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Abstract

Bidimensionality theory was introduced by Demaine et al. [JACM 2005 ] as a framework to obtain

algorithmic results for hard problems on minor closed graph classes. The theory has been sucessfully

applied to yield subexponential time parameterized algorithms, EPTASs and linear kernels for many

problems on families of graphs excluding a fixed graph H as a minor. In this paper we use several of

the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexpo-

nential time parameterized algorithms for problems on classes of graphs which are not minor closed,

but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time

parameterized algorithms for FEEDBACK VERTEX SET, VERTEX COVER, CONNECTED VERTEX

COVER, DIAMOND HITTING SET, on map graphs and unit disk graphs, and for CYCLE PACKING

and MINIMUM-VERTEX FEEDBACK EDGE SET on unit disk graphs. To the best of our knowledge,

these results were previously unknown, with the exception of the EPTAS and a subexponential time

parameterized algorithm on unit disk graphs for VERTEX COVER, which were obtained by Marx

[ESA 2005 ] and Alber and Fiala [J. Algorithms 2004 ], respectively.

Our results are based on the recent decomposition theorems proved by Fomin et al. in [SODA

2011 ] and novel grid-excluding theorems in unit disc and map graphs without large cliques. Our

algorithms work directly on the input graph and do not require the geometric representations of the

input graph. We also show that our approach can not be extended in its full generality to more general

classes of geometric graphs, such as intersection graphs of unit balls in R
d, d ≥ 3. Specifically, we

prove that FEEDBACK VERTEX SET on unit-ball graphs in R
3 neither admits PTASs unless P=NP,

nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we

show that the decomposition theorems which our approach is based on fail for disk graphs and that

therefore any extension of our results to disk graphs would require new algorithmic ideas. On the

other hand, we prove that our EPTASs and subexponential time algorithms for VERTEX COVER and

CONNECTED VERTEX COVER carry over both to disk graphs and to unit-ball graphs in R
d for every

fixed d.
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1 Introduction

Algorithms for hard optimization problems on intersection graphs of systems of geometric objects is

a well studied area in Computer Science motivated by various applications in wireless networks [32],

computational biology [42] and map labeling [1]. While most problems remain NP-complete even

when restricted to such classes, the restriction of a problem to a geometric class is usually much more

tractable algorithmically than the unrestricted problem. For example, for planar graphs and more gener-

ally minor closed families of graphs, the Bidimensionality theory of Demaine et al. [17] simultaneously

demonstrates the tractability of most natural problems with respect to subexponential time parameter-

ized algorithms [17], approximation [18, 26] and kernelization [27]. For related “geometric” classes of

graphs that are not closed under taking minors, the picture is considerably more heterogenous and the

situation is less understood. The objective of this article is to take a step towards clearing the picture for

geometric graph classes.

Most of the known approximation schemes that have been obtained for graph problems on geo-

metric graph classes use a variation of the well-known shifting technique introduced in the classical

works of Baker [5] and of Hochbaum and Maass [28]. Hunt et al. [29] used the shifting technique

to give polynomial time approximation schemes (PTASs) for a number of problems such as MAXI-

MUM INDEPENDENT SET and MINIMUM DOMINATING SET on unit disk graphs and λ-precision disk

graphs. Independently, Erlebach et al. [24] and Chan [9] generalized the shifting technique and gave

PTASs for MAXIMUM INDEPENDENT SET and MINIMUM VERTEX COVER on disk graphs and on

intersection graphs of fat objects. Marx in [34] obtained an efficient polynomial time approximation

schemes (EPTAS) for MINIMUM VERTEX COVER on unit disk graphs. Chen in [10] and Demaine et

al. [16] used similar approaches to obtain a PTAS for MAXIMUM INDEPENDENT SET and MINIMUM

r-DOMINATING SET on map graphs. One of the known limitations of the shifting technique is that it

generally only applies to local problems such as VERTEX COVER and variants of DOMINATING SET,

and fails for non-local problems such as FEEDBACK VERTEX SET and CYCLE PACKING. For prob-

lems on planar and H-minor-free graphs, Bidimensionality is able to handle non-locality by applying

treewidth based decomposition. It is tempting to ask whether treewidth based decomposition can be

useful for other graph classes as well.

In this article we use key ideas from Bidimensionality and design a general approach that can be used

to give EPTASs and subexponential time parameterized algorithms for many problems on map graphs

and for unit disk graphs, and in some cases on even more general geometric classes of graphs. We present

EPTASs and subexponential time parameterized algorithms for FEEDBACK VERTEX SET, VERTEX

COVER, CONNECTED VERTEX COVER, DIAMOND HITTING SET, MINIMUM-VERTEX FEEDBACK

EDGE SET on map and unit disk graphs, and for CYCLE PACKING and MINIMUM-VERTEX FEEDBACK

EDGE SET on unit disk graphs. Our approach is based on the concept of truly sublinear treewidth,

recently introduced by the authors in [26] as a tool to give EPTASs for bidimensional problems on

minor closed graph classes. Roughly speaking, a graph class has truly sublinear treewidth if adding

k vertices to any graph in the class such that the resulting graph is in the class as well, increases its

treewidth by O(kǫ) for ǫ < 1. The techniques in [26] can not be applied directly to map graphs and

unit disk graphs, because both graph classes contain arbitrarily large cliques and hence do not have truly

sublinear treewidth. We overcome this obstacle by showing that cliques are the only pathological case.

Namely, we prove that map graphs and unit disk graphs that exclude large clique subgraphs have truly

sublinear treewidth. Our EPTASs work in two steps, first we “clean” the input graph for large cliques,

and then we apply the decomposition theorems from [26].

The initial application of Bidimensionality was in the design of subexponential parameterized algo-

rithms on planar, and more generally, on H-minor-free graphs [17]. Demaine et al. [16] used Bidimen-

sionality to obtain subexponential parameterized algorithms for DOMINATING SET, and more generally,

for (k, r)-CENTER on map graphs. We show that after “cleaning” unit disk and map graphs from large

cliques, it is possible to use Bidimensionality to solve many parameterized problems in subexponen-
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tial time on these classes of graphs. To the best of our knowledge, prior to our work parameterized

subexponential algorithms on unit disk graphs were known only for VERTEX COVER [2]. The important

ingredient of our algorithms are the analogues of excluding grid theorems of Robertson et al. for planar

graphs [38] and of of Demaine and Hajiaghayi for H-minor free graphs [19]. We show that the treewidth

of every unit disc or map graph excluding a clique of constant size as a subgraph and excluding a k × k
grid as a minor, is O(k).

Our algorithms do not require geometric representations of the input graphs. Since recognition of

unit disk graphs is NP-hard [13] and the exponent of the polynomial bounding the running time of map

graph recognition algorithm is about 120 [40], the robustness of our algorithms is a serious advantage.

We explore to which degree our approach can be lifted to other classes of graphs. Our investigations

show that it is unlikely that the full power of our approach can be generalized to disk graphs or to unit ball

graphs in R
d — intersection graphs of unit-balls in R

d, d ≥ 3. Specifically we prove that FEEDBACK

VERTEX SET on unit-ball graphs in R
3 neither admits a PTASs unless P=NP, nor a subexponential time

algorithm unless the Exponential Time Hypothesis fails. Furthermore we show that disk graphs which

exclude the clique on four vertices as a subgraph do not have truly sublinear treewidth. On the other

hand, an adaptation of our techniques yields EPTASs and subexponential time parameterized algorithms

for VERTEX COVER and CONNECTED VERTEX COVER both on disk graphs and on unit disk graphs in

R
d for every fixed integer dimension d.

A natural question is whether our results can be extended to handle larger classes of problems on

map graphs and unit disk graphs. It appears that the main obstacle to generalizaing our approach is to

design more general clique cleaning procedures. In particular, Marx [34] showed that DOMINATING

SET and INDEPENDENT SET are W[1]-hard even on unit disk graphs. This means that the two problems

neither admit EPTASs nor FPT algorithms unless FPT=W[1], a complexity collapse considered very

unlikely. While no clique cleaning procedure is known for these two problems, a simple modification

of our techniques show that both problems admit both EPTASs and subexponential time algorithms on

map graphs and unit disk graphs excluding large cliques as subgraphs. Thus it seems that we are able to

handle exactly the problems for which cliques can be removed efficiently.

2 Definitions and Notations

In this section we give various definitions which we make use of in the paper. Let G be a graph with

vertex set V (G) and edge set E(G). A graph G′ is a subgraph of G if V (G′) ⊆ V (G) and E(G′) ⊆
E(G). The subgraph G′ is called an induced subgraph of G if E(G′) = {uv ∈ E(G) | u, v ∈ V (G′)},

in this case, G′ is also called the subgraph induced by V (G′) and denoted by G[V (G′)]. For a vertex

set S, by G \ S we denote G[V (G) \ S]. A graph class G is hereditary if for any graph G ∈ G all

induced subgraphs of G are in G. By N(u) we denote (open) neighborhood of u, that is, the set of

all vertices adjacent to u. Similarly, by N [u] = N(u) ∪ {u} we define the closed neighborhood. The

degree of a vertex v in G is |NG(v)|. We denote by ∆(G) the maximum vertex degree in G. For a subset

D ⊆ V (G), we define N [D] = ∪v∈DN [v] and N(D) = N [D]\D. Given an edge e = xy of a graph G,

the graph G/e is obtained from G by contracting the edge e. That is, the endpoints x and y are replaced

by a new vertex vxy which is adjacent to the old neighbors of x and y (except from x and y). A graph H
obtained by a sequence of edge-contractions is said to be a contraction of G. A graph H is a minor of a

graph G if H is the contraction of some subgraph of G and we denote it by H ≤m G. We also use the

following equivalent characterization of minors.

Proposition 1 ([21]). A graph H is a minor of G if and only if there is a map φ : V (H) → 2V (G)

such that for every vertex v ∈ V (H), G[φ(v)] is connected, for every pair of vertices v, u ∈ V (H),
φ(u) ∩ φ(v) = ∅, and for every edge uv ∈ E(H), there is an edge u′v′ ∈ E(G) such that u′ ∈ φ(u)
and v′ ∈ φ(v).
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Let G, H be two graphs. A subgraph G′ of G is said to be a minor-model of H in G if G′ contains

H as a minor. The (r × r)-grid is the Cartesian product of two paths of lengths r − 1.

Treewidth A tree decomposition of a graph G is a pair (X , T ), where T is a tree and X = {Xi | i ∈
V (T )} is a collection of subsets of V such that the following conditions are satisfied.

1.
⋃

i∈V (T ) Xi = V (G).

2. For each edge xy ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ).

3. For each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

Each Xi is called the bag of a tree decomposition. The width of the tree decomposition is maxi∈V (T ) |Xi|−
1. The treewidth of a graph G, tw(G), is the minimum width over all tree decompositions of G.

Plane, unit disk and map graphs. In this paper we use the expression plane graph for any planar graph

drawn in the Euclidean plane R
2 without any edge crossing. We do not distinguish between a vertex of

a plane graph and the point of R
2 used in the drawing to represent the vertex or between an edge and

the curve representing it. We also consider plane graph G as the union of the points corresponding to

its vertices and edges. We call by face of G any connected component of R
2 \ (E(G) ∪ V (G)). The

boundary of a face is the set of edges incident to it. If the boundary of a face f forms a cycle then we

call it a cyclic face. A disk graph is the intersection graph of a family of (closed) disks in R
2. A unit disk

graph is the intersection graph of a family of unit disks in R
2. The notion of a map graph is due to Chen

et al. [11]. A map M is a pair (E , ω), where E is a plane graph and each connected component of E is

biconnected, and ω is a function that maps each face f of E to 0 or 1 in a way that whenever ω(f) = 1,

f is a closed face. A face f of E is called nation if ω(f) = 1, lake otherwise. The graph associated with

M is a simple graph G, where V (G) consists of the nations on M and E(G) consists of all f1f2 such

that f1 and f2 are adjacent (that is shares at least one vertex). We call G a map graph. By N(E ) we

denote the set of nations of E .

