four regression parameters (�1, �2,
�1, and �2) correspond across item and participant

analyses, which is potentially problematic. For ex-
ample, it is not clear which set of regression param-
eters to use to compute � and �; however, because
averaging angles and magnitudes of vectors is not
meaningful it is probably reasonable to use �1, and �2

computed from the item means.

Statistical Issues and Guidelines

The Fisher-transformed bidimensional correlation
coefficient, regression parameters, and DI can be
computed for each individual and treated as depen-
dent measures in analysis of variance or multivariate
analysis of variance to test individual or group differ-
ences. In addition, Nakaya (1997) has a thorough
treatment of significance testing for the bidimensional
regression parameters, transformation values, and
goodness-of-fit comparisons between models (e.g.,
Euclidean and affine).

Which Model?

In general, the Euclidean model, with the fewest
parameters (four) and simplest assumptions, should
be tested first, followed by the affine (six), and the
projective (eight). Because shear in the affine alters
the angles of intersections of lines relative to the origi-
nal image, this model is particularly useful for testing
hypotheses about cognitive distortions arising from
“alignment and rotation heuristics” (Glicksohn, 1994;
Nakaya, 1997; Tversky, 1981; Wakabayashi, 1994).
In addition, because the projective model takes ac-
count of viewpoint, it should be useful for testing
hypotheses in which the subjective distance between
locations changes with viewpoint (Holyoak & Mah,
1982).

Which Implementation?

The most frequent use of bidimensional regression
in cognitive mapping has been to compare cognitive
maps with actual maps for accuracy. In this context,
when participants’ judgments are the dependent vari-
able, the bidimensional parameters and the transforms
derived from them presumably reflect the psychologi-
cal processes (perceptual and memorial) that were ap-
plied to a set of inputs (e.g., actual maps) to produce
a given individual’s or group’s cognitive map(s). That
is, the parameters reflect how the cognitive map was
derived from the actual map. Conversely, when the
actual map’s coordinates form the dependent variable,
the parameters and transforms reflect how an indi-

Figure 7. Mean estimated (black circles) and predicted
(gray circles) locations of 44 places in the city of Edmonton,
Alberta, Canada. The parameter estimates were obtained by
assuming that the AB (cognitive map) coordinates were the
independent variable. The estimated and predicted locations
for each place are connected by a line. The estimated street
and avenue locations were converted to pixel coordinates by
hand, and the scale and angle transformations from Table 5,
Column 3, were applied to the pixel values. The translation
parameters were found by converting the mean actual and
estimated street and avenue values to pixel units by hand
and using the results in Equation 2.9. The final predicted
values were superimposed on a digitized map of Edmonton.
The solid line running through the graph represents the ac-
tual location of the North Saskatchewan river.
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vidual or group’s cognitive map has to be transformed
to “fit” back into the actual map. The parameters thus
reflect how the actual map can be derived from trans-
forms to an individual or group’s cognitive map.

Using the actual map as the independent variable
and participants’ judgments as the dependent variable
is conventional and generally preferable. First, actual
locations are typically sampled a priori, not randomly
(e.g., Golledge, Rivizzigno, & Spector, 1976; Glick-
sohn, 1994). Second, as shown in the previous sec-
tion, it is only when a single set of coordinates serves
as the independent variable that the parameter esti-
mates for participants and items are identical (see
Table 5). Third, DI is the same regardless of which
coordinates are used as the independent variable, so if
one is interested in comparing indices of distortion
across individuals it is not necessary to “force” indi-
vidual participant’s maps into the actual map’s space
to do so.

Nevertheless, there are certain circumstances for
which it makes sense to select a particular variant to
play the role of the independent variable, rather than
using accurate real-world coordinates. For example, if
one were comparing sketch maps of an environment
across age groups, the adults’ mean estimates might
be used as the referent coordinates, irrespective of
their accuracy with respect to the real world. Note that
in this case there is still a single set of referent coor-
dinates to which all the other variants are compared.
Thus, this case is completely analogous to the case in
which the actual maps’ coordinates are the indepen-
dent variable.

