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Bidirectional 3D Quasi-Recurrent Neural Network

for Hyperspectral Image Super-Resolution
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Abstract—Hyperspectral imaging is unable to acquire images
with high resolution in both spatial and spectral dimensions yet,
due to physical hardware limitations. It can only produce low
spatial resolution images in most cases and thus hyperspectral
image (HSI) spatial super-resolution is important. Recently, deep
learning-based methods for HSI spatial super-resolution have been
actively exploited. However, existing methods do not focus on
structural spatial-spectral correlation and global correlation along
spectra, which cannot fully exploit useful information for super-
resolution. Also, some of the methods are straightforward exten-
sion of RGB super-resolution methods, which have fixed number
of spectral channels and cannot be generally applied to hyper-
spectral images whose number of channels varies. Furthermore,
unlike RGB images, existing HSI datasets are small and limit
the performance of learning-based methods. In this article, we
design a bidirectional 3D quasi-recurrent neural network for HSI
super-resolution with arbitrary number of bands. Specifically, we
introduce a core unit that contains a 3D convolutional module and a
bidirectional quasi-recurrent pooling module to effectively extract
structural spatial-spectral correlation and global correlation along
spectra, respectively. By combining domain knowledge of HSI with
a novel pretraining strategy, our method can be well generalized to
remote sensing HSI datasets with limited number of training data.
Extensive evaluations and comparisons on HSI super-resolution
demonstrate improvements over state-of-the-art methods, in terms
of both restoration accuracy and visual quality.

Index Terms—Bidirectional 3D quasi-recurrent neural network,
global correlation along spectra, hyperspectral image super-
resolution, structural spatial-spectral correlation.

I. INTRODUCTION

H
YPERSPECRAL image (HSI) is generally regarded as a

data cube, which provides abundant spectral information,

spatial information, and radiation information. In view of this

advantage, HSIs are widely applied to agriculture [1], [2], envi-

ronmental monitoring [3], [4], target detection [5], [6], and more.

However, there exists a trade-off between the spatial resolution

and spectral resolution physically. It usually maintains the high
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spectral resolution of HSI at the expense of spatial resolution.

Thus, spatial super-resolution is essential for HSI, especially in

remote sensing field [7]. To achieve this, the spatial-spectral cor-

relation is usually exploited for HSI super-resolution [8]–[14].

Traditional methods based on sparse and dictionary learn-

ing [15]–[17] or low-rank approximation [18] are developed.

The performance of these super-resolution methods is often

determined by how well the prior knowledge of intrinsic char-

acteristics of HSI is modeled. Besides, these methods are

time-consuming, because they are usually formulated as an

optimization problem and must be solved iteratively.

Recently, convolutional neural network (CNN)-based HSI

super-resolution methods are presented [14], [19]–[22]. Yuan

et al. [23] and Dong et al. [24] extend RGB-based super-

resolution networks for HSI super-resolution, but these methods

usually lack the capability to extract important information

from different spectral channels, because they are mostly im-

plemented with 2D CNNs. To explore both spatial context and

spectral correlation, a 3-D full CNN framework (3D-FCNN) is

introduced by Mei et al. [9]. However, it does not take the global

correlation along spectra into consideration, which may limit the

performance. Li et al. [20] propose a vanilla unidirectional re-

current structure to model HSIs. In this structure, the hidden state

propagates unidirectionally and the hidden state only depends

on the previous states, resulting in causal dependency which

is unreasonable in nontemporal sequence modeling, e.g., HSI.

In addition, most existing neural networks have fixed number of

channels, and they cannot be used for HSIs with arbitrary number

of spectral bands. Learning an effective network for single HSI

super-resolution is also challenging, especially for remotely

sensed HSI, due to the limited training samples [25]–[28].

In this article, we present a bidirectional 3D quasi-recurrent

neural network (Bi-3DQRNN) for single HSI super-resolution,

which can well exploit the domain knowledge of the HSI—

structural spatial-spectral correlation and global correlation

along spectra. And we utilize 3D convolution so that it is able to

generalize to HSIs with various number of bands. We design

a core unit as the basic building block of network, namely

bidirectional 3D quasi-recurrent unit (Bi-3DQRU). This unit is

composed of a 3D convolutional module and a bidirectional

quasi-recurrent pooling module. The former one is utilized to

extract structural spatial-spectral correlation of HSI, while the

latter one is responsible for extracting global correlation along

spectra. Besides, we design the quasi-recurrent pooling layer in

Bi-3DQRU as a bidirectional structure to eliminate the causal

dependency. In the bidirectional structure, each layer contains
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two sublayers whose hidden states are propagated with in the

inverse directions, and the results are generated by adding the

outputs of sublayers. By combining domain knowledge of HSI

with 3D deep learning, our Bi-3DQRNN can be capable and

flexible.

Experiments are performed on a natural ICVL hyperspec-

tral dataset [29] and five remotely sensed imagery datasets,

including Pavia Centre [25], Pavia University [25], Salinas

Valley [30], Indians Pines [31], and Urban [26]. The results

on the ICVL dataset show that our method outperforms state-

of-the-art extended RGB image super-resolution methods and

single HSI super-resolution methods, indicating the capability

of our model. In the experiments on remotely sensed datasets,

we first divide the remote sensing imagery into training and

testing regions, then train all super-resolution models on training

set and make comparisons between the proposed method and

competing methods. Next, we adopt a novel pretraining strategy

to boost the performance of methods based on 3D deep learning.

