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Abstract

Bidimensionality theory appears to be a powerful frame-

work in the development of meta-algorithmic techniques.

It was introduced by Demaine et al. [J. ACM 2005 ] as

a tool to obtain sub-exponential time parameterized al-

gorithms for bidimensional problems on H-minor free

graphs. Demaine and Hajiaghayi [SODA 2005 ] ex-

tended the theory to obtain polynomial time approxima-

tion schemes (PTASs) for bidimensional problems. In this

paper, we establish a third meta-algorithmic direction for

bidimensionality theory by relating it to the existence of

linear kernels for parameterized problems. In parameter-

ized complexity, each problem instance comes with a pa-

rameter k and the parameterized problem is said to admit a

linear kernel if there is a polynomial time algorithm, called

a kernelization algorithm, that reduces the input instance

to an equivalent instance (called kernel) with size linearly

bounded by k. We show that “essentially” all bidimen-

sional problems not only have sub-exponential time algo-

rithms and PTASs but they also have linear kernels, affir-

matively answering an open question from [J. ACM 2005 ]

where the existence of linear kernels was conjectured for

the first time. In particular, we prove that every minor (re-

spectively contraction) bidimensional problem that satis-

fies the separation property and is of finite integer index,

admits a linear kernel for classes of graphs that exclude a

fixed graph (respectively an apex graph H) H as a minor.

Recently, Bodlaender et al. [FOCS 2009 ] laid the foun-

dation for obtaining meta-algorithmic results for kernel-

ization and showed that various problems satisfying some

logical and compactness properties have polynomial, even

linear kernels on graphs of bounded genus. With the use

of bidimensionality we are able to extend these results to

minor-free and apex-minor-free graphs. Our results imply

that a multitude of bidimensional problems, which include

DOMINATING SET, FEEDBACK VERTEX SET, EDGE

DOMINATING SET, VERTEX COVER, r-DOMINATING

SET, CONNECTED DOMINATING SET, CYCLE PACK-
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ING, CONNECTED VERTEX COVER, ALMOST CON-

STANT TREEWIDTH, and various other vertex covering

and packing problems, admit linear kernels on the corre-

sponding graph classes. For most of these problems no

polynomial kernels on H-minor-free graphs were known

prior to our work.

1 Introduction

Bidimensionality was introduced as a framework for

designing subexponential parameterized algorithms

on sparse graphs. Alber et al. [2] obtained the

first subexponential parameterized algorithm on pla-

nar graphs by solving the parameterized DOMINAT-

ING SET problem in time 2O(
√

k)nO(1), where n
is the input size. It appeared that not only DOM-

INATING SET but many other parameterized prob-

lems are solvable in subexponential time on pla-

nar graphs. The main purpose of Bidimensional-

ity Theory was to provide a meta-algorithmic de-

scription of all these problems. The theory was

developed by Demaine et al. [17, 18] and it al-

lowed to unify and extend subexponential fixed-

parameter algorithms for NP-hard graph problems

to a broad range of graphs including planar graphs,

map graphs, bounded-genus graphs and graphs ex-

cluding any fixed minor. This theory is build on

cornerstone theorems from Graph Minors Theory of

Robertson and Seymour and its initial purpose was

to serve as a simple criterion of checking whether

a parameterized problem is solvable in subexponen-

tial time on planar graphs, and even more generally,

on graphs excluding some fixed graph as a minor.

Roughly speaking, the problem is bidimensional if

the solution value for the problem on a k × k-grid

is Ω(k2), and contraction/removal of edges does

not increase solution value. Many natural prob-

lems are bidimensional, including DOMINATING

SET, FEEDBACK VERTEX SET, EDGE DOMINAT-

ING SET, VERTEX COVER, r-DOMINATING SET,

CONNECTED DOMINATING SET, CYCLE PACK-

ING, CONNECTED VERTEX COVER, GRAPH MET-

RIC TSP, and many others.

The second application of bidimensionality was

given by Demaine and Hajiaghayi [18] who have

shown that bidimensionality is a useful theory not

only in the design of fast fixed-parameter algorithms
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but also in the design of fast PTASs. They estab-

lished a link between parameterized and approxima-

tion algorithms by proving that every bidimensional

problem satisfying some simple separation proper-

ties has a PTAS on planar graphs and other classes

of sparse graphs. We refer to the surveys [15, 20]

for further information on bidimensionality and its

applications.