Counting Monadic Second Order Logic. The syntax of MSO of graphs includes the logical connec-

tives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, set of vertices and set of edges, the quantifiers ∀, ∃
that can be applied to these variables, and the following five binary relations:

1. u ∈ U where u is a vertex variable and U is a vertex set variable.

2. d ∈ D where d is an edge variable and D is an edge set variable.

3. inc(d, u), where d is an edge variable, u is a vertex variable, and the interpretation is that the edge

d is incident on the vertex u.

4. adj(u, v), where u and v are vertex variables, and the interpretation is that u and v are adjacent.

5. Equality of variables, =, representing vertices, edges, set of vertices and set of edges.

Counting monadic second-order logic (CMSO) is monadic second-order logic (MSO) additionally

equipped with an atomic formula cardn,p(U) for testing whether the cardinality of a set U is con-

gruent to n modulo p, where n and p are integers independent of the input graph such that 0 ≤ n < p
and p ≥ 2. We refer to [4, 14, 15] for a detailed introduction to CMSO. MIN-CMSO and MAX-CMSO

problems are graph optimization problems where the objective is to find a maximum or minimum sized

vertex or edge set satisfying a CMSO-expressible property. In particular, in a MIN/MAX-CMSO graph

problem Π we are given a graph G as input. The objective is to find a minimum/maximum cardinality

vertex/edge set S such that the CMSO-expressible predicate PΠ(G, S) is satisfied.

Bidimensionality and Separability. Our results concern graph optimization problems where the ob-

jective is to find a vertex or edge set that satisfies a feasibility constraint and maximizes or minimizes

a problem-specific objective function. For a problem Π and vertex (edge) set S let φΠ(G, S) be the

feasibility constraint returning true if S is feasible and false otherwise. Let κΠ(G, S) be the objective

function. In most cases, κΠ(G, S) will return |S|. We will only consider problems where every instance

has at least one feasible solution. Let U be the set of all graphs. For a graph optimization problem Π
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let π : U → N be a function returning the objective function value of the optimal solution of Π on G.

We say that a problem Π is minor-closed if π(H) ≤ π(G) whenever H is a minor of G. We now define

bidimensional problems.

Definition 1 ([17]). A graph optimization problem Π is minor-bidimensional if Π is minor-closed and

there is δ > 0 such that π(R) ≥ δr2 for the (r × r)-grid R. In other words, the value of the solution on

R should be at least δr2.

Demaine and Hajiaghayi [18] define the separation property for problems, and show how separabil-

ity together with bidimensionality is useful to obtain EPTASs on H-minor-free graphs. In our setting a

slightly weaker notion of separability is sufficient. In particular the following definition is a reformula-

tion of the requirement 3 of the definition of separability in [18] and similar to the definition used in [27]

to obtain kernels for bidimensional problems.

Definition 2. A minor-bidimensional problem Π has the separation property if given any graph G and a

partition of V (G) into L ⊎ S ⊎ R such that N(L) ⊆ S and N(R) ⊆ S, and given an optimal solution

OPT to G, π(G[L]) ≤ κΠ(G[L], OPT ∩L)+O(|S|) and π(G[R]) ≤ κΠ(G[R], OPT ∩R)+O(|S|).

In Definition 2 we slightly misused notation. Specifically, in the case that OPT is an edge set

we should not be considering OPT ∩ R and OPT ∩ L but OPT ∩ E(G[R]) and OPT ∩ E(G[L])
respectively.

Reducibility, η-Transversability and Graph Classes with Truly Sublinear Treewidth. We now de-

fine three of the central notions of this article.

Definition 3. A graph optimization problem Π with objective function κΠ is called reducible if there

exist a MIN/MAX-CMSO problem Π′ and a function f : N → N such that

1. there is a polynomial time algorithm that given G and X ⊆ V (G) outputs G′ such that π′(G′) =
π(G) ±O(|X|) and tw(G′) ≤ f(tw(G \ X)),

2. there is a polynomial time algorithm that given G and X ⊆ V (G), G′ and a vertex (edge) set S′

such that PΠ′(G′, S′) holds, outputs S such that φΠ(G, S) = true and κΠ(G, S) = |S′|±O(|X|).

Definition 4. A graph optimization problem Π is called η-transversable if there is a polynomial time

algorithm that given a graph G outputs a set X of size O(π(G)) such that tw(G \ X) ≤ η.

Definition 5. Graph class G has truly sublinear treewidth with parameter λ, 0 < λ < 1, if for every

η > 0, there exists β > 0 such that for any graph G ∈ G and X ⊆ V (G) the condition tw(G \ X) ≤ η
yields that tw(G) ≤ η + β|X|λ.

Throughout this paper Kt denotes a complete graph on t vertices and we say that a graph G is Kt-free if

G does not contain Kt as an induced subgraph.

3 Structure of Kt-free Geometric Graphs

In this section we show that unit disk graphs and map graphs with bounded maximum clique size has

truly sublinear treewidth.

3.1 Structure of Kt-free Unit Disk Graphs.

We start with the following well known observation (see [33, Lemma 3.2]) about Kt-free unit disk

graphs.

Observation 1. If a unit disk graph G is Kt-free then ∆(G) ≤ 6t.
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(A) (B) (C)

Figure 1: (A) Drawing of a planar (multi)graph PI formed by the drawing of four disks; (B) The dual

graph DI of PI ; (C) The graph PG.

Observation 1 allows us to prove theorems on unit disk graphs of bounded maximum degree and

then use these results for Kt-free graphs.

Let G be a unit disk graph generated by B = {B1, . . . , Bn} and ∆(G) = ∆. We will associate

an auxiliary planar graph PG with G such that the treewidth of these two graphs is linearly related.

Let PI be a planar graph defined as follows. Consider the embedding (drawing) of the unit disks B =
{B1, . . . , Bn} in the plane. Let P be the set of points in the plane such that each point in the set is on the

boundary of at least two disks. Essentially, this is the set of points at unit distance to centers of at least

two disks. We place a vertex at each point in P and regard the curve between a pair of vertices as an

edge, then the embedding of unit disks B = {B1, . . . , Bn} in the plane gives rise to the drawing PI of a

planar multigraph. Furthermore let DI be the planar dual of PI ; it is well known that DI is also planar.

Next we define a notion of region which is essential for the definition of PG. We call a face R of the

plane graph PI a region, if there exists a nonempty subset B′ ⊆ B of unit disks such that every point in

R is an interior point of each disk in B′. Hence with every region R we can associate a set of unit disks.

Since the vertices of G correspond to disks of B, we can associate a subset of vertices of G, say V(R),
to a region R. We remark that there could be two regions R1 and R2 with V(R1) = V(R2). Now we

are ready to define the graph PG. Let R1, . . . ,Rp be the regions of PI . These are faces in PI and hence

in the dual graph DI we have vertices corresponding to them. That is, in DI for every region Ri we

have a vertex v(Ri). We define

PG := DI [{v(Ri) | 1 ≤ i ≤ p}].

Thus, PG is an induced subgraph of DI obtained by removing non-region vertices. Figure 1 illustrates

the construction of graphs PI and PG from unit disks drawing. Next we prove some properties of PG.

Lemma 1. Let G be a unit disk graph of maximum degree ∆. Then PG is a planar graph and every

vertex v ∈ V (G) is a part of at most 3(∆2 + ∆) regions.

Proof. The graph PG is a subgraph of DI , the planar dual of PI , and hence it is also planar. Let

v ∈ V (G) be a vertex. We consider the embedding (drawing) of unit disks corresponding to the vertices

of the closed neighborhood NG[v] in the plane. Then |NG[v]| ≤ ∆ + 1. Let L be the set of the points

in the plane such that each point in the set is on the boundary of at least two disks with distinct center

points. This is the induced subgraph of PI formed by the intersection points of the boundaries of disks

from NG[v]. Since every two circles with distinct center points intersect in at most two points, we have

that |L| ≤ 2
(

|NG[v]|
2

)

≤ 2
(

∆+1
2

)

= ∆2 + ∆. Consider the planar graph PI [L], which is a subgraph of

PI induced by L. Observe that v can only be a part of regions defined by faces of PI [L]. To obtain an

upper bound on the number of faces of PI [L], we first obtain an upper bound on the number of edges

of PI [L]. First observe that between any pair of vertices in PI [L] there can at most be two edges and
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there are at most |L| pairs that have two edges between them. It is well known that a planar graph on n
vertices without any parallel edges has at most 3n − 6 edges. Thus, the number of edges in PI [L] is at

most 3|L| − 6 + |L| = 4|L| − 6. Now by Euler’s formula, the number of faces in PI [L] is at most

2 + |E(PI [L])| − |L| ≤ 2 + 3|L| − 6 ≤ 2 + 3(∆2 + ∆) − 6 ≤ 3(∆2 + ∆).

Thus v is a part of at most 3(∆2 + ∆) regions. We complete the proof by making a remark that the

Euler’s formula also holds for graphs with multiple edges.

Lemma 2. Let G be a unit disk graph. Then tw(G) ≤ (∆(G) + 1) · (tw(PG) + 1) − 1.

Proof. Let ∆(G) = ∆ and (X ′, T ) be a tree decomposition of PG of width tw(PG). We build a tree

decomposition (X , T ) of G from the tree-decomposition (X ′, T ) of PG. Let X ′
i be the subset of V (PG)

associated with the node i of T . We define Xi :=
⋃

v(R)∈X′
i
V(R). Recall that V(R) is a subset of

vertices in V (G) characterizing R. This concludes the description of a decomposition for G. Observe

that the set V(R) is contained in NG[w] for every w ∈ V(R) and hence the size of each of them is

bounded above by ∆ + 1. Hence the size of each of Xi is at most (∆ + 1) · |X ′
i|. This implies that the

size of every bag Xi is at most (∆ + 1)(tw(PG) + 1).
Now we show that this is indeed a tree-decomposition for G by proving that it satisfies the three

properties of a tree decomposition. By construction, every vertex of V (G) is contained in some Xi. To

show that for every edge uv ∈ E(G) there is a node i such that u, v ∈ Xi, we argue as follows. If there

is an edge between u and v in G then unit disks corresponding to these vertices intersect and hence there

is a region R which is completely contained inside this intersection. This implies that u, v ∈ V(R). For

node i such that v(R) is contained inside X ′
i, we have that the corresponding bag Xi contains u and

v. To conclude we need to show that for each v ∈ V (G) the set Z = {i | x ∈ Xi} induces a subtree

of T . Observe that v appears in all the bags corresponding to node i such that X ′
i contains a vertex

corresponding to a region which v is a part of. This implies that all these regions are inside the unit disk

corresponding to v. Hence the graph induced by vertices corresponding to these regions is connected.

Thus the set Z induces a subtree of T .

We now show a linear excluded grid theorem for unit disk graphs of bounded degree.

Lemma 3. Any unit disk graph G with maximum degree ∆ contains a
tw(G)
100∆3 × tw(G)

100∆3 grid as a minor.

Proof. Let G be a unit disk graph of maximum degree ∆, and define PG as above. Since PG is planar, by

the excluded grid theorem for planar graphs [38], PG contains a t× t grid as a minor where t = tw(PG)
6 .

By Proposition 1, we know that there is a minor model of this grid, say {S[i, j] : 1 ≤ i, j ≤ t}. We

know that for every i,j, PG[S[i, j]] is connected, the sets S[i, j] are pairwise disjoint and finally for every

i,j,i′,j′ such that |i− i′|+ |j−j′| = 1 there is an edge in PG with one endpoint in S[i, j] and the other in

S[i′, j′]. For every i,j, we build S′[i, j] from S[i, j] by replacing every vertex v(R) ∈ S[i, j] by V(R)
and removing duplicates. We set ∆′ = 3(∆2 + ∆), and observe that for any vertex v in G, Lemma 1

implies that there are at most ∆′ sets S′[i, j] that contain v.