Specifically, we apply the model that pretraining on ICVL

dataset to real-world remote sensing images with various number

of bands. Although HSIs in ICVL dataset are in the visible

range for the natural scenes, which are quite different to the

remotely sensed dataset. The model training on remote sensing

HSI dataset performs worse than the pretrained model, since the

number of training samples is extremely small. The quantitative

and visual results turn out that our pretrained model performs

better, and beats most of models that trained from scratch on

remotely sensed imagery dataset. To illustrate the robustness

of our proposed method, we fine-tune our pretrained model

from the 31-band HSI data of ICVL dataset, and achieve better

performance. These experiments on remotely sensed datasets

indicate the flexibility of our model. Extensive comparisons

on super-resolution accuracy and visual quality from HSI and

remotely sensed datasets are discussed in Section IV.

In summary, the contributions of this work are as follows.

1) We present a CNN-based single HSI super-resolution

method, which can make full use of the structural spatial-

spectral correlation and global correlation along spectra

of the HSI.

2) We introduce a bidirectional structure embedded in each

layer of our network to take both forward and backward

spectral dependency of HSI into account.

3) We effectively solve the problem of insufficient remotely

sensed HSI training data by introducing the HSI in the

visible range for the natural scenes with a novel pretraining

strategy, which shows the robustness and flexibility of our

method on the remotely sensed HSI.

II. RELATED WORK

HSI super-resolution aims to reconstruct high-resolution HSI

from degraded low-resolution HSI. It can be divided into two

categories, i.e., fusion-based HSI super-resolution and single

HSI super-resolution. The former one asks for a higher spatial

resolution auxiliary image, e.g., panchromatic [32], RGB [33],

or multispectral image [34]. The latter one does not require

additional information, and only utilizes the information in the

low-resolution input, which is more practical and has attracted

widespread interest in recent years. In this work, we mainly focus

on the single HSI super-resolution task. In the following, we

review the related work from two respects, including traditional

and deep learning-based methods.

A. Traditional Methods

There are several methods based on dictionary learning and

low-rank approximation for HSI super-resolution. Gou et al. [15]

introduced nonlocal self-similarity and local kernel constraint

regularization terms into the HSI optimization process, and

proposed a nonlocal pairwise dictionary learning model with

local and nonlocal priors. Han et al. [16] presented an alternative

directional approach of multipliers to estimate sparse codes of

the high-resolution HSI. To explore the relationship among the

sparse coefficients, Tang et al. [17] learned a spectral dictionary

that could estimate a suitable size, and introduced double ℓ1
regularized sparse representation to obtain a high-resolution

HSI. Wang et al. [18] regarded HSI super-resolution task as

a noncovex optimization problem, and applied the noncovex

tensor penalty and 3D total variation term to model the intrinsic

characteristics of HSIs. To improve the performance, these hand-

crafted approaches become more and more complex and cannot

match the demand on running time. Besides, these methods need

to design the priors carefully and they may not represent the data

well. Recently, deep learning techniques are wildly explored in

HSI super-resolution tasks, which can well parallel process data

and avoid hand-crafted prior.

B. Deep Learning-Based Methods

Here, we introduce three kinds of deep learning-based

methods; they are RGB image super-resolution methods, HSI

super-resolution methods with 2D convolution, and HSI super-

resolution methods with 3D convolution.

We know RGB image super-resolution methods based on

deep learning can be utilized to HSIs by resetting the input

number of bands. We first introduce some popular RGB image

deep learning-based super-resolution approaches. Kim et al. [35]

proposed a very deep convolutional network (VDSR) with

residual-learning and gradient clipping, which allowed adding

depth to the network. Lim et al. [36] developed an enhanced deep

super-resolution network (EDSR) by removing batch normaliza-

tion layer, and won the NTIRE2017 super-resolution challenge.

In order to achieve different upscaling factors in a single model,

they also proposed multiscale deep super-resolution (MDSR).

To make networks be deeper and wider, Zhang et al. [37] pro-

posed a very deep residual channel attention networks (RCAN)

combining residual-learning and channel attention mechanism.

In recent years, deep learning techniques for HSI super-

resolution have been widely explored and achieved remarkable

success. Li et al. [38] proposed a deep spectral difference

convolutional neural network (SDCNN) with spatial constraint

strategy, using five convolutional layers to conduct HSI super-

resolution task. He and Liu [39] presented a deep Laplacian

pyramid network (LPN), which progressively reconstructed the

high spatial resolution HSIs in a coarse-to-fine way with multiple
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pyramid levels. These methods mainly focus on the spectral

dimension. Jiang et al. [11] made a step forward by inves-

tigating how to adapt state-of-the-art residual learning-based

single gray/RGB image super-resolution approaches for com-

putationally efficient single HSI super-resolution, and proposed

a spatial-spectral prior network (SSPSR) to exploit the spatial

information and the correlation between the spectra of the HSI.

Xie et al. [40] proposed a deep feature matrix factorization

method by applying deep neural network and coupled nonneg-

ative matrix factorization on the key bands in each subset of

HSI, to generate super-resolved HSI. Hu et al. [14] introduced

an intrafusion network (IFN) for HSI super-resolution. It first

calculates spectral difference between two adjacent bands [38],

and then feeds the two adjacent bands and their spectral differ-

ence band to a super-resolution network namely SRCNN [41].