In this work we give the third application of

bidimensionality—kernelization. Kernelization can

be seen as the strategy of analyzing preprocessing or

data reduction heuristics from a parameterized com-

plexity perspective. Parameterized complexity is ba-

sically a two-dimensional generalization of “P vs.

NP” where in addition to the overall input size n, one

studies the effects on computational complexity of a

secondary measurement that captures additional rel-

evant information. This additional information can

be, for example, solution size or a structural restric-

tion on the input distribution considered, such as a

bound on the treewidth of an input graph. The sec-

ondary information is quantified by a positive inte-

ger k and is called the parameter. Parameterization

can be deployed in many different ways; for general

background on the theory see [21, 22, 30].

A parameterized problem with a parameter k
is said to admit a polynomial kernel if there is a

polynomial time algorithm (the degree of polyno-

mial is independent of k), called a kernelization al-

gorithm, that reduces the input instance down to an

instance with size bounded by a polynomial p(k) in

k, while preserving the answer. Kernelization has

been extensively studied in parameterized complex-

ity, resulting in polynomial kernels for a variety of

problems. Notable examples of known kernels are

a 2k-sized vertex kernel for VERTEX COVER [13],

a 355k kernel for DOMINATING SET on planar

graphs [3], which later was improved to a 67k ker-

nel [11], and an O(k2) kernel for FEEDBACK VER-

TEX SET [32] parameterized by the solution size.

One of the most intensively studied directions in ker-

nelization is the study of problems on planar graphs

and other classes of sparse graphs. This study was

initiated by Alber et al. [3] who gave the first lin-

ear sized kernel for the DOMINATING SET prob-

lem on planar graphs. The work of Alber et al. [3]

triggered an explosion of papers on kernelization,

and kernels of linear sizes were obtained for a va-

riety of parameterized problems on planar graphs in-

cluding CONNECTED VERTEX COVER, MINIMUM

EDGE DOMINATING SET, MAXIMUM TRIANGLE

PACKING, EFFICIENT EDGE DOMINATING SET,

INDUCED MATCHING, FULL-DEGREE SPANNING

TREE, FEEDBACK VERTEX SET, CYCLE PACK-

ING, and CONNECTED DOMINATING SET [3, 8, 9,

12, 25, 26, 27, 28, 29]. Not much was known about

kernelization on more general classes prior to this

paper, except for DOMINATING SET. It was shown

recently that DOMINATING SET enjoys a polynomial

kernel on graphs excluding a fixed graph as a mi-

nor and on graphs of bounded degeneracy [4, 31].

We refer to the survey of Guo and Niedermeier [24]

for a detailed treatment of the area of kernelization.

Since most of the problems known to have polyno-

mial kernels on planar graphs are bidimensional, the

existence of links between bidimensionality and ker-

nelization was conjectured and left as an open prob-

lem in [17].

In this work we show that every bidimensional

problem with a simple separation property, which is

a weaker property than the one required in the frame-

work of Demaine and Hajiaghayi for PTASs [18] and

with finite integer index (we postpone this definition

till the next section) has a linear kernel on planar and

even much more general classes of graphs. In this

paper all the problems are parameterized by the so-

lution size. Our main result is the following theorem.

THEOREM 1.1. Every minor-bidimensional prob-

lem Π with the separation property and finite inte-

ger index has a linear kernel on graphs excluding

some fixed graph as a minor. Every contraction-

bidimensional problem Π with the separation prop-

erty and with finite integer index has a linear kernel

on graphs excluding some fixed apex graph as a mi-

nor.

Our approach is built on recent results from

Bodlaender et al. [5] who proved the first meta-

theorems on kernelization. It was shown in [5] that

every parameterized problem that has finite integer

index and satisfies an additional surface-dependent

property called quasi-compactness has a linear ker-

nel on graphs of bounded genus.

Our kernelization algorithm uses only one re-

duction rule, which is based on finite integer index

properties of the problem in question. This is exactly

the same reduction rule as the one used in the kernel-

ization algorithm given in [5] for obtaining kernels

on planar graphs and graphs of bounded genus. The

novel contribution of this paper is the way the ker-

nel sizes for bidimensional problems are analyzed.