We say that an integer pair (i, j) is internal if ∆′ ≤ i ≤ t − ∆′ and ∆′ ≤ j ≤ t − ∆′. We prove

that for any two internal pairs (i, j) and (i′, j′) such that |i − i′| + |j − j′| > ∆′ the sets S′[i, j] and

S′[i′, j′] are disjoint. To obtain a contradiction assume that both sets contain a vertex v in G. Let Xv be

the set of vertices v(R) such that v ∈ V(R). We will show that |Xv| > ∆′ which contradicts that v is

part of at most ∆′ regions. On one hand, PG[Xv] is connected. On the other hand, both S[i, j]∩Xv and

S[i′, j′]∩Xv are non-empty. But any path in PG between a vertex in S[i, j] and a vertex in S[i′, j′] must

pass through at least ∆′ +1 cycles of the grid minor and thus the length of a shortest path between a pair

of vertices, x ∈ (S[i, j]∩Xv) and y ∈ (S[i′, j′]∩Xv), is at least ∆′ + 1. This implies that the length of

a shortest path between x and y in PG[Xv] is at least ∆′ + 1 and hence |Xv| > ∆′, yielding the desired

contradiction. By an identical argument one can show that, for any two internal pairs (i, j) and (i′, j′)
such that |i− i′|+ |j − j′| > 2∆′ there is no edge with one endpoint in S′[i, j] and the other in S′[i′, j′].
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For every pair a, b of non-negative integers such that 4∆′a+2∆′ ≤ t and 4∆′b+2∆′ ≤ t we define

the sets

• V [a, b] =
⋃2∆−1

i=0

⋃2∆−1
j=0 S[∆ + 4∆a + i,∆ + 4∆b + j].

• Eh[a, b] =
⋃2∆−1

i=0 S[3∆ + 4∆a + i, 2∆ + 4∆b].

• Ev[a, b] =
⋃2∆−1

j=0 S[2∆ + 4∆a, 3∆ + 4∆b + j].

One can think of each set V [a, b] as a vertex of a grid, with each set Eh[a, b] being a horizontal edge and

each set Ev[a, b] being a vertical edge in this grid. Build V ′[a, b] from V [a, b] by replacing every vertex

v(R) ∈ V [a, b] by V(R) and removing duplicates. Construct E′
h[a, b] from Eh[a, b] and E′

v[a, b] from

Ev[a, b] similarly. We list the properties of the sets V ′[a, b], E′
h[a, b] and E′

v[a, b].

1. For every a, b, G[V ′[a, b]], G[E′
h[a, b]] and G[E′

v[a, b]] are connected.

2. Distinct sets V ′[a, b] and V ′[a′, b′] are pairwise disjoint, and there is no edge with one endpoint in

V ′[a, b] and the other in V ′[a′, b′].

3. For every a, b the set E′
h[a, b] is disjoint from every set E′

h[a′, b′], E′
v[a

′, b′] and V ′[a′, b′], except

possibly for V ′[a, b] and V ′[a + 1, b].

4. For every a, b the set E′
v[a, b] is disjoint from every set E′

h[a′, b′], E′
v[a

′, b′] and V ′[a′, b′], except

possibly for V ′[a, b] and V ′[a, b + 1].

5. For every a, b there is a vertex in E′
h[a, b] which is adjacent to V ′[a, b] and a vertex which is

adjacent to V ′[a + 1, b]. Furthermore there is a vertex in E′
v[a, b] which is adjacent to V ′[a, b] and

a vertex which is adjacent to V ′[a, b + 1].

Property 1 follows directly from the fact that PG[V [a, b]], PG[Eh[a, b]] and PG[Ev[a, b]] are connected.

Properties 2, 3 and 4 follow from the fact that for any two internal pairs (i, j) and (i′, j′) such that

|i− i′|+ |j − j′| > 2∆′ the sets S′[i, j] and S′[i′, j′] are disjoint and have no edges between each other.

Finally, Property 5 follows from the fact that for every a,b there is a vertex in Eh[a, b] which is adjacent

to V [a, b] and a vertex which is adjacent to V [a + 1, b], and that there is a vertex in Ev[a, b] which is

adjacent to V [a, b] and a vertex which is adjacent to V [a, b + 1].
For a pair a, b of integers consider the set E′

h[a, b]. The properties 1, 2 and 5 ensure that some

connected component E∗
h[a, b] of G[E′

h[a, b] \ (V ′[a, b] ∪ V ′[a + 1, b])] contains at least one neighbour

of V ′[a, b] and one neighbour of V ′[a + 1, b]. Similarly at least one connected component E∗
v [a, b] of

G[E′
v[a, b] \ (V ′[a, b] ∪ V ′[a, b + 1])] contains at least one neighbour of V ′[a, b] and one neighbour of

V ′[a, b + 1]. Then the family

{V ′[a, b], E∗
h[a, b], E∗

v [a, b] : 4∆′a + 2∆′ ≤ t and 4∆′b + 2∆′ ≤ t}

of vertex sets in G forms a model of a ⌊ t−2∆′

4∆′ ⌋ × ⌊ t−2∆′

4∆′ ⌋ grid minor in G with every edge subdivided

once. The sets V ′[a, b] are models of the vertices of the grid, the sets E∗
h[a, b] are models of the sub-

division vertices on the horizontal edges, while E∗
v [a, b] are models of the subdivision vertices on the

vertical edges. Now by Lemma 2, we know that tw(PG) ≥ tw(G)+1
(∆+1) − 1. Combining this with the fact

that t = tw(PG)
6 we can show that G has a grid of size

tw(G)
100∆3 × tw(G)

100∆3 as a minor. This concludes the

proof.

Using Lemma 3 we show the following theorem and then combining this theorem with Observation 1

we get an analogous result for Kt-free unit disk graphs.

Theorem 1. Let G∆
U be the class of unit disk graphs such that the maximum degree of every graph G in

G∆
U is at most ∆. Then G∆

U has truly sublinear treewidth with λ = 1
2 .
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Proof. Let G ∈ G∆
U have a vertex set X such that tw(G \ X) ≤ η. Suppose for contradiction that

tw(G) ≥ (η + 1)200∆3
√

|X|. Then, by Lemma 3, G contains a (2(η + 1)
√

|X|) × (2(η + 1)
√

|X|)
grid as a minor. This grid contains 4|X| vertex disjoint (η + 1) × (η + 1) grids. However, the set X
must intersect each of these grids, as tw(G \ X) ≤ η and the treewidth of each grid is η + 1. But then

|X| ≥ 4|X|, a contradiction.

Corollary 1. Let Gt
U be the class of unit disk graphs such that every graph G in Gt

U is Kt free. Then Gt
U

has truly sublinear treewidth with λ = 1
2 .

3.2 Structure of Kt-free Map Graphs.

In this section we show that map graphs with bounded clique size have truly sublinear treewidth. It is

known that for every map graph G one can associate a map M = (E , ω) such that (i) no vertex in E is

incident only to lakes; (ii) there are no edges in E whose two incident faces are both lakes (possibly the

same lake); (iii) every vertex in E is incident to at most one lake, and incident to such a lake at most once

[20, p. 149]. From now onwards we will assume that we are given map satisfying the above properties.

For our proof we also need the following combinatorial lemma.

Lemma 4. Let G be a map graph associated with M such that the maximum clique size in G is at most

t. Then the maximum vertex degree of E is at most t + 2.

Proof. Targeting towards a contradiction, let us assume that there is a vertex v ∈ V (E ) of degree at least

t + 3. By definition, each connected component of E is biconnected and hence there are at least t + 2
cyclic faces adjacent to v. By the properties of M, we have that all, except maybe one, adjacent faces

are not lakes. However the vertices corresponding to nation faces form a clique of size t + 1 in G, a

contradiction.

For our proof we also need the notions of radial and dual of map graphs. The radial graph R =
R(M) has a vertex for every vertex of E and for every nation of E , and R is a bipartite graph with

bipartition V (E ) and N(E ). Two vertices v ∈ V (E ) and f ∈ N(E ) are adjacent in R if v is incident to

nation f . The dual D = D(M) of M has vertices corresponding only to the nations of E . The graph

D has a vertex for every nation of E , and two vertices are adjacent in D if the corresponding nations of

G share an edge. We now show a linear excluded grid theorem for map graphs with bounded maximum

clique.

Lemma 5. There exists a constant ρ such that any map graph G with maximum clique size t contains a
ρ·tw(G)

t × ρ·tw(G)
t grid minor.

Proof. Let M be the map such that the graph associated with it is G. We now apply the result from [20,

Lemma 4] that states that the treewidth of the map graph G is at most the product of the maximum vertex

degree in E and tw(R) + 1. By Lemma 4, we know that the maximum vertex degree of E is at most

t + 2, and hence tw(G) ≤ (t + 2) · (tw(R) + 1). We now apply [20, Lemma 3] which bounds the

treewidth of a radial graph of a map. In particular, by [20, Lemma 3] we have that for R, the radial graph

of M, tw(R) = O(tw(D)). This implies that tw(G) = O(t · tw(D)). Observe that the graph D, the

dual of M, is a planar subgraph of G. By a result of Robertson et al. [38], we have that for every planar

graph H there exists a constant d such that it has d · tw(H) × d · tw(H) grid graph as a minor. This

implies that there exists a constant d such that D has d · tw(D)× d · tw(D) grid graph as a minor. This

combined with facts that tw(G) = O(t · tw(D)) and D is a subgraph of G implies that there exists a

constant ρ such that G has
ρ·tw(D)

t × ρ·tw(G)
t grid graph as a minor.

Theorem 2. Let Gt
M be the class of map graphs such that the every graph G ∈ Gt

M is Kt-free. Then Gt
M

has truly sublinear treewidth with λ = 1
2 .
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Figure 2: Family of disks used to construct graph Gt for t = 3

Proof. Let G ∈ Gt
M have a vertex set X such that tw(G \ X) ≤ η. Suppose for contradiction that

tw(G) ≥ (η + 1)2ρt
√

|X|. Then, by Lemma 5, G contains a (2(η + 1)
√

|X|) × (2(η + 1)
√

|X|)
grid as a minor. This grid contains 4|X| vertex disjoint (η + 1) × (η + 1) grids. However, the set X
must intersect each of these grids, as tw(G \ X) ≤ η and the treewidth of each grid is η + 1. But then

|X| ≥ 4|X|, a contradiction.

3.3 K4-Free Disc Graphs.

Our result in Section 3.1 can easily be generalized to disk graphs of bounded degree. There is another

widely used concept of ply related to geometric graphs which has turned out be very useful algorithmi-

cally [41]. An intersection graph G generated by set of disks B = {B1, . . . , Bn} (not necessarily unit

disks) is said to have ply ℓ if every point in the plane is contained inside at most ℓ disks in B. Observe

that if a unit disk graph has bounded ply then it also has bounded vertex degree but this is not true for

disk graphs. Here, we show that already disk graphs with ply 3 and K4-free disk graphs do not have

truly sublinear treewidth.

Theorem 3. K4-free disk graphs and disk graphs graphs with ply 3 do not have truly sublinear treewidth.

For the proof of Theorem 3, we need the concept of a bramble. A bramble in a graph G is a family

of connected subgraphs of G such that any two of these subgraphs have a nonempty intersection or

are joined by an edge. The order of a bramble is the minimum number of vertices required to hit all

subgraphs in the bramble. Seymour and Thomas [39] proved that a graph has treewidth k if and only if

the maximum order of a bramble of G is k +1. Thus a bramble of order k +1 is a witness that the graph

has treewidth at least k. We will use this characterization to get a lower bound on the treewidth of the

graph we construct.