Finally, the outputs from SRCNN are combined in a pixel-wise

manner.

Since 3D convolution can extract spatial and spectral in-

formation simultaneously, more research has begun to utilize

3D convolution for single HSI super-resolution. Mei et al. [9]

proposed 3D full convolution neural network (3D-FCNN) to

exploit both the spatial dimension information of neighboring

pixels and spectral dimension information of neighboring bands.

Yang et al. [12] adopted wavelet decomposition to capture

textures and structures in HSI, and proposed wavelet 3D CNN

for multi super-resolution scales. Wang et al. [42] presented

a three-branch frequency-separated 3D CNN, which inhibited

spectral distortion. Li et al. [13] held a view that it is un-

suitable to pay more attention to the mining of HSI spatial

information, when the spectral information is not sufficiently

exploited. Therefore, they proposed a mixed convolutional net-

work (MCNet) for HSI super-resolution. Hu et al. [22] designed

a multiple feature fusion and aggregation network with 3D

convolution (MFFA-3D) equipped with multiscale connections

and two-step multiscale strategy to obtain the high-resolution

HSI. These 3D deep learning-based methods have achieved

effective reconstruction results. These works mainly focus on

exploiting the adjacent bands, and do not well explore the global

correlation along spectra of HSI.

In this work, we consider the structural spatial-spectral cor-

relation and global correlation along spectra of HSI, and model

them in bidirectional 3D quasi-recurrent neural network, which

makes our approach both capable and robust.

III. BIDIRECTIONAL 3D QUASI-RECURRENT

NEURAL NETWORK

In this section, we first briefly review the problem formulation

and our motivation. Then, we introduce the overall architecture

of proposed method, i.e., Bi-3DQRNN, which can well ex-

tract structural spatial-spectral correlation and global correlation

along spectra. Finally, the basic building block of Bi-3DQRNN

is illustrated in detail, and we describe the bidirectional structure

embedded in this building block that can well eliminate causal

dependency.

A. Motivation and Problem Formulation

Let X ∈ R
rH×rW×C and Y ∈ R

H×W×C denote the ground

truth HSI and low-resolution HSI input, where r,H,W,C indi-

cate the scale factor of super-resolution, spatial height, spatial

width, and number of spectral bands, respectively. In general, the

low-resolution HSI Y can be modeled as a degradation model

on the original high-resolution HSI X like

Y = D (X;σ) (1)

where the nonlinear mappingD is represented as the degradation

manipulation, and σ denotes the parameters in the degradation

model.

Single HSI super-resolution problem based on supervised

learning can be described as

X̂ = G (Y; θ) (2)

where X̂ ∈ R
rH×rW×C is the predicted high-resolution HSI.G

denotes the super-resolution model, and θ denotes correspond-

ing parameters to be learned.

To learn the model in (2), the objective function can be

expressed as

θ̂ = minθL
(

X̂,X
)

+ λΦ(θ) (3)

where L represents loss function, λ denotes penalty coefficient,

and Φ(θ) indicates regularization terms. Learning the super-

resolution model is equivalent to find the right parameter θ

minimizing the loss function L.

Previous works [9], [12], [22], [42] have modeled HSIs with

3D CNN, which significantly improve the quality of recon-

structed HSIs and make model itself more flexible on the number

of bands. Besides, 3D CNN can well model the spatial-spectral

correlation. Accordingly, we design a 3D CNN-based single HSI

super-resolution model, which can effectively extract the struc-

tural spatial-spectral correlation and global correlation along

spectra of an HSI with arbitrary number of bands.

Besides, some works [11], [14], [38], [39] have attempted

to exploit spatial-spectral prior, but still pay little attention to

the global correlation along spectra of HSI. Thus, we equip 3D

convolutions with quasi-recurrent pooling function to exploit

the global correlation along spectra. In addition, we insert a

bidirectional structure into the core unit of our network to

overcome the problem of causal dependency.

The global information in spectral dimension can be extracted

effectively by dynamically merging the previous states [43].

However, the vanilla recurrent structure only allows hidden

states propagate forward, resulting in causal dependency. The

alternative directional structure in [44] propagates hidden states

forward or backward each layer, which introduces the bias due

to the asymmetrical structure.

B. Network Architecture

The overall architecture of our bidirectional 3D quasi-

recurrent neural network is shown in Fig. 1. We adopt preupsam-

pling framework to learn the end-to-end relationship between
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Fig. 1. Overall architecture of our method. The network is a residual encoder–decoder framework, with six pairs of Bi-3DQRUs. The bidirectional structure
is equipped in all Bi-3DQRUs, and skip connections are added in each pair. We use “Stride =

1

2
” to represent the combination of a trilinear interpolation and a

convolution, which is similar to transpose convolution from the perspective of effect. Our pretrained model on ICVL dataset can be applied to remotely sensed
dataset directly, which performs better than competing methods. The details are shown in Section IV.

TABLE I
NETWORK CONFIGURATION OF OUR BI-3DQRNN FOR HSI

SUPER-RESOLUTION

We refer to ‘3× 3× 3,16’ as 3× 3 Kernel size and 16 output feature maps.

low-resolution HSI and high-resolution one. After an upsam-

pling layer, the low-resolution HSI is fed into the proposed

network and the corresponding super-resolved HSI is obtained.