There are also some circumstances in which using
the objective coordinates as the dependent variable is
warranted. For example, suppose an archaeologist
wanted to determine the actual locations of sites on an
ancient map that were not identifiable with respect to
present day knowledge. In this case one would use the
ancient map as the independent variable, to predict the
modern coordinates of the unknown sites.6 In a psy-
chological version of this example, adults might re-
quire larger transformations than children require to
fit their cognitive maps to an actual map because
adults’ maps are more distorted (Kerkman, Friedman,
Brown, Stea, & Carmichael, 2003). Thus, the kind of
question being addressed should dictate which set of
coordinates plays the role of independent and depen-
dent variable. However, the caveats with respect to DI
still hold: D and Dmax should be computed with re-
spect to whichever coordinates are used as the depen-
dent variable.

Other Issues

Strictly speaking, the interpretation of the bidimen-
sional correlation coefficient is analogous to the in-
terpretation of a unidimensional correlation: When the
true map provides coordinates for the independent
variable, the bidimensional correlation reflects how
much of the variability in the estimated locations can
be accounted for by the true map’s configuration.
And, like the unidimensional case, there are many
reasons why a correlation coefficient might be low,
including the possibility that the method has been
used with inappropriate data. Thus, just as one should
not use Pearson r if the relation between independent
and dependent unidimensional variables is not linear,
one should not make inferences based on the Euclid-
ean implementation of bidimensional regression if the
data are not well described by a Euclidean metric.
Conversely, computing the bidimensional correlation
using the Euclidean model can certainly indicate how
well a Euclidean metric fits a set of data if that were
unknown a priori. For instance, Wakabayashi (1994)
had participants draw sketch maps of the locations of
19 places in Kanazawa City, Japan. This city is char-
acterized by two major channels of the Sai and Asano
rivers running from the southeast to the northwest.
Importantly, all the streets deviate from the cardinal
directions in a manner that parallels these channels
(i.e., by 10° and 30°), which makes Kanazawa City
quite different from Edmonton in this respect. Nakaya
(1997) reanalyzed Wakabayashi’s data using bidi-
mensional regression. Because the cognitive maps
were globally skewed relative to the actual maps, the
affine model accounted for significantly more of the
variance in the location estimates than did the Euclid-
ean model. Nevertheless, the Euclidean model ac-
counted for a significant portion of the variance in the
estimated locations. Note that here, the bidimensional
regression methodology was still appropriate for ana-
lyzing the data but only when implemented by testing
successive models.

In general, though 2-D data are in principle appro-
priate for examining with bidimensional regression, if
the data exhibit significant local nonlinearities (e.g.,
Huttenlocher, Hedges, & Duncan, 1991), none of the
first three bidimensional models (Euclidean, affine,
and projective) would be warranted. In this case, the

6 We are grateful to an anonymous reviewer for suggest-
ing this example.

BIDIMENSIONAL REGRESSION 485



curvilinear model might be appropriate, but it would
then be important to have an a priori rationale for
selecting the order of the exponent.

Finally, because bidimensional regression is com-
pletely analogous to unidimensional regression, re-
searchers must be vigilant about the same sorts of
issues. For instance, missing data is problematic in a
repeated measures design (e.g., when participants
make a number of location estimates, which is most
often the case). One may decide to delete participants
who have missing data from consideration, which
lowers statistical power and restricts the population to
which the results may be generalized. Alternatively,
one may decide to use modern missing data proce-
dures, such as multiple imputation, which make maxi-
mal use of the available data and produce unbiased
estimates and standard errors when data are missing at
random (Schafer & Graham, 2002). Additionally, is-
sues arise in combining separate parameter estimates
that are computed individually for each participant.
Some participants might have relatively little variabil-
ity in their judgments and others might have a lot; the
groups might differ in either their knowledge or in the
care with which they made their judgments. In either
case one might consider some sort of weighting
scheme for different participants (e.g., empirical
Bayes methods; Kreft & De Leeuw, 1998, p. 132).

Psychological Issues Amenable to
Bidimensional Regression

In this final section we provide examples from ex-
tant psychological literature that are appropriate for
and would benefit from bidimensional regression
analysis. In some instances, bidimensional regression
would provide completely new information than what
is currently reported or available and in other in-
stances, the bidimensional correlation coefficient and
transformations would augment extant analyses.