The analysis of kernel sizes in [5] requires “topolog-

ical” decompositions of the given graph, in the sense

that the partitioning of the graph into regions with

small border, or protrusions, strongly depends on a

embedding of the graph into a surface. While such

an approach works well when we have a topological

embedding it seems difficult to extend it to graphs

excluding some fixed graph as a minor. Instead of

taking the topological approach, we apply bidimen-

sionality and suitable variants of the Excluded Grid



Theorem [16, 19, 23]. This makes our arguments

considerably simpler than the analysis in [5].

2 Definitions and Notations

In this section we give various definitions which we

make use of in the paper. Let G = (V,E) be a graph.

A graph G� = (V �, E�) is a subgraph of G if V � ⊆ V
and E� ⊆ E. The subgraph G� is called an induced

subgraph of G if E� = {uv ∈ E | u, v ∈ V �}, in this

case, G� is also called the subgraph induced by V �

and denoted with G[V �]. By N(u) we denote (open)

neighborhood of u that is the set of all vertices

adjacent to u and by N [u] = N(u)∪{u}. Similarly,

for a subset D ⊆ V , we define N [D] = ∪v∈DN [v]
and N(D) = N [D] \ D. We denote by Kh the

complete graph on h vertices.

2.1 Parameterized algorithms, Kernels and

Treewidth A parameterized problem Π is a subset

of Γ
∗ × N for some finite alphabet Γ. An instance

of a parameterized problem consists of (x, k), where

k is called the parameter. We will assume that k is

given in unary and hence k ≤ |x|O(1). A central no-

tion in parameterized complexity is fixed parameter

tractability (FPT) which means, for a given instance

(x, k), solvability in time f(k) ·p(|x|), where f is an

arbitrary function of k and p is a polynomial in the

input size. The notion of kernelization is formally

defined as follows.

DEFINITION 2.1. [Kernelization] A kernelization

algorithm, or in short, a kernel for a parameterized

problem Π ⊆ Γ
∗ × N is an algorithm that given

(x, k) ∈ Γ
∗×N outputs in time polynomial in |x|+k

a pair (x�, k�) ∈ Γ
∗ × N such that (a) (x, k) ∈ Π if

and only if (x�, k�) ∈ Π and (b) |x�|, k� ≤ g(k),
where g is some computable function. The function

g is referred to as the size of the kernel. If g(k) =
kO(1) or g(k) = O(k) then we say that Π admits a

polynomial kernel and linear kernel respectively.

Treewidth. A tree decomposition of a graph

G = (V,E) is a pair (X , T ) where T = (VT , ET )
is a tree and X = {Xi | i ∈ VT } is a collection of

subsets of V such that:

1.
�

i∈VT
Xi = V ,

2. for each edge xy ∈ E, {x, y} ⊆ Xi for some

i ∈ VT ;

3. for each x ∈ V the set {i | x ∈ Xi} induces a

connected subtree of T .

The width of the tree decomposition is

maxi∈VT
|Xi| − 1. The treewidth of a graph G is

the minimum width over all tree decompositions of

G. We denote by tw(G) the treewidth of graph G.

2.2 Protrusions, t-Boundaried Graphs and Fi-

nite Integer Index Given a graph G = (V,E) and

S ⊆ V , we define ∂G(S) as the set of vertices in S
that have a neighbor in V \ S. For a set S ⊆ V the

neighborhood of S is NG(S) = ∂G(V \S). When it

is clear from the context, we omit the subscripts. We

now define the notion of a protrusion.

DEFINITION 2.2. [r-protrusion] Given a graph

G = (V,E), we say that a set X � ⊆ V is an r-

protrusion of G if |N(X �)| ≤ r and tw(G[X � ∪
N(X �)]) ≤ r.

For an r-protrusion X �, the vertex set X =
X � ∪N(X �) is called an extended r-protrusion. The

set X is the extended protrusion of X � and X � is the

protrusion of X .

We now define the notion of t-boundaried

graphs and various operations on them.

DEFINITION 2.3. [t-Boundaried Graphs] A t-
boundaried graph is a graph G = (V,E) with t dis-

tinguished vertices, uniquely labeled from 1 to t. The

set ∂(G) of labeled vertices is called the boundary of

G. The vertices in ∂(G) are referred to as boundary

vertices or terminals.