Besides, we apply the model that pretrained on ICVL dataset to

remotely sensed imagery dataset to show the super-resolution

effect of introducing the natural HSI data.

The proposed network Bi-3DQRNN is a bidirectional residual

encoder–decoder with 12 layers. Each layer is a convolutional

or deconvolutional Bi-3DQRU, which is symmetric. Table I il-

lustrates the detailed network configuration. In the encoder part,

the strides are set to 2 in the second and fourth layers to half the

spatial size of output feature maps, and they are symmetrically

set in the decoder part. It is worth noticing that we replace

commonly used transpose convolution with a combination of

trilinear interpolation and convolution to double the spatial size

of output feature maps. Performing downsample and upsample

can help us expand the receptive field, which can well exploit

the context information in larger image region.

C. Bidirectional 3D Quasi-Recurrent Unit

The Bi-3DQRU is the basic building block of our network,

as shown in Fig. 2. It consists of two basic components, a 3D

convolution module and a bidirectional quasi-recurrent pooling

module.

3D Convolutional Module: We perform two dependency 3D

convolutions on the feature maps that come from previous layer,

and then pass the results through different activation functions

to generate an intermediate tensor M and a gate tensor G. This

process can be formally described as

M = tanh (Wm ∗ I)
G = ϕ (Wg ∗ I)

(4)

where I ∈ R
Cin×rH×rW×C is the input feature map from previ-

ous layer.M andG ∈ R
Cout×rH×rW×C are intermediate tensor

and gate tensor, respectively.Wm andWg ∈ R
Cout×Cin×3×3×3

are both 3D convolutional filter kernels, and ∗ denotes the

3D convolutional operator. In our 3D convolutional module, ϕ

means the sigmoid activation function.

The 3D convolutional module takes advantage of its 3D kernel

to not only extract the information in spatial domain like a 2D

convolution, but also extract the information in adjacent spectra.

Hence, the 3D convolutional module is able to exploit the

structural correlation of HSIs. Besides, 3D convolution makes

Bi-3DQRNN able to handle HSIs in any number of bands.

Bidirectional Quasi-Recurrent Pooling Module: We apply

the bidirectional quasi-recurrent pooling after 3D convolutional

module to exploit the global correlation along spectra in HSIs.

The visualization of the model is in Fig. 2.
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Fig. 2. Architecture of Bi-3DQRU. The full computational graph can be described in five steps. First, two 3D convolutions with different activation functions are
performed on the input feature map I, which produce an intermediate tensor M and a gate tensor G. Second, tensors M and G are split along spectra, obtaining
two sequences {m1,m2, . . .,mC} and {g1,g2, . . .,gC}, respectively. Third, a bidirectional quasi-recurrent pooling (bi-quasi-recurrent pooling) function is
applied on the intermediate tensor mi that is controlled by the gate tensor gi (the exact working mechanism of this bidirectional structure is illustrated in Fig. 3).
Fourth, each pair of forward and backward hidden states in the previous recurrent network are combined with an element-wise addition, generating a new hidden
state hi. Finally, all the spatial planes along spectra are concatenated into output feature map H.

Fig. 3. Details of our bidirectional qausi-recurrent pooling structure which is

embedded in Bi-3DQRU. Take the forward case for example,
→
hi is obtained by

its previous hidden state
→
hi−1, intermediate tensor mi, and gate tensor gi. (a)

Forward quasi-recurrent pooling. (b) Backward quasi-recurrent pooling.

In this module, we combine pooling operation with dynamic

gating mechanism in a bidirectional structure. First, we split

the intermediate tensor M and gate tensor G along spectra to

produce sequences {m1,m2, . . .,mC} and {g1,g2, . . .,gC} at

the end of last module. Second, these states mi and gi are fed

into the dynamic gating function, generating the forward hidden

states
→
hi and backward hidden states

←
hi as follows:

→
hi = gi⊙

→
hi−1 +(1− gi)⊙mi, ∀i ∈ [1, C]

←
hi = gi⊙

←
hi+1 +(1− gi)⊙mi, ∀i ∈ [1, C]

(5)

where
→
hi−1 is the hidden state that merges all the previous states,

and also means the output of the (i− 1)th spectral band, and we

set
→
h0= 0. As for the backward propagation,

←
hi+1 is the hidden

state that merges all the posterior states, and we set
←
hC+1= 0.

⊙ denotes an element-wise multiplication.

Third, the forward and backward hidden states are combined,

producing the hidden state hi, which is formulated as

hi =
→
hi ⊕

←
hi . (6)

Finally, the output of Bi-3DQRU is obtained by concatenating

the hidden states along spectral dimension. In the following,

some details about bidirectional structure are explored. The

bidirectional structure is introduced to eliminate the causal

dependency caused by unidirectional 3DQRU, and there is

other way to achieve the same effect, such as the alternative

structure introduced by Wei et al. [44]. However, the alternative

structure only exploits forward or backward information along

spectra in each layer, which limits its performance. The ablation

study in Section IV-D verifies the capability of our bidirectional

structure.

The gate tensor gi is utilized to control the weights of the

previous memory
→
hi−1 (or posterior memory

←
hi+1) and the

current intermediate tensormi. It is worth noticing that the value

of gi only depends on the current input feature maps I, which

makes the gate tensor tend to learn more from the input image

itself, rather than the parameters learned during training.