Animal Cognition and Behavioral Ecology

For animals, survival in an environment often de-
pends on processing spatial information; spatial abil-
ity, and specifically that required for localization, is
required for activities such as establishing shelter, at-
taining food, avoiding or engaging in predation, and
migratory behavior. As long as these behaviors can be
observed (either in the natural environment or in the
laboratory), quite a few issues in animal spatial cog-
nition are amenable to examination using bidimen-
sional regression techniques. For example, what is the

accuracy of location memory in species that store
food (e.g., Shettleworth, 2002)? What is the accuracy
of a predator’s striking distance from its prey (Snyder,
2001)? For species that are mobile, are there correla-
tions between predator and prey locations or between
nesting locations from year to year (Bélisle & St.
Clair, 2001; St. Clair, McLean, Murie, Phillipson, &
Studholme, 1999)? For animals that hunt or forage, is
there evidence that they use landmark-based informa-
tion for food or prey localization (Cheng, 1999;
Snyder, 2001)?; related to this, do bees and other
foragers visit the same areas across successive forays
(Cheng, 2000)? Is there regularity in the patrolled
sites within an animal’s home territory? For several of
these issues (e.g., the last two questions), one would
use time of day as a temporal marker for setting the
spatial coordinates/locations to be compared. Indi-
viduals could be observed (or tracked with global po-
sitioning system collars) at specific locations at par-
ticular times either within or across days.

Developmental Spatial Cognition

Spatial abilities comprise a core set of intellectual
abilities; a large portion of the literature on the devel-
opment of spatial cognition (see Newcombe & Hut-
tenlocher, 2000, for review) addresses issues that are
amenable to analysis with bidimensional regression.
For example, how do young children’s sketch maps of
a classroom (neighborhood; city) compare with those
of older children and adults? How accurate are each of
these groups’ maps with respect to an actual map?
How is location memory affected by barriers (New-
combe & Libben, 1982)? How do children develop
location coding? This type of study examines the ac-
curacy of children’s placement of, or memory for,
targets relative to landmarks or in the absence of land-
marks (e.g., Herman & Siegal, 1978; Huttenlocher &
Newcombe, 1984; Huttenlocher, Newcombe, & Sand-
berg 1994; Newcombe, Huttenlocher, Drummey, &
Wiley, 1998). The r2 between the children’s place-
ments and the absolute locations of objects on a map
or grid could be compared to the r2 between the chil-
dren’s placements and environmental landmarks. Fi-
nally, which method of eliciting location estimates
from young children provides the most accurate data
with respect to the objective coordinates?

Adult Spatial Cognition

As with children, there is quite a lot of research on
adult spatial cognition, and many of the questions
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addressed could be examined with bidimensional re-
gression. For example,

1. Do adults’ estimates of locations on a city and/or
global scale provide evidence that they have “normal-
ized” the representation? Here, besides comparing
digitized location estimates to an actual map for ac-
curacy (r2), one would examine the nature of the
transformations required to change the actual map
into the cognitive map (or vice versa). Cognitive maps
of the same locations obtained from people who lived
in different places could be compared for differences
in their accuracy and patterns of distortion (see Fried-
man, Kerkman, & Brown, 2002, for a global-level
example and Lloyd, 1989, for an example at the urban
level). In addition, one could compare the r2 com-
puted from the Euclidean model with that computed
from the affine model to determine which of these
better fit the data (see Nakaya, 1997, for an urban
example). If the affine model fit better, one would
then interpret how the scale, angle, and shear charac-
teristics differed among the groups (see Appendix).

2. Is learning a layout via virtual reality as accurate
as learning it from a map or from the actual environ-
ment? Are their similarities in the distortions dis-
played after each kind of learning? How does visual
fidelity affect accuracy of location memory (Waller,
Knapp, & Hunt, 2001)?

3. Providing participants with a few well chosen
“seed facts” (i.e., actual latitudes and longitudes of a
few cities; Friedman & Brown, 2000a, 2000b) dra-
matically alters their location estimates. Bidimen-
sional correlations could be used to compare pre- and
postseeding cognitive maps to actual maps, as well as
the same participants’ pre- and postseeding cognitive
maps to each other. The latter would be a measure of
the consistency of the configural structure of item
knowledge within a region, which we have been pre-
viously unable to quantify.