Proof. We define a family F of disk graphs of ply 3 such that for every G ∈ F we can find a set

X ⊆ V (G) such that tw(G\X) ≤ 1 while tw(G) ≥ |X|−1. Given a natural number t ≥ 2, our graph

Gt is defined as follows. We give the coordinates for centers of these disks.

• We have “small” disks of radius 0.99 centered at (1.25p, 2q) for 0 ≤ p ≤ 3t2 and 0 ≤ q ≤ t − 1.

• We have “large” disks with radius t − 0.01 centered at ((2p + 1)t, t), 0 ≤ p ≤ t − 1.

Intuitively, we have small disks stacked in t rows, where in each row two consecutive disks intersect.

Large disks intersect some unit disks in each row and they are pairwise disjoint among themselves. See

Figure 2, for an example of our construction. Let Gt be the disk graph obtained from the intersection

of disks placed as above. Observe that every point in the plane only occurs in at most 3 disks and

hence the ply of the graph is 3. Furthermore, since at most 3 disks mutually intersect we have that G
is also K4-free. Let A be the set of vertices corresponding to small disks in rows and X be the set

of remaining vertices. Observe that the graph induced by A is a set of vertex disjoint paths and hence

tw(Gt[A]) = tw(Gt \ X) = 1. We show that the treewidth of Gt is at least t − 1 by exhibiting a

bramble of order t. Let us take the following set Si, 0 ≤ i ≤ t − 1. The set Si consists of vertices
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corresponding to small disks centered at (1.25p, 2i), where 0 ≤ p ≤ 3t2 and a vertex corresponding to

large disk with radius t − 0.01 centered at ((2i + 1)t, t). Since the disk with radius t − 0.01 intersects

at least one small disk in each row we have that the sets Si mutually intersect. Furthermore Si ∩ Sj = ∅
for all i 6= j. This implies that the smallest number of vertices required to cover all Si is at least t. This

implies that tw(G) ≥ t − 1 = |X| − 1.

4 Applications

In this section we show that every reducible minor-bidimensional problem with the separation property

has EPTAS on unit disk graphs and map graphs with bounded maximum clique. Finally, we will show

how we can extend these results to unit disk graphs and map graphs for variety of problems. We recall

that a PTAS is an algorithm which takes an instance I of an optimization problem and a parameter ǫ > 0
and, runs in time nO(f(1/ǫ)), produces a solution that is within a factor ǫ of being optimal. A PTAS with

running time f(1/ǫ) · nO(1), is called an efficient PTAS (EPTAS).

EPTAS on Gt
U and Gt

M . Towards our goal we need the following result from [26].

Proposition 2 ([26] ). Let Π be an η-transversable, reducible graph optimization problem. Then Π has

an EPTAS on every graph class G with truly sublinear treewidth.

To use this result we only need to show that every reducible minor-bidimensional problem with the

separation property is η-transversable for some η on Gt
U and Gt

M . For every fixed integer η we define

the η-TRANSVERSAL problem as follows. Input is a graph G, and the objective is to find a minimum

cardinality vertex set S ⊆ V (G) such that tw(G \ S) ≤ η. We now give a polynomial time constant

factor approximation for the η-TRANSVERSAL problem on Gt
U and Gt

M . The proof of the following

result is similar to the one in [26, Lemma 4.1]. We give the proof here for completeness.

Lemma 6. For every integer η there is a constant c and a polynomial time c-approximation algorithm

for the η-TRANSVERSAL problem on Gt
U and Gt

M .

For the proof of Lemma 6 we also need the following result from [26, Lemma 3.2].

Lemma 7. Let G be a hereditary graph class of truly sublinear treewidth with parameter λ. For any

ǫ < 1 there is a γ such that for any G ∈ G and X ⊆ V (G) with tw(G \ X) ≤ η there is a X ′ ⊆ V (G)
satisfying |X ′| ≤ ǫ|X| and for every connected component C of G \ X ′ we have |C ∩ X| ≤ γ and

|N(C)| ≤ γ. Moreover X ′ can be computed from G and X in polynomial time, where the polynomial

is independent of ǫ, λ and η.

Proof of Lemma 6. Let X be a smallest vertex set in G such that tw(G \ X) ≤ η. By Lemma 7 with

ǫ = 1/2 there exists a γ depending only on t and η and a set X ′ with |X ′| ≤ |X|/2 such that for

any component C of G \ X ′, |C ∩ X| ≤ γ and |N(C)| ≤ γ. Since X is the smallest set such that

tw(G \ X) ≤ η, there is a component C of G \ X ′ with treewidth strictly more than η. Let Z = N(C)
and observe that Z ⊆ X ′ is a set of size at most γ such that C is a connected component of G \ Z.

The algorithm proceeds as follows. It tries all possibilities for Z and looks for a connected compo-

nent C of G \Z such that η < tw(G[C]) = O(
√

γ). It solves the η-TRANSVERSAL problem optimally

on G[C] by noting that η-TRANSVERSAL can be formulated as a MIN-CMSO problem and applying

the algorithm by Borie et al. [8]. Let XC be the solution obtained for G[C]. The algorithm adds XC and

N(C) to the solution and repeats this step on G \ (C ∪ N(C)) as long as tw(G) ≥ η.

Clearly, the set returned by the algorithm is a feasible solution. We now argue that the algorithm is a

(γ + 1)-approximation algorithm. Let C1, C2, . . . , Ct be the components found by the algorithm in this

manner. Since X must contain at least one vertex in each Ci it follows that t ≤ |X|. Now, for each i,
N(Ci) contains at most γ vertices outside of

⋃

j<i N(Cj). Thus
⋃

i≤t N(Ci) ≤ γ|X|. Furthermore for
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each C, |XC | ≤ |X ∩C| and hence the size of the returned solution is at most (γ +1)|X|, which proves

the lemma.

By exchanging the Excluded grid theorem for H-minor free graphs by Linear Grid lemmas (Lem-

mas 3 and 5), we can adapt the proof of [27, Lemma 3.2] to show the following.

Lemma 8. Let Π be a minor-bidimensional problem with the separation property. There exists a con-

stant η such that for every G in Gt
U or Gt

M , there is a subset S ⊆ V (G) such that |X| = O(tO(1)π(G)),
and tw(G \ S) ≤ η.

For the proof of the Lemma 8, we also need the following well known lemma, see e.g. [7], on

separators in graphs of bounded treewidth.

Lemma 9. Let G be a graph of treewidth at most t and w : V (G) → {0, 1} be a weight function. Then

there is a partition of V (G) into L ⊎ S ⊎ R such that

• |S| ≤ t + 1, N(L) ⊆ S and N(R) ⊆ S,

• every connected component G[C] of G \ S has w(C) ≤ w(V )/2,

• w(V (G))−w(S)
3 ≤ w(L) ≤ 2(w(V (G))−w(S))

3 and
w(V (G))−w(S)

3 ≤ w(R) ≤ 2(w(V (G)−w(S))
3 .

Proof of Lemma 8. We prove our result for graphs in Gt
U . The result for graphs in Gt

M is analogous.

Since Π is a minor-bidimensional problem, there exists a constant δ > 0 such that π(R) ≥ δr2 on

r × r grid minor. The definition of minor-bidimensionality together with Lemma 3 imply that for every

G ∈ Gt
U we have that tw(G) ≤ 10t3

√

π(G)
δ . Thus, there is a constant d′ depending on t and δ such that

tw(G) ≤ d′
√

π(G).
We first make the following observation. For any numbers a > 0, b > 0, since λ < 1, we have that

aλ + bλ > (a + b)λ. Thus we have ρ = min1/3≤α≤2/3 αλ + (1 − α)λ > 1. Now we proceed to our

proof.

We want to construct a set X such that the treewidth of G[V (G) \X] is at most η (to be fixed later).

Let us fix a solution Z of size π(G) for G and a weight function w : V (G) → {0, 1} that assigns 1 to

every vertex in Z and 0 otherwise. By Lemma 9, there is a partition of V (G) into L, S and R such that

|S| ≤ d′
√

π(G)+1, N(L) ⊆ S, N(R) ⊆ S, |L∩Z| ≤ 2π(G)/3 and |R∩Z| ≤ 2π(G)/3. By deleting

S from the graph G, we obtain two graphs G[L] and G[R] with no edges between them. Since Π is

separable, there exists a constant β such that π(G[L]) ≤ |Z ∩L|+β|S| and π(G[R]) ≤ |Z ∩R|+β|S|.
Thus we put S into X and then proceed recursively in G[L] and G[R]. Since Π is minor-bidimensional

problem with the separation property, we have that in recursive step for a graph G′ with solution of size

ℓ we find a separator of size O(
√

ℓ). We set k = π(G). Then the size of the set X we are looking for is

governed by the following recurrence.

T (k) ≤ max
1
3
≤α≤ 2

3

{

T (αk + β
√

k) + T ((1 − α)k + β
√

k) + d′
√

k + 1
}

. (1)

We first set two constants q and γ which will be used in the proof of above recurrence. Set q = 6β+3d′

ρ−1

and γ = ⌈4δ−1⌉ + (3β)2 + (3q)2 + 1. The base case of the recursion is when k ≤ γ and once we reach

this case, we do not decompose the graph any further. Thus for the base case we set T (k) = 0. Now

using induction we can show that the size of |X| ≤ k−q
√

k and for every component C in G[V (G)\X]
we have that π(C) = O(γ). We first show that if k ≥ γ/3 then T (k) ≤ k− q

√
k by induction on k. For

the base case if γ/3 ≤ k ≤ γ then the choice of γ implies that k − q
√

k ≥ γ
3 − q

√
γ ≥ 0 = T (k).

We now consider T (k) for k > γ. By our choice of q we have that for all k > γ, αk + β
√

k < k
and (1 − αk) + β

√
k < k. The induction hypothesis then yields the following inequality.
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T (k) ≤ max
1/3≤α≤2/3

T (αk + β
√

k + 1) + T ((1 − α)k + β
√

k + 1) + d′
√

k + 1

≤ max
1/3≤α≤2/3

k − q
√

αk − q(
√

(1 − α)k) + 2(β
√

k + 1) + d′
√

k + 1

≤ max
1/3≤α≤2/3

k − q
√

k(α1/2 + (1 − α)1/2) + 2(β
√

k + 1) + d′
√

k + 1

≤ k − q
√

k − q(ρ − 1)
√

k + 2(β
√

k + 1) + d′
√

k + 1

≤ k − q
√

k.

The last inequality holds whenever q(ρ − 1)
√

k ≥ 2(β
√

k + 1) + d′
√

k + 1, which is ensured by the

choice of q and the fact that
√

k ≥ 1. Thus T (k) ≤ k for all k. This proves the bound on the size of X .

Notice that every component C in G[V (G) \X] has at most γ vertices and thus by bidimensionality we

have that tw(C) = O(
√

γ). We set η as the µ
√

γ, where µ is the constant appearing in the term O(
√

γ).
This proves the theorem.

Theorem 4. Let Π be a reducible minor-bidimensional problem with the separation property. There is

an EPTAS for Π on Gt
U and Gt

M .

Proof. Combining Lemmas 6 and 8 we get that every reducible minor-bidimensional problem Π with

the separation property is η-transversable for some η on Gt
U and Gt

M . Thus the theorem follows by

applying Proposition 2 in combination with Theorem 2 and Corollary 1.

EPTAS on Unit Disc Graphs and Map Graphs. In this section we give EPTAS for several problems

on unit disk graphs and map graphs. Our first problem is the following generic problem. Let F be a finite

set of graphs. In the F -DELETION problem, we are given an n-vertex graph G as an input, and asked to

find a minimum sized subset S ⊆ V (G) such that G \ S does not contain a graph from F as a minor.