In summary, our Bi-3DQRU takes the advantage of 3D ker-

nels in the 3D convolutional module to correlate the structural

information of HSIs not only in spatial domain but also in

adjacent spectra. By recurrently weighting and merging the

intermediate tensor from 3D convolutional module, with the

help of bidirectional quasi-recurrent pooling module, the global

correlation along spectra of HSI can be effectively exploited as

well.
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Fig. 4. Visual examples of the remotely sensed datasets. In each remotely sensed imagery, we use a red frame to box the testing region, while the other region is
for training. (a) Pavia Centre. (b) Pavia Univeristy. (c) Salinas Valley. (d) Urban. (e) Indian Pines.

IV. EXPERIMENTS

We conduct a series of experiments on a natural HSI dataset

and five remotely sensed HSI datasets to evaluate the perfor-

mance of our network. In this section, we first introduce the

experimental datasets and evaluation metrics. Then, the im-

plementation details and competing methods are listed. After

that, we provide the quantitative and qualitative results on all

datasets. Finally, the ablation studies are performed to analyze

the proposed modules.

A. Datasets and Settings

Datasets: We conduct experiments on two types of datasets,

including natural HSIs (i.e., ICVL dataset) and remotely sensed

images (i.e., Pavia Centre, Pavia University, Salinas Valley,

Urban, and Indian Pines). The remotely sensed images are

illustrated in Fig. 4.

1) ICVL: It consists of 201 HSIs collected by a Specim PS

Kappa DX4 hyperspectral camera at 1392 × 1300 spatial

resolution. It has 31 spectral bands in wavelength ranging

from 400 to 700 nm at 10 nm intervals.

2) Pavia Centre: It is a scene from Pavia, Northern Italy, ac-

quired by the ROSIS sensor during a flight campaign. The

spatial resolution of Pavia Centre is 1096 × 715, and the

number of spectral bands is 102. The geometric resolution

is 1.3 m.

3) Pavia University. Pavia University is similar to Pavia Cen-

tre, which is also acquired by the ROSIS sensor over Pavia.

Its spatial resolution is 610 × 340, with 103 bands, and its

geometric resolution is 1.3m.

4) Salinas Valley: This scene is gathered by the AVIRIS sensor

from Salinas Valley, California. The spatial resolution is

512 × 217, with 224 spectral bands.

5) Urban: The spatial resolution is 307 × 307, with 201 bands

in the wavelength from 400 to 2500 nm, each of which

corresponds to a 2 × 2 m2 area. Some bands are seriously

polluted because of the dense water vapor and atmospheric

effects, there are 162 channels remained.

6) Indian Pines: This scene is acquired by AVIRIS sensor

over the Indian Pines test site, North-western Indiana. The

spatial resolution is 145 × 145, and the number of spectral

band is 224, whose wavelength is ranged from 400 to

2500 nm.

Evaluation Metrics: Two sets of quantitative quality metrics

are adopted, where PSNR and SSIM [45] are used to evaluate

spatial fidelity, and SAM [46] is employed to measure the spec-

tral similarity. It is worth mentioning that we calculate PSNR and

SSIM in a band-wise manner, i.e., calculating PSNR and SSIM

band by band for each HSI and averaging them all afterwards.

Larger values of PSNR and SSIM suggest better performance,

while a smaller value of SAM implies better performance.

Network Learning: Our Bi-3DQRNN is learned by mini-

mizing the mean square error (MSE) between the predicted

high-resolution HSI X̂ and the ground truthXduring the training

phase. Adam optimizer [47] is adopted. The learning rate is

initialized as 1 × 10−4, and gradually decays tothe minimum

5 × 10−5. Our method is implemented by the deep learning

framework PyTorch with NVIDIA GTX 1080Ti GPU.

Degradation Model: Regarding the HSI from the above six

datasets as ground truth, we use a 8 × 8 Gaussian filter (σ = 3)
to smooth each band of HSI, and then downsample each band by

a scale factor with bicubic interpolation [48], like [49], to obtain

the corresponding low-resolution HSIs.

Competing Methods: We adopt bicubic interpolation as the

baseline and compare our method against both RGB image

super-resolution methods and HSI super-resolution methods.

For the RGB image super-resolution methods, we com-

pare our method with several state-of-the-art methods, in-

cluding VDSR [35], band-wise VDSR [35], MDSR [36],

and RCAN [37]. The VDSR framework applies its model to

the luminance components. In our experiments, we extend

VDSR/MDSR/RCAN to HSIs super-resolution task by setting

the input channel equals to the number of spectral bands of

HSI. To conduct band-wise VDSR (BWVDSR), we set the

input channel equals to 1, so that the VDSR model processes

the input features one band each time. MDSR is a multiscale

EDSR [36], which can reconstruct high-resolution images of

different upscaling factors in a single model.

For the HSI super-resolution methods, we compare with four

state-of-the-art methods, including 3D-FCNN [9], MCNet [13],

SSPSR [11], and IFN [14]. We carefully adjust the hyper-

parameters of these compared methods to achieve their best

performance.

B. Experiments on Natural HSI Dataset

For the experiments on ICVL dataset, we randomly select

100 HSIs for training, and the rest are for testing. The training

set is built from multiple overlapped cubes cropped from each

HSI, and each cropped cube has a spatial size of 64 × 64 and

a full spectral size of 31 for the purpose of preserving the
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TABLE II
QUANTITATIVE EVALUATION OF COMPETING SUPER-RESOLUTION METHODS BY AVERAGE PSNR/SSIM/SAM FOR DIFFERENT SCALE FACTORS ON ICVL DATASET

The bold indicates the best performance.