Neuropsychology

There is a large literature that examines the effects
of brain damage on spatial learning and memory for
both animals and humans. For example, what is the
effect of hippocampal lesions on memory for location
(Hampton & Shettleworth, 1996a, 1996b)? Bidimen-
sional regression could be used to evaluate differences
in the effects of lesions among individuals or within
the same individuals over time.

Other Possibilities

Bidimensional regression should be useful in any
domain in which the geometry of the configuration is

of interest in its own right. For example, it provides a
means of comparing patterns of individuals’ or
groups’ eye movements as they examined scenes un-
der different instructions; these patterns have been
previously described only qualitatively (e.g., Buswell,
1935). In the semantic domain, one could compare
individuals or groups on the similarity of their MDS
solutions for particular semantic spaces (e.g., Rips,
Shoben, & Smith, 1973).

Bidimensional regression should also prove useful
for examining direct similarity scaling of multidimen-
sional stimuli. For example, in Garner’s (1974) analy-
sis, a Euclidean metric is appropriate for describing
integral dimensions (e.g., value and chroma; Handel
and Imai, 1972) whereas a city-block metric is more
appropriate for separable dimensions (e.g., lightness
and size; Handel & Imai, 1972; see also Hyman &
Well, 1967, 1968).

There are likely to be many potential uses for bi-
dimensional regression besides the ones we have de-
scribed, including those that are not limited to a Eu-
clidean metric. Thus, the analysis should be useful for
and adaptable to many psychological issues.
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Appendix

Computations for the Affine Transformation (XY Independent)

The affine transformation consists of a series of separate
operations that translate, rotate, scale, and shear points from
the referent’s space into the variant’s space (or vice versa).
Like the Euclidean case, scale values greater or less than
one represent an expansion or contraction, respectively.
Unlike the Euclidean case, in the affine transformation
the scaling is performed independently for each dimension,
and scale values can be negative. Negative scale values
produce configurations that are mirror reflections of those
produced by positive scale values. The angle transform
functions identically to the Euclidean case and reflects how
much the variant’s coordinates are rotated with respect to
the referent’s plane. The effect of a shear transformation (�)
is to “push” a 2-D configuration in a direction parallel to
one of the coordinate axes. For example, one can “push” in
the X direction, positive or negative, and keep the Y coor-
dinates unchanged, or vice versa. However, even though
shear can occur along the X- or Y-axis, when rotation is
taken into account, one of the axes becomes redundant.
Consequently, we have elected to illustrate shear along the
X-axis.

We illustrate the affine transformation assuming that XY
is the independent variable. Like all the models, the param-
eter estimates change when AB is independent.

The affine model has six parameters: Two are for trans-

lation, and the remaining four are combined to form the
scale, angle, and shear transformations. The matrix version
of the model is

�A�

B�� = ��1

�2
� + ��1 �2

�3 �4
� � �X

Y�.

Eliminating � allows the system of equations to be rewrit-
ten as

�A�

B�� − �MA

MB
� = ��1 �2

�3 �4
� � ��X

Y� − �MX

MY
�� ,

which can be solved as follows:

��1 �2

�3 �4
� = ABT � XY � �XYT � XY�−1,

where

AB = �A�

B�� − �MA

MB
�

and

XY = �X

Y� − �MX

MY
�,

organized as one coordinate pair per row (i.e., an N × 2
matrix). Solving this system of equations for the four �
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values yields the following relations, which can be used to
compute the parameters directly:

�1 =
cov AX � var Y − cov AY � cov XY

var X � var Y − �cov XY�2
, (13)

�2 =
cov AY � var X − cov AX � cov XY

var X � var Y − �cov XY�2
, (14)

�3 =
cov BX � var Y − cov BY � cov XY

var X � var Y − �cov XY�2
, (15)

�4 =
cov BY � var X − cov BX � cov XY

var X � var Y − �cov XY�2
. (16)

The translation parameters are found by

�1 � MA − �1 � MX − �2 � MY

and

�2 � MB − �3 � MX − �4 � MY,

and each predicted pair of coordinates can then be computed
as follows:

A� � �1 + �1 � X + �2 � Y

and

B� � �2 + �3 � X + �4 � Y.