For a graph G = (V,E) and a vertex set S ⊆
V , we will sometimes consider the graph G[S] as

the |∂(S)|-boundaried graph with ∂(S) being the

boundary.

DEFINITION 2.4. [Gluing by ⊕] Let G1 and G2 be

two t-boundaried graphs. We denote by G1⊕G2 the

t-boundaried graph obtained by taking the disjoint

union of G1 and G2 and identifying each vertex of

∂(G1) with the vertex of ∂(G2) with the same label;

that is, we glue them together on the boundaries.

In G1 ⊕ G2 there is an edge between two labeled

vertices if there is an edge between them in G1 or in

G2.

DEFINITION 2.5. [Legality] Let G be a graph

class, G1 and G2 be two t-boundaried graphs, and

G1, G2 ∈ G. We say that G1 ⊕ G2 is legal with re-

spect to G if the unified graph G1 ⊕ G2 ∈ G. If the

class G is clear from the context we do not say with

respect to which graph class the operation is legal.

DEFINITION 2.6. [Replacement] Let G = (V,E)
be a graph containing an extended r-protrusion X .

Let X � be the restricted protrusion of X and let G1

be an r-boundaried graph. The act of replacing

X � with G1 corresponds to changing G into G[V \
X �] ⊕ G1. Replacing G[X] with G1 corresponds to

replacing X � with G1.

DEFINITION 2.7. For a parameterized problem Π

on a graph class G and two t-boundaried graphs

G1 and G2, we say that G1 ≡Π G2 if there exists

3



a constant c such that for all t-boundaried graphs

G3 and for all k: (a) G1 ⊕ G3 is legal if and only if

G2 ⊕ G3 is legal; (b) (G1 ⊕ G3, k) ∈ Π if and only

if (G2 ⊕ G3, k + c) ∈ Π.

DEFINITION 2.8. [Finite Integer Index] We say

that a parameterized problem Π has finite integer

index in a graph class G if for every t there exists

a finite set S of t-boundaried graphs such that S ⊆
G and for any t-boundaried graph G1 there exists

G2 ∈ S such that G2 ≡Π G1. Such a set S is called

a set of representatives for (Π, t).

Note that for every t, the relation ≡Π on t-
boundaried graphs is an equivalence relation. A

problem Π is finite integer index, if and only if for

every t, ≡Π is of finite index, that is, has a finite

number of equivalence classes.

2.3 Minors and Contractions Given an edge e =
xy of a graph G, the graph G/e is obtained from

G by contracting the edge e, that is, the endpoints

x and y are replaced by a new vertex vxy which

is adjacent to the old neighbors of x and y (except

from x and y). A graph H obtained by a sequence

of edge-contractions is said to be a contraction of G.

We denote it by H ≤c G. A graph H is a minor of

a graph G if H is the contraction of some subgraph

of G and we denote it by H ≤m G. We say that

a graph G is H-minor-free when it does not contain

H as a minor. We also say that a graph class GH is

H-minor-free (or, excludes H as a minor) when all

its members are H-minor-free. An apex graph is a

graph obtained from a planar graph G by adding a

vertex and making it adjacent to some of the vertices

of G. A graph class GH is apex-minor-free if GH

excludes a fixed apex graph H as a minor.

2.4 Grids and their triangulations. Let r be a

positive integer, r ≥ 2. The (r × r)-grid is the

Cartesian product of two paths of lengths r − 1. A

vertex of a grid is a corner if it has degree 2. Thus

each (r×r)-grid has 4 corners. A vertex of a (r×r)-
grid is called internal if it has degree 4, otherwise it

is called external. Let Γr be the graph obtained from

the (r× r)-grid by triangulating internal faces of the

(r × r)-grid such that all internal vertices become

of degree 6, all non-corner external vertices are of

degree 4, and then one corner of degree two is joined

by edges with all vertices of the external face. The

graph Γ6 is shown in Fig. 1.

2.5 Bidimensionality and Separation property

DEFINITION 2.9. ([17, 23]) A parameterized

problem Π is minor-bidimensional if

Figure 1: Graph Γ6.

1. For any pair of graphs H ≤m G and integer

k, (G, k) ∈ Π ⇒ (H, k) ∈ Π. In other words,

contracting or deleting an edge in a graph G
cannot increase the parameter; and

2. there is δ > 0 such that for every (r × r)-grid

R, (R, k) �∈ Π for every k ≤ δr2. In other

words, the value of the solution on R should be

at least δr2.