Fig. 5. Error maps at the 20th band of HSI with scale factor ×4 on ICVL dataset. (a) Bicubic. (b) VDSR. (c) BWVDSR. (d) MDSR. (e) RCAN. (f) 3D-FCNN.
(g) MCNet. (h) SSPSR. (i) IFN. (j) Ours.

complete spectra. In addition, a set of data augmentation tech-

niques, such as rotation and scaling, are employed to generate

roughly 50 k training samples in total. As for testing, we crop

the centre region of each image with size of 512 × 512 × 31

like [50].

Table II summarizes the quantitative evaluation of state-of-

the-art super-resolution algorithms by average PSNR, SSIM,

and SAM for different scale factors. As shown in Table II,

our approach achieves better results in comparison with other

algorithms on the ICVL dataset. Specifically, bicubic inter-

polation is the simplest but the worst method. For the RGB

image super-resolution algorithms, VDSR performs better than

BWVDSR, indicating the exploration of spectral correlation

benefits super-resolution performance. MDSR and RCAN pro-

vide better results than VDSR, which means effective network

design helps improve the performance. Our method surpasses

all the competing state-of-the-art RGB image methods in all

×2, ×4 and ×8 cases. For the HSI super-resolution competing

algorithms, the performance of IFN is the worst in all super-

resolve scale factor cases. 3D-FCNN performs poor in both ×2,

×4 cases. MCNet surpasses 3D-FCNN a lot in ×2 case, while

the performance gets worse as the scale factor increases. SSPSR

achieves slightly higher performance in comparison with MC-

Net in some cases. In×8 case, the improvement of all methods is

not insignificant, compared with bicubic. Our Bi-3DQRNN still

achieves better performance compared with these competing

methods.

Figs. 5 and 6 show the images of ground truth and error maps

at the 20th band on two HSIs with scale factor ×4. The error

maps are the absolution errors between the ground truth and

the restored results. We can see that the absolute error results

obtained by our method are very low, and our method produces

shallow edge or no edge in some areas. This result implies that

our method can restore more information than the competing

methods, which is consistent with the results in Table II. Besides,

we provide the root mean square error (RMSE) results along
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Fig. 6. Error maps at the 20th band of HSI with scale factor ×4 on ICVL dataset. (a) Bicubic. (b) VDSR. (c) BWVDSR. (d) MDSR. (e) RCAN. (f) 3D-FCNN.
(g) MCNet. (h) SSPSR. (i) IFN. (j) Ours.

Fig. 7. RMSE results along spectra for all methods from the above HSIs
with scale factor ×4 on ICVL dataset. (a) Corresponding to HSI in Fig. 5.
(b) Corresponding to HSI in Fig. 6.

spectra for all methods in Fig. 7 corresponding to the HSIs

in Figs. 5 and 6. The smaller value of RMSE implies more

realistic visual results, and the RMSE curve shows that the

results of our method are closer to the ground truth, which

indicates embedding more domain knowledge helps achieve

higher performance.

Furthermore, we make a comparison on FLOPs, number of

parameters, and running time among all deep learning based

methods. The quantitative results are listed in Table III and the

relationships between running time and PSNR are presented

in Fig. 8. As shown in Table III, the quantitative results of

VDSR and BWVDSR are quite similar, and they have the

smallest model sizes and the fastest running speeds, which

is consistent with intuition. MDSR and 3D-FCNN algorithms

have fewer FLOPs than Bi-3DQRNN, while others are far more

complex than our method. As for running time, except for

VDSR, BWVDSR, 3D-FCNN, and IFN, others are far more

time-consuming than our approach. In conclusion, our network

TABLE III
QUANTITATIVE EVALUATION OF DEEP LEARNING-BASED SUPER-RESOLUTION

METHODS BY FLOPS, NUMBER OF PARAMETERS (PARAMS), TIME, AND PSNR
FOR ×2 SCALE FACTOR ON ICVL DATASET

Fig. 8. PSNR vs. running time on ICVL dataset in ×2 scale factor.
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TABLE IV
DETAILS OF TESTING REGION SIZE AND POSITION IN EACH

REMOTELY SENSED IMAGERY

In the Position column, we use the two coordinates to represent the top left

and bottom right vertexes, respectively.

is at the middle-level complexity but the best effect among these

methods.

C. Experiments on Remotely Sensed Images

To verify the effectiveness of our Bi-3DQRNN, we design

two types of experiments with different experimental settings.

Experimental Setting I: In this setting, we conduct ×2, ×3,

and ×4 scale factors in Indian Pines, and ×2, ×4, and ×8 in

others. The reason is that the spatial size of Indian Pines is

too small (145 × 145), resulting in difficulties to conduct large

super-resolution scales. Since there is only one image in each

remotely sensed dataset, we crop a certain region of the image

to obtain a subimage as the testing data, while the rest is for

training.1

The detailed size and position of testing region are shown in

Table IV. The position is represented by the coordinate of top-

left and bottom-right vertexes in each remotely sensed imagery,

which is corresponding to the red frame in Fig. 4. The training

set is the region that is out of the red frame in each remotely

sensed imagery.