We refer to such a subset S as a F-hitting set. The F -DELETION problem is a generalization of several

fundamental problems. For example, when F = {K2}, a complete graph on two vertices, this is the

VERTEX COVER problem. When F = {C3}, a cycle on three vertices, this is the FEEDBACK VERTEX

SET problem. Other famous cases are F = {K2,3, K4}, F = {K3,3, K5} and F = {K3, T2}, which

correspond to removing vertices to obtain outerplanar graphs, planar graphs, and graphs of pathwidth

one respectively. Here, Ki,j denotes the complete bipartite graph with bipartitions of sizes i and j, and

Ki denotes the complete graph on i vertices. Further, a T2 is a star on three leaves, each of whose

edges has been subdivided exactly once. In literature, these problems are known as OUTERPLANAR

DELETION SET, PLANAR DELETION SET and PATHWIDTH ONE DELETION SET respectively. Now

we show that if F contains a planar graph then F -DELETION has EPTAS on unit disk graphs and map

graphs. It is known from [26] that F -DELETION problem is reducible minor-bidimensional problem

with the separation property whenever F contains a planar graph.

Theorem 5. Let F be a finite set of graphs containing a planar graph. Then F -DELETION admits an

EPTAS on unit disk graphs and map graphs.

Proof. Let G be the input graph, ǫ be a fixed constant and F be an obstruction set containing a planar

graph of size h. This implies that any optimal F-hitting set in G must contain all but h−1 vertices from

any clique in G. We outline a proof below only for unit disk graphs, the proof for map graphs is similar.

The algorithm proceeds as follows. It finds a maximum clique C of G. One can find a maximum

sized clique in unit disk graphs and map graphs in polynomial time [11, 12, 13, 37]. The algorithm adds

C to the solution and repeats this step on G \C as long as there is a clique of size
(1+ǫ)h

ǫ . Once we have

that the maximum size of a clique is bounded by
(1+ǫ)h

ǫ , we can use the EPTAS obtained in Theorem 4

to get a F-hitting set of G of size (1 + ǫ)OPT , where OPT is the size of a minimum F-hitting set.
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Clearly, the set returned by the algorithm is a feasible solution. We now argue that the algorithm

is an EPTAS. Clearly the running time of our algorithm is of desired form. As the step where we find

a clique and add all its vertices in our solution can be done in polynomial time and finally we run an

EPTAS on a graph where the maximum degree is bounded by a function of ǫ. Let X be an optimal

F-hitting set of G. Let C1, C2, . . . , Ct be the cliques found by the algorithm and Gq be the graph where

we apply Theorem 4. Since X must contain at least |Ci| − h vertices and |Ci| ≥ (1+ǫ)h
ǫ , we have that

|Ci| ≤ (1 + ǫ)(|Ci| − h) ≤ (1 + ǫ)(|X ∩ Ci|). Thus the size of the solution returned by the algorithm

satisfies the following inequality
∑t

i=1 |Ci| + (1 + ǫ)|X ∩ V (Gq)| ≤ (1 + ǫ)(
∑t

i=1 |X ∩ Ci| + |X ∩
V (Gq)|) ≤ (1 + ǫ)|X| = (1 + ǫ)OPT . This completes the proof.

Next we show how we can obtain an EPTAS for CONNECTED VERTEX COVER on unit disk graphs

and map graphs. In CONNECTED VERTEX COVER we are given a graph G and the objective is to find

a minimum size subset S ⊆ V (G) such that G[S] is connected and every edge in E(G) has at least one

endpoint in S.

Theorem 6. CONNECTED VERTEX COVER admits an EPTAS on unit disk graphs and map graphs.

Proof. Observe that CONNECTED VERTEX COVER is 0-transversable. Given a graph G we find a

maximal matching in linear time and output the endpoints of the matching as X . Any vertex cover

must contain at least one endpoint from each edge in the matching, and thus |X| ≤ 2π(G). Also,

tw(G \ X) = 0. We recall the proof from [26] that CONNECTED VERTEX COVER is reducible, as we

will use this to get an EPTAS here. Given a graph G and set X , let G′ = G \ X and let R = N(X).
The annotated problem Π′ is to find a minimum sized set S′ ⊆ V (G′) such that every edge in G′ has

an end point in S′ and every connected component of G′[S′] contains a vertex in R. Notice that for

any connected vertex set S of G, S \ X is a feasible solution to Π′ on G′. Conversely, for any feasible

solution S′ of Π′ on G′, we have that S = S′ ∪ X is a vertex cover of G and has at most |X| connected

components. Since S is a vertex cover it is sufficient to add (|X| − 1) vertices to S in order to make it

a connected vertex cover of G. Hence, CONNECTED VERTEX COVER is reducible. One can similarly

show that the annotated problem Π′ is 0-transversable and reducible. This implies that Π′ has EPTAS

on Gt
U and Gt

M .

To get our EPTAS for CONNECTED VERTEX COVER we do similar to what we did for F -DELETION

problem in Theorem 5. The only change is that we keep finding clique and including it in our solution

until there is no clique of size
(2+ǫ)

ǫ . Let C1, C2, . . . , Cq be the cliques found by the algorithm and Gq

be the graph on which we apply Proposition 2. Let Z be the union of cliques, that is, Z = ∪i≤qCi. Now

we define the annotated problem Π′ with respect to set Z and using Proposition 2 obtain a set W of size

(1+ǫ)OPT ′, where OPT ′ is the size of a minimum cardinality set in Gq such that every edge in Gq has

an end point in W and every connected component of Gq[W ] contains a vertex in R = N(Z)∩ V (Gq).
Now consider the set W ∪ Z. This is a vertex cover of G such that it has q components and hence we

can make it connected by adding at most q − 1 vertices. Let the final solution returned by our algorithm

be S. Let X be an optimal connected vertex cover of G. Since X must contain at least |Ci| − 1 vertices

and the size of |Ci| ≥ (2+ǫ)
ǫ , we have that |Ci| + 1 ≤ (1 + ǫ)(|Ci| − 1) ≤ (1 + ǫ)(|X ∩ Ci|). Thus

the size of the solution returned by the algorithm satisfies the following inequality
∑t

i=1(|Ci| + 1) +
(1 + ǫ)|X ∩ V (Gq)| ≤ (1 + ǫ)(

∑t
i=1(|X ∩ Ci|) + |X ∩ V (Gq)|) ≤ (1 + ǫ)|X| = (1 + ǫ)OPT . This

completes the proof.

EPTAS for CYCLE PACKING on Unit Disk Graphs. A cycle packing in a graph G is a collection

C1, C2, . . . , Cp of pairwise disjoint vertex sets such that for every i, G[Ci] induces a cycle. The integer

p is the size of the cycle packing and in the CYCLE PACKING problem the objective is to find a cycle

packing of maximum size in the input graph. CYCLE PACKING is known to be minor-bidimensional,

separable and reducible [26]. Thus by Theorem 4, the problem admits an EPTAS on Gt
U . Hence, in order

to give an EPTAS for CYCLE PACKING on unit disk graphs it is sufficient to prove the following lemma.
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In particular, the following lemma implies that if we find a sufficiently large clique X , partition X into

triangles and add this partition to our packing, this will give a good approximation of how the optimum

solution intersects with X . Here a triangle is a cycle on three vertices.

Lemma 10. Let G be a unit disk graph and X be a clique in G. There is a maximum size cycle packing

C1, C2, . . . , Cp in G such that at most 405 cycles Ci in the packing satisfy Ci ∩X 6= ∅ and Ci \X 6= ∅.

Proof. Let X be a clique in G. The centers of all disks corresponding to vertices of X must be inside a

2× 2 square. Thus the centers of all disks corresponding to vertices in N(X) must be in a 6× 6 square.

By [22, Lemma 2], the vertices in N(X) can be partitioned into 27 cliques S1, S2, . . . , S27. Note that in

the definition of unit disk graphs used in [22, Lemma 2] two vertices are adjacent if the centers of the

corresponding disks is at distance at most 1 from each other, while in this paper two vertices are adjacent

if the centers of their disks are at distance at most 2. This difference is taken into account when applying

[22, Lemma 2]. We say that a cycle C crosses X if C ∩ X 6= ∅ and C \ X 6= ∅. Let C1, C2, . . . , Cp

be a maximum cycle packing in G that has the fewest cycles crossing X . Observe that any cycle C that

crosses X intersects with X in at most two vertices — since otherwise G[C ∩X] induces a triangle, say

T and then we can replace C by T in the cycle packing and obtain a maximum size cycle packing with

fewer cycles that cross X . This contradicts the choice of the packing C1, C2, . . . , Cp.

We prove that there can be at most 54 cycles in the packing that intersect X in exactly 2 vertices.

Suppose for contradiction that there are at least 55 such cycles. Each such cycle contains at least one

vertex in N(X). Since each vertex in N(X) is in one of the 27 cliques S1, . . . , S27 the pigeon hole

principle implies that there are three cycles Ca, Cb and Cc in the packing which all intersect X in

exactly two vertices and a clique Si such that Ca ∩ Si 6= ∅, Cb ∩ Si 6= ∅ and Cc ∩ Si 6= ∅. Since all

cycles in the packing are vertex disjoint, this means that Si ∩ (Ca ∪Cb ∪Cc) contains a triangle T1. On

the other hand, X ∩ (Ca ∪Cb ∪Cc) is a clique on 6 vertices, and can be partitioned into two triangles T2

and T3. Now we can remove Ca, Cb and Cc from the proposed packing and replace them by T1, T2 and

T3. The resulting packing has the same size, but fewer cycles that cross X . This contradicts the choice

of the packing C1, C2, . . . , Cp.

Now we show that there can be at most 2(27 × 27) = 1458 cycles in the packing that intersect with

X in exactly 1 vertex. Every such cycle contains at least two vertices in N(X). For a pair (i, j) of

integers 1 ≤ i ≤ j ≤ 27 we say that a cycle Ca is an (i, j) cycle if Ca contains two distinct vertices

u and v such that u ∈ Si and v ∈ Sj . If there are more than 1458 cycles in the packing that intersect

with X in exactly 1 vertex then there are i and j such that there are three (i, j)-cycles Ca, Cb and Cc in

the packing that intersect X in one vertex. Let ua, ub and uc be three vertices in Ca ∩ Si, Cb ∩ Si and

Cc ∩ Si respectively. Similarly, let va, vb and vc be the three vertices in Ca ∩ Sj , Cb ∩ Sj and Cc ∩ Sj

respectively. Now T1 = {ua, ub, uc}, T2 = {va, vb, vc} and T3 = X ∩ (Ca∪Cb∩Cc) are vertex disjoint

triangles. We can replace Ca, Cb, and Cc by Ta, Tb and Tc in the cycle packing and obtain a maximum

size cycle packing with fewer cycles that cross X , contradicting the choice of C1, . . . , Cp. Hence there

are at most 27 + 1458 = 1485 cycles in the packing that cross X .

Theorem 7. CYCLE PACKING admits an EPTAS on unit disk graphs.

Proof. Given a unit disk graph G and ǫ, we choose t to be
(1485×3)=4455

ǫ . If G does not contain a clique

of size t then we apply the EPTAS for CYCLE PACKING on Gt
U guaranteed by Theorem 4 to give a

(1− ǫ)-approximation for CYCLE PACKING. If G contains a clique X of size t, the algorithm partitions

X into
|X|
3 triangles T1, . . . Tx, recursively finds a (1 − ǫ)-approximate cycle packing C1, . . . Cp in

G \X and returns T1, . . . Tx, C1, . . . Cp as an approximate solution. Clearly, the algorithm terminates in

f(ǫ) · nO(1) time, so it remains to argue that the returned solution is indeed a (1 − ǫ)-approximate cycle

packing of G. We prove this by induction on the number n of vertices in G. Let OPT be the size of the

largest cycle packing in G.