A parameterized problem Π is called contraction-

bidimensional if

1. For any pair of graphs H ≤c G and integer k,

(G, k) ∈ Π ⇒ (H, k) ∈ Π, and

2. there is δ > 0 such that (Γr, k) �∈ Π for every

k ≤ δr2.

In either case, Π is called bidimensional.

DEFINITION 2.10. For a parameterized problem Π,

let Π denote the set of all no instances of Π. A mi-

nor (contraction) bidimensional problem Π is called

a minimization problem if for all (G, k) ∈ Π,

tw(G) ≤ O(
√

k) whenever G excludes a fixed

(apex) graph H as a minor. A minor (contraction)

bidimensional problem Π is called a maximization

problem if for all (G, k) ∈ Π, tw(G) ≤ O(
√

k)
whenever G excludes a fixed (apex) graph H as a

minor.

Demaine and Hajiaghayi [18] define the sepa-

ration property for problems, and show how separa-

bility together with bidimensionality is useful to ob-

tain PTASes on H-minor-free graphs. In our setting

a slightly weaker notion of separability is sufficient.

In particular the following definition is just the re-

quirement 3 of the definition of separability in [18].

DEFINITION 2.11. A minor-bidimensional problem

has the separation property if given any graph G,

given any vertex cut S, and given an optimal solution

OPT to G, for any union G� of some subset of

connected components of G \ S, |OPT ∩ G�| is

between |OPT (G�)| − O(|S|) and |OPT (G�)| +
O(|S|).



For contraction-bidimensional parameters we

have a slightly different definition of the separation

property.

DEFINITION 2.12. A contraction-bidimensional

problem has the separation property if the following

condition is satisfied. Given a graph G, a vertex

cut S whose removal disconnects G into con-

nected components C1, C2, . . . , Ck, and a subset

I ⊆ {1, 2, . . . , k}, we define GI to be the graph

obtained from G by contracting for every j �∈ I
the component Cj into the vertex in N(Cj) with

the lowest index. Let OPT be an optimal solution

to G. Then for any subset I ⊆ {1, 2, . . . , k},

|OPT ∩ GI | is between |OPT (GI)| − O(|S|) and

|OPT (GI)| + O(|S|).

3 Combinatorial Properties of Separable

Bidimensional Problems

In this section we first show that any non-trivial

instance of a separable bidimensional problem must

have a O(k) sized vertex set whose deletion makes

the treewidth of the input graph constant. Second,

we show how to exploit such a set to find a large

protrusion in the input graph. We need the following

well known lemma, see e.g. [6], on separators in

graphs of bounded treewidth.

LEMMA 3.1. Let G = (V,E) be a graph of

treewidth at most t and w : V → R
+ ∪ {0} be a

weight function. Then there is a set S ⊂ V of size

at most t + 1 such that for every connected com-

ponent G[C] of G[V \ S], w(C) ≤ w(V )/2. Fur-

thermore the connected components C1, . . . , C� of

G[V \ S] can be grouped into two sets C1 and C2

such that
w(V )−w(S)

3 ≤ w(Ci) ≤ 2(w(V )−w(S))
3 , for

i ∈ {1, 2}.

We also need the following result proved in

[16, 19, 23].

PROPOSITION 3.1. ([16, 19, 23]) Let G be a con-

nected graph excluding a fixed graph H as a mi-

nor. Then there exists some constant c such that if

tw(G) ≥ c · r2, then G contains the r × r-grid as

a minor. Moreover, if H is an apex graph, then G
contains Γr as a contraction.

LEMMA 3.2. Let Π be a minor-bidimensional prob-

lem with the separation property. For every (G =
(V,E), k) ∈ Π, where G does not contain a fixed

graph H as a minor, there is a subset of vertices

S ⊆ V and a constant t, such that |S| = O(k),
and tw(G[V \ S]) ≤ t.

Proof. The definition of minor-bidimensionality to-

gether with Proposition 3.1 imply that for every

(G, k) ∈ Π there is a constant d� such that tw(G) ≤
d�
√

k. Let us fix a solution Z of size k for G and

a weight function w : V → {0, 1} which as-

signs 1 to every vertex in Z and 0 otherwise. By

Lemma 3.1, there exists a separator X of G of size

at most d�
√

k + 1 such that the connected compo-

nents of G[V \ X] can be grouped into two parts C1

and C2 such that
k−w(X)

3 ≤ w(Ci) ≤ 2(k−w(X))
3 ,

i ∈ {1, 2}.