There are three experiments on the five remotely sensed

datasets. First, we train all methods from scratch in the remotely

sensed training set. We use Ours-S to represent our approach that

is trained from scratch. Second, we select competing methods

that can handle HSIs with arbitrary number of bands, and then

apply the models pretrained on ICVL dataset to remotely sensed

datasets directly. We use -P to represent the models that are

pretrained on ICVL dataset. Third, we fine-tune our model which

is pretrained on ICVL dataset to verify the robustness of our

method. It is denoted as Ours-F. These quantitative results are

shown in Tables V–IX.

The results on Pavia Centre are shown in Table V. From the

left part of Table V, we can see that our method achieves the

best performance in all super-resolution scales. On the right

of vertical line, we use -P and -F to represent the pretrained

model on ICVL dataset and the fine-tuned model, respectively.

Among all competing methods, only 3D-FCNN is able to handle

HSIs with arbitrary number of bands, and we apply the models

pretrained on ICVL dataset to remotely sensed datasets, denoted

as 3D-FCNN-P. We can see that Ours-P is much better than

1Since the performance of VDSR is similar to BWVDSR, we compare with
all mentioned competing algorithms except VDSR to save the space.

3D-FCNN-P. Besides, Ours-P is better than Ours-S. It means

the result of training from scratch on Pavia Centre is worse than

pretrained on ICVL dataset, which demonstrates our method

can effectively overcome the problem of insufficient training

data. Furthermore, by fine-tuning our Bi-3DQRNN model with

small remotely sensed training data, our method can achieve a

better performance. It can be noticed that insufficient training

samples may encounter unsatisfactory results, and our method

can effectively reduce the dependency on the remotely sensed

training samples.

Tables VI–IX provide the results on Pavia University, Salinas

Valley, Urban, and Indian Pines datasets, respectively. From

Tables V to IX, we can see that our fine-tuned model performs

the best, which proves the ability of solving the problem of

insufficient training data.

Figs. 9 and 10 are the visual comparisons under experimental

setting I, respectively. In addition, Fig. 11 shows the RMSE

results in each remotely sensed imagery. As is indicated in Figs.

9 and 10, Ours-S recovers more details and sharper edges than

the competing methods. Meanwhile, our method by pre-training

(Ours-P) and fine-tuning (Ours-F) produce better results than

Ours-S.

Experimental Setting II: To further verify the flexibility of our

pretraining strategy, we apply this strategy on datasets that are

collected by the same sensor and different sensors. We test super-

resolution experiment on Pavia University dataset. In the same

sensor case, we set Pavia Centre as the training data, given Pavia

Centre and Pavia Centre captured by ROSIS sensor. In Table X,

we use -Pavia to represent the model pretrained on Pavia Centre.

However, it is common that there are few training samples in

remotely sensed datasets, leading to the problem of insufficient

training data that cannot be fundamentally solved. By contrast,

we utilize the large-scale spectral data of natural scenes from

ICVL dataset, which is corresponded to our pretraining strategy.

We use -ICVL to represent the model pretrained on ICVL

dataset. These two cases are quite different, since the training

and testing sets are from different sensors and wavelengths.

Table X shows the quantitative results in Pavia University.

Our strategy of training (-ICVL) is much better than the previous

training strategy (-Pavia). Besides, our training strategy can also

boost the performance of 3D-FCNN as well. The corresponding

visual results of these methods are illustrated in Fig. 12.

The experimental results of remotely sensed images indicate

that a small training set generated directly from Pavia Centre

dataset limits the performance of the learning-based model. In

addition, the pretraining strategy makes it possible to utilize the

natural HSIs to improve the remote sensing HSIs, and establishes

the bridge of natural HSIs and remote sensing HSIs. Fine-tuning

the model directly pretrained on ICVL dataset to predict the

image of Pavia University has significantly improved the results.

It demonstrates that the proposed method is robust and can be

well generalized to data that has not been seen during training

and has different spectral numbers. First, due to the introduction

of 3D convolution, our network handles HSIs with any number

of spectra as input. Besides, our network can properly process

HSIs through well-designed architecture, thereby improving the

generalization ability of the network.
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Fig. 9. Super-resolution results with scale factor ×2 on all remotely sensed datasets. Comparisons are between all training from scratch methods. We select the
88th band of Pavia Centre and Pavia University, the 68th band of Salinas Valley and Indian Pines, and the 100th band of Urban to visualize the effects.
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Fig. 10. Super-resolution results with scale factor ×2 on all remotely sensed datasets. Comparisons are between all pretrained or fine-tuned methods. We select
the 88th band of Pavia Centre and Pavia University, the 68th band of Salinas Valley and Indian Pines, and the 100th band of Urban to visualize the effects.

Fig. 11. RMSE results along spectra for all methods with scale factor ×2 on the five remotely sensed datasets. (a) Pavia Centre. (b) Pavia University. (c) Salinas
Valley. (d) Urban. (e) Indian Pines.

Fig. 12. Super-resolution results at the 37th band of Pavia University scene with scale factor ×4 on Pavia University dataset in Experimental setting II. (a)
Bicubic. (b) 3D-FCNN-Pavia. (c) Ours-Pavia. (d) 3D-FCNN-ICVL. (e) Ours-ICVL. (f) Ground truth.
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TABLE V
QUANTITATIVE EVALUATION OF COMPETING SUPER-RESOLUTION METHODS BY AVERAGE PSNR/SSIM/SAM FOR DIFFERENT SCALE

FACTORS ON PAVIA CENTRE DATASET

The bold indicates the best performance.