If there is no clique of size t and we apply the EPTAS for CYCLE PACKING on Gt
U then clearly the

returned solution is a (1 − ǫ)-approximation. If the algorithm finds such a clique X , Lemma 10 ensures
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that there is a cycle packing of size OPT such that at most 1485 cycles in the packing cross X . All

cycles in the packing that intersect with X but do not cross X are triangles in X . Hence G \X contains

a cycle packing of size at least OPT − |X|
3 − 1485. By the inductive hypothesis the algorithm returns

a cycle packing in G \ X of size at least (OPT − |X|
3 − 1485)(1 − ǫ). Now, X contains

|X|
3 triangles

T1, . . . Tx. Hence, the total size of the packing returned by the algorithm is at least

(

OPT − |X|
3

− 1485
)

(1 − ǫ) +
|X|
3

= OPT (1 − ǫ) −
( |X|

3
+ 1485

)

(1 − ǫ) +
|X|
3

≥ OPT (1 − ǫ)

since |X| ≥ t. This concludes the proof.

EPTAS for (CONNECTED) VERTEX COVER on Unit Ball Graphs in R
d. Our results in this section

are based on an observation that if for some graph class G the size of an optimum solution for a problem

Π and the number of vertices in the input graph are linearly related then to obtain EPTAS it is sufficient

that G has sublinear treewidth rather than truly sublinear treewidth. The crux of this result is based on

the following adaptation of the decomposition lemma proved in [26, Lemma 3.2].

Lemma 11. Let G be a hereditary graph class of sublinear treewidth with parameter λ < 1, that is,

for every G ∈ G, tw(G) = O(|V (G)|λ). For every ǫ < 1 there is γ such that for any G ∈ G there is

X ⊆ V (G) satisfying |X| ≤ ǫ|V (G)| and for every connected component C of G \ X , we have that

|C| ≤ γ. Moreover X can be computed from G in polynomial time.

Proof. Let the number of vertices of G be n, that is, |V (G)| = n. For any γ ≥ 1, define Tγ : N → N

such that Tγ(n) is the smallest integer such that if G ∈ G and |V (G)| ≤ n, then there is a X ⊆ V (G) of

size at most Tγ(n) such that for every connected component C of G \ X we have |C| ≤ γ. Informally,

Tγ(n) is the minimum size of a vertex set X such that every connected component C of G \ X has at

most γ vertices. Furthermore, since G is a hereditary graph class of sublinear treewidth with parameter

λ there exists a constant β such that tw(G) ≤ βnλ. We will make choices for the constants δ and γ and

ρ based on λ, β and ǫ. Our aim is to show that Tγ(n) ≤ ǫn for every n.

Observe that for any numbers a > 0, b > 0, we have aλ + bλ > (a + b)λ since λ < 1. Thus

we have ρ = min1/3≤α≤2/3 αλ + (1 − α)λ > 1. We choose δ = (2ǫ+1)(β+1)
ρ−1 and γ = (3δ

ǫ )
1

1−λ . If

|V (G)| ≤ γ then we set X = ∅, so Tγ(n) = 0 ≤ ǫn for n ≤ γ. We now show that if n ≥ γ/3 then

Tγ(n) = 0 ≤ ǫn − δnλ by induction on n. For the base case if γ/3 ≤ n ≤ γ then the choice of γ
implies the following inequality.

ǫn − δnλ ≥ ǫ
γ

3
− δγλ ≥ 0 = Tγ(n)

We now consider Tγ(n) for n > γ. We know that the treewidth of G is at most βnλ. Construct a

weight function w : V (G) → N such that w(v) = 1, for all v ∈ V (G). By Lemma 9, there is a partition

of V (G) into L, S and R such that |S| ≤ βnλ +1, N(L) ⊆ S, N(R) ⊆ S, |L| ≤ 2n/3 and |R| ≤ 2n/3.

Deleting S from the graph G yields two graphs G[L] and G[R] with no edges between them. Thus we

put S into X and then proceed recursively in G[L] and G[R]. This yields the following recurrence for

Tγ .

Tγ(n) ≤ max
1/3≤α≤2/3

T (αn + βnλ + 1) + T ((1 − α)n + βnλ + 1) + βnλ + 1.

Observe that since n ≥ γ we have αn ≥ γ/3 and (1−αn) ≥ γ/3. The induction hypothesis then yields
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the following inequality.

Tγ(n) ≤ max
1/3≤α≤2/3

T (αn + βnλ + 1) + T ((1 − α)n + βnλ + 1) + βnλ + 1

≤ max
1/3≤α≤2/3

ǫn − δ(αn)λ − δ((1 − α)n)λ + (2ǫ + 1)(βnλ + 1)

≤ max
1/3≤α≤2/3

ǫn − δnλ(αλ + (1 − α)λ) + (2ǫ + 1)(βnλ + 1)

≤ ǫn − δnλ − δ(ρ − 1)nλ + (2ǫ + 1)(βnλ + 1)

≤ ǫn − δnλ.

The last inequality holds whenever δ(ρ− 1)nλ ≥ (2ǫ + 1)(βnλ + 1), which is ensured by the choice of

δ and the fact that nλ ≥ 1. Thus Tγ(n) ≤ ǫn for all n. Hence there exists a set X of size at most ǫn
such that for every component C of G \ X we have |C| ≤ γ.

What remains is to show that X can be computed from G in polynomial time. The inductive proof

can be converted into a recursive algorithm. The only computationally hard step of the proof is the

construction of a tree-decompositon of G in each inductive step. Instead of computing the treewidth

exactly we use the d∗
√

log tw(G)-approximation algorithm by Feige et al. [25], where d∗ is a fixed

constant. Thus when we partition V (G) into L, S, and R using Lemma 9, the upper bound on the size

of S will be d∗(βnλ + 1)
√

log(βnλ) instead of βnλ + 1. However, for any λ < λ′ < 1 there is a β′

such that d∗(βnλ)
√

log(βnλ) < β′nλ′
. Now we can apply the above analysis with β′ instead of β and

λ′ instead of λ to bound the size of the set X output by the algorithm. This concludes the proof of the

lemma.

Using Lemma 11 we can obtain the following analogue of Proposition 2 ([26, Theorem 4.1]).

Theorem 8. Let Π be a reducible graph optimization problem and let G be a class of graphs with

sublinear treewidth such that for every G ∈ G, π(G) = Ω(|V (G)|). Then Π has an EPTAS on G.

Proof. Let G be the input to Π, |V (G)| = n and ǫ > 0 be fixed. Since for every G ∈ G, π(G) = Ω(n),
we have that π(G) ≥ ρ1n, for a fixed constant ρ1. Furthermore, since G is a hereditary graph class of

sublinear treewidth with parameter λ, there exists a constant β such that tw(G) ≤ βnλ. Let ǫ′ be a

constant to be selected later. By Lemma 11, there exist γ, λ′ < 1 and β′ depending on ǫ′, λ and β such

that given G a set X with the following properties can be found in polynomial time. First |X| ≤ ǫ′n, and

secondly for every component C of G \X we have that |C| ≤ γ. Thus tw(G \X) = τ ≤ β′γλ′
. Since

Π is reducible, there exists a MIN/MAX-CMSO problem Π′, a constant ρ2 and a function f : N → N

such that:

1. there is a polynomial time algorithm that given G and X ⊆ V (G) outputs G′ such that |π′(G′) −
π(G)| ≤ ρ2|X| and tw(G′) ≤ f(τ),

2. there is a polynomial time algorithm that given G and X ⊆ V (G), G′ and a vertex (edge) set S′

such that PΠ′(G′, S′) holds outputs S such that φΠ(G, S) holds and |κΠ(G, S) − |S′|| ≤ ρ2|X|.
We constuct G′ from G and X using the first polynomial time algorithm. Since tw(G′) ≤ f(τ) we

can use an extended version of Courcelle’s theorem [14, 15] given by Borie et al. [8] to find an optimal

solution S′ to Π′ in g(ǫ′)|V (G′)| time. By the properties of the first polynomial time algorithm, ||S′| −
π(G)| ≤ ρ|X| where ρ = max(ρ1, ρ2). We now use the second polynomial time algorithm to construct

a solution S to Π from G, X , G′ and S′. The properties of the second algorithm ensure φΠ(G, S) holds

and that |κΠ(G, S) − |S′|| ≤ ρ|X|, and hence |κΠ(G, S) − π(G)| ≤ 2ρ|X| ≤ 2ρ2ǫ′π(G). Choosing

ǫ′ = ǫ
2ρ2 yields |κΠ(G, S) − π(G)| ≤ ǫπ(G), proving the theorem.

Lemma 12. Let G be an intersection graph of unit balls in R
d, for a fixed d. If G does not contain

an isolated vertex then the size of minimum (connected) vertex cover is at least |V (G)|/f(d), where

f(d) = 2(20.401d(1+o(1)) + 1).
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Proof. Let G be an intersection graph of unit balls in R
d, for a fixed d. For our proof we need the concept

of kissing number. The kissing number τd is the maximum number of non overlapping d-dimensional

unit balls of equal size that can touch a unit ball in R
d. Kabatiansky and Levenshtein [31] showed that

τd ≤ 20.401d(1+o(1)). This implies that for any vertex v ∈ V (G), N(v) does not contain an independent

set of size bigger than τd + 1.

Given a graph G we compute a maximal matching, say M . Clearly the size of M is a lower bound

on the size of a minimum (connected) vertex cover. Let V (M) be the set of end points of edges in M
and I = V (G) \ V (M). Clearly I is an independent set. Furthermore every vertex in I is adjacent

to some vertex in V (M). Hence we have that |I| ≤ |V (M)|(τd + 1). This implies that |V (G)| =
|V (M)| + |I| ≤ 2|M | + 2|M |(τd + 1). The last inequality implies the lemma.

Finally, we note that every graph G, that is, an intersection graph of unit balls in R
d, with maximum

clique size ∆ has the property that every point in R
d is in at most ∆ unit balls. This together with result

from [35] implies that the treewidth of G is cd∆
1/d|V (G)|1− 1

d , where cd is a constant depending only on

d. This implies that an intersection graph of unit balls in R
d with bounded maximum clique has sublinear

treewidth. So an EPTAS for CONNECTED VERTEX COVER and VERTEX COVER can be obtained along

the similar lines as in Theorems 5 and 6 and finally uses Theorem 8 instead of Theorem 2 to arrive to the

following result.

Theorem 9. CONNECTED VERTEX COVER and VERTEX COVER admit an EPTAS on unit ball graphs

of fixed dimension.

We can also obtain EPTASs for CONNECTED VERTEX COVER and VERTEX COVER on disk graphs,

as on disk graphs of bounded clique size we have that the size of an optimum solution and the number

of vertices in the input graph are linearly related.

Parameterized Subexponential Time Algorithms. In this section we show how to obtain parameter-

ized subexponential time algorithm for several problems. Formally, a parameterization of a problem is

assigning an integer k to each input instance and a parameterized problem is fixed-parameter tractable

(FPT) if there is an algorithm that solves the problem in time f(k)·|I|O(1), where |I| is the size of the in-

put and f is an arbitrary computable function. We say that a parameterized problem has a parameterized

subexponential algorithm if it is solvable in time 2o(k) · |I|O(1)

Our basic idea is to find a “large” clique and guess the intersection of an optimal solution with this

clique. We recursively do this until we do not have a large clique. Once we do not have large clique we

have that the maximum degree of the graph is bounded and thus the treewidth comes into picture. At

that point we use dynamic programming on graphs of bounded treewidth to solve the problem optimally.

We exemplify our approach on p-FEEDBACK VERTEX SET. In this problem we are given a graph G and

a positive integer k and the question is to check whether there is a subset F ⊆ V (G), |F | ≤ k, such that

G \ F is acyclic. The set F is called feedback vertex set of G.

Theorem 10. p-FEEDBACK VERTEX SET admits a parameterized subexponential time algorithm on

unit disk graphs and map graphs.