We want to construct a set S such that the

treewidth of G[V \ S] is at most t. We start the

construction by putting S := X . Let Z1 and Z2 be

an optimum solution to Π on graphs G1 = G[C1] and

G2 = G[C2] respectively. Since Π is separable, we

have that |Z∩Ci| = |Zi|±O(|X|) for i ∈ {1, 2}. We

grow S by recursively applying Lemma 3.1 to find

balanced separators in G1 and G2 respectively and

adding them to S. Since Π is minor-bidimensional

problem with the separation property, we have that

in recursive step for a graph G� with solution of size

� we find a separator of size O(
√

�). Let µ(G, Z, k)
denote the size of the set S, we are looking for. Then

we get the following recurrence for µ(G, k),

µ(G, Z, k) ≤ µ

�

G1, Z1,
k

3
+ (d

√
k)

�

+ µ

�

G2, Z2,
2k

3
+ (d

√
k)

�

+ (d�
√

k + 1)

where d and d� are constants. We stop recursing

when the solution in the current graph is at most

some fixed constant t�. Again, by making use of

Proposition 3.1 and minor-bidimensionality of Π,

we conclude that the treewidth of the graphs at the

leaves of the recursion tree is at most some fixed

constant t. Hence we have found a set S such that

the treewidth of G[V \ S] is at most t. By applying

the generalization of Master’s Theorem due to Akra

and Bazzi [1] to the recurrence above we have that

the size of S is O(k).

The proof of the next lemma for contraction-

bidimensional problems Π satisfying the separation

property goes along the proof of Lemma 3.2, with

the only difference that instead of using the first part

of Proposition 3.1, we use the part on contractions.

LEMMA 3.3. Let Π be a contraction-bidimensional

problem with the separation property. For every

(G = (V,E), k) ∈ Π, where G is an apex-minor-

free graph, there is a subset of vertices S ⊆ V and

constant t, such that |S| = O(k) and tw(G[V \
S]) ≤ t.

Proof. The proof of this lemma is almost identi-

cal to the proof of Lemma 3.2. The only differ-

ence is in the definition of the graphs G1 and G2.

5



Let C1, C2, . . . , C� be the connected components

of G[V \ S] and let Ii ⊆ {1, 2, . . . , �} such that

Ci = ∪j∈Ii
Cj . We set G1 := GI1

and G2 := GI2

as in Definition 2.12.

We proceed to show that any H-minor-free n-

vertex graph G with a vertex set S of size k such

that tw(G \ S) is constant must have a protrusion

of size at least cn/k for some fixed c. This result is

crucial for our analysis of the kernel sizes.

LEMMA 3.4. For every fixed graph H and constant

t there are constants ζ and r that satisfy the follow-

ing. For any n-vertex graph G which excludes H as

a minor and has a vertex set S of size k such that

tw(G \ S) ≤ t, G has an extended r-protrusion of

size at least ζn/k.

Proof. For a fixed graph H and constants t, p and

q define µ(k, x) to be the maximum number of

vertices in a graph G excluding H as a minor,

such that G has a vertex set S of size k such that

tw(G \ S) ≤ t and there is no set Z of size at least

x such that |∂(Z)| ≤ p and |Z ∩ S| ≤ q. We argue

that for p and q chosen sufficiently large compared

to t and H (but chosen independently of k and x),

µ(k, x) = O(kx).
First, consider a graph G excluding H as a

minor, such that G has a vertex set S of size k such

that tw(G\S) ≤ t. We prove that tw(G) = O(
√

k).
By Proposition 3.1, there is a constant d� such that G
contains a (d�tw(G) × d�tw(G))-grid as a minor.

Thus G contains (d�tw(G)/(t + 1))2 disjoint (t +
1 × t + 1)-grids as minors. Since the treewidth of

a (t + 1 × t + 1)-grid is t + 1, S must contain at

least one vertex from each of the (t+1× t+1)-grid

minors. Thus |S| = k ≥ (d�tw(G)/(t + 1))2 and

there is a constant d such that tw(G) ≤ d
√

k.