Once the predicted values have been obtained, they can be
used in Equation 2.5 to find the bidimensional correlation
coefficient. For the toy world values in Table 3, Case 1, the
values of �1 and �2 are 11.846 and 15.673, respectively; the
values of �1 to �4 are .7308, .5077, .3654, and −.4462; and
r2 � .885. Note that this is much higher than r2 for the
Euclidean case (.309), but of course, involves two additional
parameters.

Obtaining Values for the Transformations

Each of the transformations except translation can be ex-
pressed by its own matrix:

Rotation �cos � −sin �

sin � cos � �,

Shear �1 �

0 1�,

and

Scale ��X 0

0 �Y
�.

The matrices are multiplied together in the order in which
the operations are applied to the referent’s coordinates. For
example, for the order rotation, shear, and scale, the � ma-
trix becomes

��1 �2

�3 �4
� = �cos � −sin �

sin � cos � � � �1 �

0 1� � ��X 0

0 �Y
�.

However, given a particular � matrix computed from Equa-
tions 13–16, the values of �, �, �X, and �Y and the equations
to compute them depend on the order in which the trans-
formations are to be applied. Conversely, if the values of �,
�, �X, and �Y, are known, then the values of �1–�4 will
depend on whether, for example, the coordinates are first
rotated, sheared, and then scaled, or whether they are first
sheared, scaled, and then rotated. Thus, whether one is the-
orizing about the values of the �s or of the transforms, it is
important to have a rationale for why the transforms are
applied in a particular order and to take care in their inter-
pretation. However, regardless of the order of transforms
and values of �, �, �X, and �Y, the same values of A�B�
points are produced for the same set of XY points (as well as
the same r2 and DI).

Excluding translation, there are six possible orders of the
�, �, and � transforms; we illustrate the system of equations
for two of these. In these examples we have always applied
the translation operation first, to ensure that the origin (0, 0)
in the referent space maps simply to the point (�1, �2) in the
variant’s space. Otherwise, the order in which the transla-
tion is applied with the other transformations also makes a
difference. Furthermore, even when the same order of op-
erations is used, there are several ways to describe the same
transformed coordinates. For example, mirror reflections
about the x-axis are identical to the combination of a 180°
rotation followed by a mirror reflection about the y-axis.
Thus, it is necessary to restrict the solutions to some of the
equations below.

Given the four � values, if the XY coordinates are to be
rotated, sheared, and then scaled, the values for �, �, �X, and
�Y are computed as follows:

Angle � = tan−1��3

�1
� �add 180° if ß1 � 0�,

Shear � =

�4

�2
� sin � + cos �

�4

�2
� cos � − sin �

,

Scale �X = ��1
2 + �3

2 �the negative solution is redundant�,

Scale �Y = ±��2
2 + �4

2

�2 + 1
or
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�2

� � cos � − sin �
or

�4

� � sin � + cos �
.

The values of �, �, �X, and �Y for the toy world in Table 3,
Case 1, are 26.565°, −.4066, .8170, and −.6261, respec-
tively. In contrast, by applying shear, scale, and then rota-
tion, the equations become

Angle � = tan−1
�3

�4
�add 180° if ß4 � 0�,

Shear � =
�1 � sin � + �2 � cos �

�3 � sin � + �4 � cos �
,

Scale �X = ±��1
2 + �2

2 − �2 � ��3
2 + �4

2� or
�1 − � � �3

cos �
or

−
�2 − � � �4

sin �
,

and

Scale �Y = ��3
2 + �4

2 �the negative solution is redundant).

The values of �, �, �X, and �Y in this case are 140.684°,
.1218, −.8870, and .5767.

Note that in the first case, the first equation for �Y yields
its magnitude without concern about division by zero, and
the remaining equations indicate whether �Y is positive or
negative. We chose to restrict the solutions for �X to posi-
tive values and to allow both positive and negative solutions
for �Y . In the second case, the first equation for �X provides
the value without concern about division by zero, and the
remaining equations provide its sign. Here, we restricted the
solutions for �Y to positive values. Alternately, it is possible
to restrict the range of � and allow both positive and nega-
tive values for �X and �Y .
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