Proof. We give a subexponential time parameterized algorithm on map graphs. An algorithm on unit

disk graphs is similar. The algorithm proceeds as follows. Given an instance (G, k), it finds a maximum

clique C of G. Recall that we can find a maximum clique in unit disk graphs and map graphs in

polynomial time [11, 12, 13, 37]. If |C| > k + 2, then we return that G does not have feedback vertex

set of size at most k. Next we check whether |C| ≤ kǫ (ǫ to be fixed later). If yes then by Theorem 2

we know that tw(G) ≤ O(k0.5+ǫ). In this case we apply the known algorithm for FEEDBACK VERTEX

SET, that given a tree decomposition of width t of a graph G on n vertices, finds a minimum sized

feedback vertex set in time 2O(t log t)nO(1). Hence in this case the running time of our algorithm will

be 2O(k0.5+ǫ log k)nO(1). Now we consider the case when |C| > kǫ. We know that for any feedback
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vertex set F of G, we have that |F ∩ C| ≥ |C| − 2. So we guess the intersection X = F ∩ C
and recursively solve the problem on (G \ X, k − |X|). If for any guess we have an yes answer we

return yes, else, we return no. The running time of this step is guided by the following recurrence

T (k) ≤
(

|C|
2

)

·T (k−(|C|−2))+|C|·T (k−(|C|−1))+T (k−|C|), where the terms
(

|C|
2

)

·T (k−(|C|−2)),
|C| · T (k − (|C| − 1)), T (k − |C|) correspond to choosing |C| − 2 vertices in F from C, |C| − 1
vertices in F from C and |C| vertices in F from C, respectively. Roughly, T (k) ≤ 3|C|2 · T (k − |C|).
This asymptotically solves to (3|C|)2k/|C|, which is equal to 2

O(
2k log |C|

|C|
) ≤ 2

O( 2k log k

|C|
)
. Hence as |C|

increases we have that the function 2
O( 2k log k

|C|
)

decreases. Thus the worst case running time is achieved

when |C| = kǫ and hence this is equal to 2O(k1−ǫ log k). Now we choose ǫ in a way that the running

time for branching on clique is same as when we run a dynamic programming algorithm on graphs of

bounded treewidth. Thus we choose an ǫ such that 2O(k1−ǫ log k) = 2O(k0.5+ǫ). This gives us that ǫ = 1/4
is asymptotically best possible. Thus our algorithm runs in time 2O(k0.75 log k)nO(1) = 2o(k)nO(1).

Next we show that in fact p-(CONNECTED) VERTEX COVER admits a parameterized subexponential

time algorithms on Unit Ball Graphs in R
d.

Theorem 11. p-CONNECTED VERTEX COVER and p-VERTEX COVER admit a parameterized subex-

ponential time algorithm on unit ball graphs of fixed dimension.

Proof. Our algorithm for p-(CONNECTED) VERTEX COVER follows along the same line as for p-

FEEDBACK VERTEX SET. We only outline an algorithm for p-CONNECTED VERTEX COVER here.

The algorithm proceeds as follows. Given an instance (G, k), we first check whether k ≥ |V (G)|/f(d),
where f(d) = 2(20.401d(1+o(1)) + 1). By Lemma 12 we know that if k < |V (G)|/f(d), then there is no

connected vertex cover of size at most k and hence the answer is no. Else we have that |V (G)| = O(k).
To implement our algorithm we need a slight generalization of problem. We keep a triple (G′, k, X)
for this problem, where G′ is the current graph and the objective is to find a set F ⊆ V (G′) such that

|F | ≤ k, F is a vertex cover of G′ and G[X ∪ F ] is a connected vertex cover of G. Essentially the

graph G′ will be obtained after branching on cliques and the set X will store the partially constructed

solution so far. This allows us to check connectedness in the whole graph G. Now the algorithm finds a

maximum clique C of G′. If |C| > k + 1, then we return that G′ does not have a desired set F of size at

most k. Next we check whether |C| ≤ kǫ (ǫ to be fixed later).

We first consider the case when |C| > kǫ. We know that for any vertex cover F of G′, we have that

|F ∩ C| ≥ |C| − 1. So we guess the intersection Z = F ∩ C and recursively solve the problem on

(G′ \ Z, k − |Z|, X ∪ Z). If for any guess we have an yes answer we return yes else we return no. The

running time of this step is guided by the following recurrence T (k) ≤ |C|·T (k−(|C|−1))+T (k−|C|),
where the terms |C| · T (k − (|C| − 1)), T (k − |C|) correspond to choosing |C| − 1 vertices in F from

C and |C| vertices in F from C, respectively. Roughly T (k) ≤ (2|C|)T (k − |C|). This asymptotically

solves to (2|C|)k/|C|, which is equal to 2
O(

k log |C|
|C|

) ≤ 2
O( k log k

|C|
)
. Hence as |C| increases we have that the

function 2
O( 2k log k

|C|
)

decreases. Thus the worst case running time is achieved when |C| = kǫ and hence

this is equal to 2O(k1−ǫ log k).

In the other case we have that |C| ≤ kǫ. As discussed before Lemma 9, by using result from [35] we

have that the treewidth of G′ is cdk
ǫ/d|V (G)|1− 1

d = O(k1−(1−ǫ) 1
d ), where cd is a constant depending

only on d. In this case we apply a modification of known algorithm for CONNECTED VERTEX COVER,

that given a tree decomposition of width t of a graph G∗ on n vertices, finds a minimum sized connected

vertex cover in time 2O(t log t)nO(1) [36]. To solve our problem we do as follows. We first upper bound

the number of connected components, ηX , in G[X] by k1−ǫ. Recall that X has been constructed by

branching on cliques of size at least kǫ + 1 and thus from each such clique we have at least kǫ vertices

in X and vertices from one clique are in one component. Thus ηX ≤ k/kǫ = k1−ǫ. Now we construct

a graph G∗ as follows. Consider the graph G[X ∪ V (G′)] and contract every connected component in

G[X] to a single vertex. Now in the graph G∗ the objective is to find a connected vertex cover of size
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at most k + ηX such that it contains all the vertices corresponding to connected components in G[X].

Now the tw(G∗) ≤ tw(G′) + ηX ≤ O(k1−(1−ǫ) 1
d + k1−ǫ). Hence in this case the running time of our

algorithm is 2O((k1−(1−ǫ) 1
d +k1−ǫ) log k)nO(1).

Now we choose ǫ in a way that the running time for branching on clique is same as when we run

a dynamic programming algorithm on graphs of bounded treewidth. Thus, we choose an ǫ such that

2O(k1−ǫ log k) = 2O((k1−(1−ǫ) 1
d +k1−ǫ) log k). This gives us that ǫ = 1/(d + 1) is asymptotically best

possible. Thus, our algorithm runs in time 2O((k1−(1−ǫ) 1
d +k1−ǫ) log k)nO(1) = 2o(k)nO(1) for every fixed

d. This gives us the desired result.

Tractability Borders. It is natural to ask how far our approach can be generalized, and in particular,

whether many of the problems discussed so far have EPTASs and parameterized subexponential time

algorithms on unit ball graphs in dimension higher than two. In this section we show that one should not

expect equally general results for unit ball graphs of dimension at least three. In particular, we show that

FEEDBACK VERTEX SET on Unit Ball Graphs in R
3 does not have an EPTAS unless P = NP , and that

the problem does not admit a subexponential time parameterized algorithm under the Exponential Time

Hypothesis of Impagliazzo, Paturi and Zane [30].

Theorem 12. FEEDBACK VERTEX SET on unit ball graphs in R
3 does not admit a PTAS unless P =

NP , and has no subexponential time parameterized algorithm unless the Exponential Time Hypothesis

fails.

A unit ball model of H in R
d is a map f : V (H) → R

d such that u and v are adjacent iff the

euclidean distance between f(u) and f(v) is at most 1. In the construction it is much more convenient

to work with this alternate definition of unit ball graphs rather than saying that f(u) and f(v) is at most

2 and hence we use this alternate definition in this section. In our constructions no two vertices will

map to the same point, and thus we will often refer to vertices in H by the points in R
d which they map

to. For the proof of Theorem 12 we need the following lemmas. It appears that the following lemma

can easily be derived from the results in [23] about the three dimensional orthogonal graph drawings.

However, since we could not find this result explicitly, we give a proof here for completeness.

Lemma 13. For any graph G on n vertices of maximum degree 6, there is a unit ball graph H on O(n2)
vertices such that H is a subdivision of G. Furthermore, H and a unit ball model of H in R

3 can be

constructed from G in polynomial time.

The proof of Lemma 13 is straightforward, but somewhat tedious.

Proof. In this construction we envision the x-axis as being horizontal with positive direction towards

the right, the z-axis being vertical with positive direction upwards. The intuition behind the proof is that

every vertex of G is assigned its own “fat” x-z plane. The edges of G are routed parallel to the y axis

in the y − x plane with z = 0, and in each “fat” x-z plane we ensure that the edges connect to their

corresponding vertex. This local routing of edge endpoints to a vertex happens above the y − x plane

with z = 0 and does not interfere with the global routing of the edges.

For a point with integer coordinates (x, y, z) and integer ℓ define the set L[x, y, z]ℓx to be {(x +
x′, y, z) : |x′| + |ℓ − x′| = |ℓ|}. In particular, if ℓ is positive then L[x, y, z]ℓx contains {(x, y, z), (x +
1, y, z), (x + 2, y, z), . . . , (x + ℓ, y, z)}, while if ℓ is negative then L[x, y, z]ℓx contains {(x, y, z), (x −
1, y, z), (x− 2, y, z), . . . , (x− ℓ, y, z)}. Similarly we define L[x, y, z]ℓy to be {(x, y + y′, z) : |y′|+ |ℓ−
y′| = |ℓ|} and L[x, y, z]ℓz to be {(x, y, z + z′) : |z′|+ |ℓ− z′| = ℓ}. Given three integers x,y,z, the graph
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P [x, y, z] corresponds to the point set

P [x, y, z] = L[x, y, z]−2
z ∪ L[x, y, z − 2]2x

∪ L[x, y, z]2x

∪ L[x, y, z]2z ∪ L[x, y, z + 2]2x

∪ L[x, y, z]−2
x ∪ L[x − 2, y, z]4z ∪ L[x − 2, y, z + 4]4x

∪ L[x, y, z]−2
y ∪ L[x, y − 2, z]6z ∪ L[x, y − 2, z + 6]2y ∪ L[x, y, z + 6]2x

∪ L[x, y, z]2y ∪ L[x, y + 2, z]8z ∪ L[x, y + 2, z + 8]−2
y ∪ L[x, y, z + 8]2x

The set P [x, y, z] corresponds to a vertex of degree 6 in [x, y, z], and there are 6 paths, each starting in

(x, y, z) and ending in (x+2, y, z−2), (x+2, y, z), (x+2, y, z +2), (x+2, y, z +4), (x+2, y, z +6)
and (x + 2, y, z + 8) respectively. The y-coordinate of any intermediate point on the paths is always

between y − 2 and y + 2. Any points that are generated twice still correspond only to one single vertex.

For an integer y and six integers x1 < x2 < . . . < x6 such that xi+1 − xi ≥ 2 we define

P[y, x1, x2, x3, x4, x5, x6] to be the point set

P[y, x1, x2, x3, x4, x5, x6] = P [−2, y, 12]

∪
6

⋃

i=1

L[0, y, 10 + 2(i − 1)]xi
x ∪ L[xi, y, 10 + 2(i − 1)]

−10−2(i−1)
z

The set P[y, x1, x2, x3, x4, x5, x6] corresponds to a vertex of degree 6 in [−2, y, 12] with 6 paths starting

in this vertex end ending in [xi, y, 0] for 1 ≤ i ≤ 6. The y-coordinate of the intermediate vertices on the

path is between y − 2 and y + 2. In this sense, the paths corresponding to the vertex in [−2, y, 12] are

routed in a “fat” x − z-plane.