Now, fix a weight function w : V → R
+ such

that w(v) = 1 if v ∈ S and w(v) = 0 otherwise.

By Lemma 3.1, there is a partitioning of V into a

separator X of size at most d
√

k +1 and two sets C1

and C2 such that N(Ci) ⊆ X and |Ci ∩ S| ≤ 2k/3.

Define S�
1 = S ∩ (C1 ∪X) and S�

2 = S ∩ (C2 ∪X).
Now, for each i ∈ {1, 2}, a subset Z of Ci ∪ X
satisfying |∂(Z)| ≤ p (in G[Ci∪X]) and |Z∩S�

i| ≤ q
satisfies |∂(Z)| ≤ p (in G) and |Z ∩ Si| ≤ q. Hence

µ(k, x) ≤ µ

�

k

3
+ (d

√
k) + 1, x

�

+ µ

�

2k

3
+ (d

√
k) + 1, x

�

However, if k + t ≤ p and k ≤ q, then µ(k, x) < x.

Thus, choosing p and q sufficiently large compared

to t and d and applying the generalization of Mas-

ter’s Theorem due to Akra and Bazzi [1] to the re-

currence above we have that µ(k, x) = O(kx).

Notice now that a set Z such that |δ(Z)| ≤ p
and |(Z ∩ S)| ≤ q has treewidth at most t + q and

hence is an extended (p+t+q)-protrusion. Choosing

r = p + t + q and ζ to be a constant such that

ζµ(k, x) ≤ kx completes the proof of the lemma.

4 Kernelization for Separable Bidimensional

Problems

In this section we give our kernelization algorithm.

First we give the reduction rule which is applied

exhaustively on the input to reduce its size. This

rule is from [5] and it has been just modified here

to work for graphs excluding a fixed graph H as a

minor and satisfying finite integer index. Finally, in

the last subsection, we prove Theorem 1.1 using the

auxiliary results we have proved so far.

4.1 Reduction Rule The only reduction rule we

apply has the following form:

If there is a constant size separator such

that after its removal we obtain a con-

nected component of unbounded size and

of constant treewidth, then we replace this

component with a subgraph of constant

size.

We need the following generalization of lemma from

[5] to H-minor free graphs. The proof is almost

identical and we provide it here for completeness.

LEMMA 4.1. ([5] ) Let Π has finite integer index.

Then there exists a constant c(Π, γ) and an algo-

rithm that given a graph G = (V,E) ∈ GH , an

integer k and an extended γ-protrusion X in G with

|X| > c(Π, γ), runs in time O(|X|) and returns a

graph G∗ = (V ∗, E∗) ∈ GH and an integer k∗ such

that |V ∗| < |V |, k∗ ≤ k, and (G∗, k∗) ∈ Π if and

only if (G, k) ∈ Π.

Proof. Let S be a set of representatives for (Π, r)
and let c = maxY ∈S |Y |. Similarly, let S � be

a set of representatives for (Π, 2r) and let c� =
maxY ∈S� |Y |. If |X| > 3c� we find an extended 2r-

protrusion X � ⊆ X such that c� < |X �| ≤ 3c� and

work on X � instead of X . This can be done in time

O(|X|) since G[X] has treewidth at most r. From

now on, we assume that |X| ≤ 3c�. This initial step

is the only step of the algorithm that does not work

with constant size structures, and hence the running

time of the algorithm is upper bounded by O(|X|).
The algorithm proceeds as follows.

Because Π has finite integer index there is a

graph H = (VH , EH) ∈ S such that H ≡Π G[X].
We show how to compute H from X . Since k
is given in unary, we have that k ≤ |V |p. Let

kmax = (6c�)p. For every G1 = (V1, E1) ∈ S,



G2 = (V2, E2) ∈ S and k� ≤ kmax we compute

whether (G1 ⊕G2, k
�) ∈ Π. For each such triple the

computation can be done in time O((|V1| + |V2|)
p)

since Π has finite integer index [10, 14]. Now, for

every G1 ∈ S and k� ≤ (|X| + |V1|)
p we compute

whether (G[X] ⊕ G1, k
�) ∈ Π. When all these

computations are done, the results are stored in a

table.