TABLE VI
QUANTITATIVE EVALUATION OF COMPETING SUPER-RESOLUTION METHODS BY AVERAGE PSNR/SSIM/SAM FOR DIFFERENT

SCALE FACTORS ON PAVIA UNIVERSITY DATASET

The bold indicates the best performance.

TABLE VII
QUANTITATIVE EVALUATION OF COMPETING SUPER-RESOLUTION METHODS BY AVERAGE PSNR/SSIM/SAM FOR DIFFERENT

SCALE FACTORS ON SALINAS VALLEY DATASET

The bold indicates the best performance.

D. Ablation Study

In this section, we provide comprehensive ablation study to

verify the effectiveness of our proposed method. We focus on the

implementation of each component especially associated with

HSI domain knowledge embedding.

Modules Investigation: To show the effectiveness of 3D

convolution and quasi-recurrent pooling modules in our Bi-

3DQRU, the ablation study is performed and the correspond-

ing results on ICVL dataset are provided in Table XI. In

the experiment, two variants of our Bi-3DQRU are tested,

i.e., 3D convolutional (C3D) [51] and Bi-2DQRU. C3D is
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TABLE VIII
QUANTITATIVE EVALUATION OF COMPETING SUPER-RESOLUTION METHODS BY AVERAGE PSNR/SSIM/SAM FOR DIFFERENT

SCALE FACTORS ON URBAN DATASET

The bold indicates the best performance.

TABLE IX
QUANTITATIVE EVALUATION OF COMPETING SUPER-RESOLUTION METHODS BY AVERAGE PSNR/SSIM/SAM FOR DIFFERENT SCALE

FACTORS ON INDIAN PINES DATASET

The bold indicates the best performance.

TABLE X
QUANTITATIVE EVALUATION OF COMPETING SUPER-RESOLUTION METHODS BY

AVERAGE PSNR/SSIM/SAM FOR DIFFERENT SCALE FACTORS ON PAVIA

UNIVERSITY SCENE

We use ‘-Pavia’ to represent the pretrained model on Pavia Centre dataset, and ‘-ICVL’ is

to denote the pretrained model on ICVL dataset.

The bold indicates the best performance.

formed by removing the quasi-recurrent pool module. Bi-

2DQRU is constructed by replacing the 3D convolution with 2D

convolution.

We can see that the performance of C3D is worse than our

Bi-3DQRU (−4.6 dB in ×2 case, −1.9 dB in ×4 case, and

TABLE XI
MODULES INVESTIGATION ON ICVL DATASET

The bold indicates the best performance.

−0.6 dB in ×8 case). C3D has removed quasi-recurrent pool

function compared with our Bi-3DQRU, and cannot well model

the global correlation along spectra. Meanwhile, if we keep the

quasi-recurrent pool module but replace 3D convolution with

2D convolution, the PSNR is decreased by 2.7 dB in ×2 case,

0.8 dB in ×4 case, and 0.04 dB in ×8 case.
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TABLE XII
NUMBER OF FEATURE MAPS (FEATURE MAPS), FLOPS, AND NUMBER OF

PARAMETERS (PARAMS) OF UNIDIRECTIONAL STRUCTURE, ALTERNATIVE

DIRECTIONAL STRUCTURE, AND BIDIRECTIONAL STRUCTURE.

TABLE XIII
ABLATION STUDY ON THE DIRECTION OF NETWORK ON ICVL DATASET

The bold indicates the best performance.

Direction of Network: To investigate the effect of our bidirec-

tional structure, we make a comprehensive comparison between

unidirectional structure, alternative directional structure, and our

bidirectional structure. The computation overload of networks

is illustrated in Table XII. We can see that our bidirectional

structure with 16 feature maps has approximately 1.5 times

parameters compared to the other two structures. Then, we

increase the number of feature maps of unidirectional struc-

ture and alternative directional structure. Thereby, we set the

number of feature maps unidirectional structure and alternative

directional structure as 20, since 16×
√
1.5 ≈ 20. Note that

increasing the number of feature maps implies increasing the

number of input channels and output channels simultaneously.

The corresponding results on ICVL dataset are provided in

Table XIII. Unidirectional structure only considers the forward

spectral dependency. On the contrary, our bidirectional structure

considers both forward and backward dependencies, thereby

improving the performance. Although the alternative directional

structure saves the number of parameters, its performance is

limited by the bias caused by the asymmetrical structure of the

network. Compared with unidirectional and alternative direc-

tional structure network, the bidirectional one performs better

in all super-resolution scale factors.

V. CONCLUSION

In this article, we presented Bi-3DQRNN, a single HSI

super-resolution method that makes full use of the structural

spatial-spectral correlation and global correlation along spectra

simultaneously. To introduce the backward spectral dependency

of HSI, we adopt a bidirectional structure. The well-designed

Bi-3DQRNN can effectively deal with the insufficiency of re-

motely sensed training samples. Evaluations and comparisons

on a natural HSI dataset and five remotely sensed datasets

show that our Bi-3DQRNN outperforms state-of-the-art HSI

super-resolution methods and demonstrate that the introduction

of natural HSIs can effectively improve the performance on

remote sensing HSI.

In future, it is worth investigating how to compress our net-

work, especially the quasi-recurrent pooling module, and make

it more lightweight to extend its application fields.
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