We are now ready to construct H given G. We give the construction for 6-regular graphs G and

then explain how to modify the construction to the case when G has maximum degree 6. We label the

vertices in G by v1, . . . vn and the edges of G by e1, . . . em with m ≤ 3n. For every i ≤ m define a(i)
and b(i) such that the endpoints of the edge ei are va(i) and v(b(i)) respectively. Now, for every vertex

vi let xi
1 < xi

2 < . . . < xi
6 be integers so that vi is incident to the edges exi

j
for 1 ≤ j ≤ 6. For every

vertex vi we add the point set P[10i, 2xi
1, 2xi

2, 2xi
3, 2xi

4, 2xi
5, 2xi

6]. Finally for every edge ei we add the

set L[2i, 10a(i), 0]
10(b(i)−a(i))
y . This concludes the construction of H .

It is easy to see that H can be constructed from G in polynomial time. Furthermore, it is easy to

verify that H has O(n2) vertices since m ≤ 3n. To see that H is a subdivision of G observe that when

G has an edge et between vi and vj , in H there is a path from the point [−2, 10i, 12] through [2t, 10i, 0]
and [2t, 10j, 0] to the point [−2, 10j, 12]. This concludes the proof of the lemma.

Lemma 14. There is a polynomial time algorithm that given a graph G on n vertices of maximum degree

3 outputs a unit ball graph H together with a unit ball model of H in R
3, such that given any vertex

cover C of G, a feedback vertex set S of H of size at most |C| can be computed in polynomial time,

and given any feedback vertex set S of H , a vertex cover C of G of size at most |S| can be computed in

polynomial time.

Proof. Given G we start by applying the well-known construction for transforming instances of VERTEX

COVER to instances of FEEDBACK VERTEX SET. We construct G′ from G by adding a vertex xuv for

every edge uv of G and making xuv adjacent to u and to v. Since the maximum degree of G was 3, the

maximum degree of G′ is 6. Now we apply Lemma 13 to G′ obtain the graph H and a unit ball model of

H . Every vertex cover C of G is a feedback vertex set of G′, and since H is a subdivision of G′, every

vertex cover of G is a feedback vertex set of H . For the reverse direction, it is well-known that given a

feedback vertex set S in a graph, one can find in polynomial time a feedback vertex set S′ of size at most

|S| such that all vertices in S′ have degree at least 3 [6]. Let S′ be a feedback vertex set of H such that
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every vertex in S′ has degree at least 3 in H . Then, every vertex in S′ is also a vertex in G. We claim

that S′ is a vertex cover of G. Let uv be an edge in G. Then u,xuv,v is a cycle in G′ and since H is a

subdivision of G′, H contains a cycle going through u,xuv and v where all vertices in the cycle except

u and v have degree at most 2. Since S′ is a feedback vertex set of H ′ containing no vertices of degree

less than 3, S′ contains either u or v. Hence S′ is a vertex cover of G.

If a subexponential time parameterized algorithm for FEEDBACK VERTEX SET on unit ball graphs

in R
3 existed we could combine it with Lemma 14 to get a subexponential time algorithm for VERTEX

COVER on graphs of maximum degree 3. Similarly, a PTAS for FEEDBACK VERTEX SET on unit

ball graphs in R
3 could be combined with Lemma 14 to yield a PTAS for VERTEX COVER on graphs

of maximum degree 3. Since VERTEX COVER is known not to admit a (1 + ǫ)-factor approximation

algorithm, for some fixed ǫ > 0, on graphs of degree at most 3 unless P = NP [3], and not to have

subexponential time parameterized algorithms on graphs of degree at most 3 under the Exponential Time

Hypothesis [30], we obtain Theorem 12.

21



References

[1] P. K. AGARWAL, M. VAN KREVELD, AND S. SURI, Label placement by maximum independent

set in rectangles, Computational Geometry, 11 (1998), pp. 209–218.

[2] J. ALBER AND J. FIALA, Geometric separation and exact solutions for the parameterized inde-

pendent set problem on disk graphs, J. Algorithms, 52 (2004), pp. 134–151.

[3] P. ALIMONTI AND V. KANN, Some APX-completeness results for cubic graphs, Theor. Comput.

Sci., 237 (2000), pp. 123–134.

[4] S. ARNBORG, J. LAGERGREN, AND D. SEESE, Easy problems for tree-decomposable graphs, J.

Algorithms, 12 (1991), pp. 308–340.

[5] B. S. BAKER, Approximation algorithms for NP-complete problems on planar graphs, J. ACM,

41 (1994), pp. 153–180.

[6] R. BAR-YEHUDA, D. GEIGER, J. NAOR, AND R. M. ROTH, Approximation algorithms for the

feedback vertex set problem with applications to constraint satisfaction and Bayesian inference,

SIAM Journal on Computing, 27 (1998), pp. 942–959.

[7] H. L. BODLAENDER, A partial k-arboretum of graphs with bounded treewidth, Theor. Comp. Sc.,

209 (1998), pp. 1–45.

[8] R. B. BORIE, R. G. PARKER, AND C. A. TOVEY, Automatic generation of linear-time algo-

rithms from predicate calculus descriptions of problems on recursively constructed graph families,

Algorithmica, 7 (1992), pp. 555–581.

[9] T. M. CHAN, Polynomial-time approximation schemes for packing and piercing fat objects, J.

Algorithms, 46 (2003), pp. 178–189.

[10] Z.-Z. CHEN, Approximation algorithms for independent sets in map graphs, J. Algorithms, 41

(2001), pp. 20–40.

[11] Z.-Z. CHEN, E. GRIGNI, AND C. H. PAPADIMITRIOU, Planar map graphs, in Proceedings of the

30th Annual ACM Symposium on the Theory of Computing (STOC ’98), ACM, 1998, pp. 514–

523.

[12] , Map graphs, Journal of the Association for Computing Machinery, 49 (2002), pp. 127–138.

[13] B. N. CLARK, C. J. COLBOURN, AND D. S. JOHNSON, Unit disk graphs, Discrete Mathematics,

86 (1990), pp. 165–177.

[14] B. COURCELLE, The monadic second-order logic of graphs I: Recognizable sets of finite graphs,

Information and Computation, 85 (1990), pp. 12–75.

[15] , The expression of graph properties and graph transformations in monadic second-order

logic, Handbook of Graph Grammars, (1997), pp. 313–400.

[16] E. D. DEMAINE, F. V. FOMIN, M. HAJIAGHAYI, AND D. M. THILIKOS, Fixed-parameter al-

gorithms for (k, r)-center in planar graphs and map graphs, ACM Trans. Algorithms, 1 (2005),

pp. 33–47.

[17] E. D. DEMAINE, F. V. FOMIN, M. HAJIAGHAYI, AND D. M. THILIKOS, Subexponential pa-

rameterized algorithms on bounded-genus graphs and H-minor-free graphs, J. ACM, 52 (2005),

pp. 866–893.

22



[18] E. D. DEMAINE AND M. HAJIAGHAYI, Bidimensionality: New connections between FPT al-

gorithms and PTASs, in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA 2005), ACM-SIAM, 2005, pp. 590–601.

[19] E. D. DEMAINE AND M. HAJIAGHAYI, Linearity of grid minors in treewidth with applications

through bidimensionality, Combinatorica, 28 (2008), pp. 19–36.

[20] E. D. DEMAINE, M. HAJIAGHAYI, AND K. KAWARABAYASHI, Algorithmic graph minor theory:

Improved grid minor bounds and Wagner’s contraction, Algorithmica, 54 (2009), pp. 142–180.

[21] R. DIESTEL, Graph Theory, Springer-Verlag, Heidelberg, third ed., 2005.

[22] A. DUMITRESCU AND J. PACH, Minimum clique partition in unit disk graphs, Graph. Comb., 27

(2011), pp. 399–411.

[23] P. EADES, A. SYMVONIS, AND S. WHITESIDES, Three-dimensional orthogonal graph drawing

algorithms, Discrete Applied Mathematics, 103 (2000), pp. 55–87.

[24] T. ERLEBACH, K. JANSEN, AND E. SEIDEL, Polynomial-time approximation schemes for geo-

metric intersection graphs, SIAM J. Comput., 34 (2005), pp. 1302–1323.

[25] U. FEIGE, M. HAJIAGHAYI, AND J. R. LEE, Improved approximation algorithms for minimum-

weight vertex separators, in Proceedings of the 37th annual ACM Symposium on Theory of com-

puting (STOC 2005), New York, 2005, ACM Press, pp. 563–572.

[26] F. V. FOMIN, D. LOKSHTANOV, V. RAMAN, AND S. SAURABH, Bidimensionality and EPTAS,

in Proceedings of the 22nd annual ACM-SIAM symposium on Discrete algorithms (SODA 2011),

SIAM, 2011, pp. 748–759.

[27] F. V. FOMIN, D. LOKSHTANOV, S. SAURABH, AND D. M. THILIKOS, Bidimensionality and

kernels, in Proceedings of the 21st annual ACM-SIAM symposium on Discrete algorithms (SODA

2010), ACM-SIAM, 2010, pp. 503–510.

[28] D. S. HOCHBAUM AND W. MAASS, Approximation schemes for covering and packing problems

in image processing and vlsi, J. ACM, 32 (1985), pp. 130–136.

[29] H. B. HUNT, III, M. V. MARATHE, V. RADHAKRISHNAN, S. S. RAVI, D. J. ROSENKRANTZ,

AND R. E. STEARNS, NC-approximation schemes for NP- and PSPACE-hard problems for geo-

metric graphs, J. Algorithms, 26 (1998), pp. 238–274.

[30] R. IMPAGLIAZZO, R. PATURI, AND F. ZANE, Which problems have strongly exponential com-

plexity, Journal of Computer and System Sciences, 63 (2001), pp. 512–530.

[31] G. KABATIANSKY AND V. LEVENSHTEIN, Bounds for packings on a sphere and in space, Prob-

lemy Peredachi Informatsii, 14 (1978), pp. 3–25.

[32] F. KUHN, R. WATTENHOFER, AND A. ZOLLINGER, Ad hoc networks beyond unit disk graphs,

Wireless Networks, 14 (2008), pp. 715–729.

[33] M. V. MARATHE, H. BREU, H. B. HUNT, III, S. S. RAVI, AND D. J. ROSENKRANTZ, Simple

heuristics for unit disk graphs, Networks, 25 (1995), pp. 59–68.

[34] D. MARX, Parameterized complexity and approximation algorithms, The Computer Journal, 51

(2008), pp. 60–78.

[35] G. L. MILLER, S.-H. TENG, W. P. THURSTON, AND S. A. VAVASIS, Separators for sphere-

packings and nearest neighbor graphs, J. ACM, 44 (1997), pp. 1–29.

23



[36] H. MOSER, Exact algorithms for generalizations of vertex cover, Master’s thesis, Institut für In-

formatik, Friedrich-Schiller-Universität, 2005.

[37] V. RAGHAVAN AND J. SPINRAD, Robust algorithms for restricted domains, J. Algorithms, 48

(2003), pp. 160–172.

[38] N. ROBERTSON, P. D. SEYMOUR, AND R. THOMAS, Quickly excluding a planar graph, J. Comb.

Theory Series B, 62 (1994), pp. 323–348.

[39] P. D. SEYMOUR AND R. THOMAS, Graph searching and a minimax theorem for tree-width, J.

Comb. Theory Series B, 58 (1993), pp. 239–257.

[40] M. THORUP, Map graphs in polynomial time, in Proceedings of the 39th Annual Symposium on

Foundations of Computer Science (FOCS 1998), IEEE Computer Society, 1998, pp. 396–405.

[41] E. J. VAN LEEUWEN, Optimization and approximation on systems of geometric objects, PhD the-

sis, De Vries Instituut, Netherlands, 2009.

[42] J. XU AND B. BERGER, Fast and accurate algorithms for protein side-chain packing, J. ACM, 53

(2006), pp. 533–557.

24