It is not hard to see that H ≡Π G[X] if and

only if there exists a constant c such that for all

G2 ∈ S and k� ≤ kmax, (H ⊕ G2, k
�) ∈ Π ⇔

(G[X]⊕G2, k
�+c) ∈ Π. Also, c is the constant such

that for all r-boundaried graphs G2 and and integers

k�, (H ⊕ G2, k
�) ∈ Π ⇔ (G[X] ⊕ G2, k

� + c) ∈ Π.

For each H ∈ C we can check whether H ≡Π G[X]
using this condition and the pre-computed table, and

if H ≡Π G[X], find the constant c.

After we have found a H ∈ S and the cor-

responding constant c, such that H ≡Π G[X],
we make G∗ from G by replacing the extended r-

protrusion X with H . Also, we set k∗ = k−c. Since

|X| > c and H has at most c vertices, |V ∗| < |V |.
By the choice of H and c, (G∗, k∗) ∈ Π if and only

if (G, k) ∈ Π. This concludes the proof.

4.2 Proof of Theorem 1.1

Proof. [Proof of Theorem 1.1] We give the proof

only for minor-bidimensional problems. The proof

of the theorem for contraction-bidimensional prob-

lems goes along the same line with the only dif-

ference that instead of Lemma 3.2 we need to use

Lemma 3.3.

We first give a proof for a minor bidimensional

problem Π that is also a minimization problem. Let

Π be a bidimensional problem with the separation

property and finite integer index. By Lemma 3.2, for

(G = (V,E), k) ∈ Π, there is a set S ⊆ V and a

constant t, such that |S| ≤ t · k and the treewidth

of GS = G \ S = (VS , ES) is at most t. By

Lemma 3.4, G contains an r-protrusion of size at

least ζ|V |/tk. The reduction algorithm exhaustively

applies Lemma 4.1, with γ = r. Since an irreducible

instance contains no r-protrusion of size at least

c(Π, γ) it follows that an irreducible instance (G =
(V,E), k) ∈ Π must satisfy ζ|V |/tk < c(Π, γ).
Thus |V | is at most k · tc(Π, γ)/ζ = O(k). For the

case that Π is a minor bidimensional maximization

problem an identical argument shows that for any

irreducible instance (G, k) ∈ Π, |V | is at most O(k).
Now we show that our kernelization procedure

runs in polynomial time. Observe that we can find

a protrusion by guessing the boundary which is of

constant size. Once given a protrusion X we can

replace it with an equivalent instance in O(|X|)
time using the Lemma 4.1. This concludes that the

kernelization algorithm runs in polynomial time.

Theorem 1.1 has the following corollary. The

list in the corollary is not exhaustive, and contains

most of the well-known parameterized problems for

which our theorem gives linear kernels.

COROLLARY 4.1. FEEDBACK VERTEX SET, VER-

TEX COVER, CONNECTED VERTEX COVER,

EDGE DOMINATING SET, MINIMUM MAXIMUM

MATCHING, ALMOST CONSTANT TREEWIDTH,

CYCLE PACKING and INDEPENDENT SET admit a

linear kernel on H-minor free graphs. DOMINAT-

ING SET, r-DOMINATING SET, EDGE DOMINAT-

ING SET, CONNECTED DOMINATING SET TRIAN-

GLE PACKING, and INDUCED MATCHING admit a

linear kernel on an apex minor free graphs.

5 Conclusion

In this paper we related the meta-algorithmic the-

ory of bidimensionality and the field of kernelization

and affirmatively resolved an open question raised

in [17]. In particular, we showed that every mi-

nor (contraction) bidimensional problems satisfying

a separation property admit a linear kernel on graphs

excluding a fixed graph (apex graph) H as a mi-

nor. Our results have two advantages over the linear

sized kernels obtained in [5]. First, our results apply

to much larger classes of sparse graphs, second our

kernels are obtained using relatively simple combi-

natorial arguments instead of an approach based on

topological decomposition. The requirement of sep-

arability in addition to bidimensionality is unavoid-

able, as k-PATH, the problem of finding a k-sized

path in the given graph, is bidimensional but it is

known not to admit polynomial kernel even on pla-

nar graphs unless the polynomial hierarchy collapses

to the third level [7].

We conclude the article with an open prob-

lem - do all ”reasonable“ contraction-bidimensional

parameters have linear kernels on H-minor-free

graphs? In particular, does DOMINATING SET and

CONNECTED DOMINATING SET?
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