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Abstract: In recent years, deep learning based networks have achieved good performance in brain tumour segmentation of MR Image. Among the existing networks, U-Net has 
been successfully applied. In this paper, it is propose deep-learning based Bidirectional Convolutional LSTM XNet (BConvLSTMXNet) for segmentation of brain tumor and using 
GoogLeNet classify tumor & non-tumor. Evaluated on BRATS-2019 data-set and the results are obtained for classification of tumor and non-tumor with Accuracy: 0.91, Precision: 
0.95, Recall: 1.00 & F1-Score: 0.92. Similarly for segmentation of brain tumor obtained Accuracy: 0.99, Specificity: 0.98, Sensitivity: 0.91, Precision: 0.91 & F1-Score: 0.88. 
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1 INTRODUCTION 
 
 The brain controls and co-ordinate many important body 
functions. Normal cells generate, grow and die, abnormal 
cells grow when the body doesn’t require them is known as 
cancer. A brain tumor occurs when abnormal cells produce 
within any part of the brain. There are two main types of 
tumors namely, malignant and benign tumors. Benign brain 
tumors are non-cancerous, malignant tumors are cancerous. 
Metastatic brain tumors occur when cancer located in another 
organ of the body spreads to the brain, 40% of all cancers 
spread to the brain and central nervous system, up to half of 
metastatic brain tumors are from lung cancer. Among 10,000 
populations 5 to 10 people affected Central Nervous System 
(CNS) tumors in India [1]. 

Basically, the brain regions diagnosed/scanned by CT, 
X-ray, Ultrasound, PET and MRI. MRI is preferred over 
other imaging modalities because not harm and malaco tissue 
contrast in the brain [2, 3]. MRI produces different types of 
sequenced contrast images, which allow MRI extraction of 
valuable information of tumor and sub-regions, the deferent 
pulse sequences like, T1, T2, T1C and FLAIR. These 
sequenced images are diagnosed slice by slice manually is a 
laborious and time consuming process for 
radiologists/doctors. This manual burden process can be 
replaced by automatic enhancement, segmentation and 
classification with the use of computer-vision technique. To 
boost the visual appearance of an image, segment the Region 
of Interest (ROI) and classify them into the given class. 
Image processing is widely used. 

In the present study, we present a techniques for 
enhancement, classification and segmentation of tumor from 
MR images using Notch filter & Linear Transformation (LT), 
GoogLeNet and Bidirectional Convolutional Long Short 
Term Memory (LSTM) X-Net (BConvLSTMX-Net). 
Classified and segmentation results are compared with other 
methods (AlexNet, VGG-16 & GoogLeNet) and (Seg-Net, 
UNet & XNet) respectively. 

The remaining contents of the paper are arranged as 
follows: Section 2 gives the brief review of literature. In 
Section 3 discuss the present study. Section 4 shows 
comparative analysis, finally, in Section 5 interpret the 

present and future scope of the work. 
 
2 STATE OF THE ART WORK 
 

 A brief review of literature on the topic of enhancement, 
segmentation and classification of MR brain tumor image is 
discussed below.  

To enhance the contrast of MRI brain images, deferent 
spatial domain techniques were proposed like Histogram 
Equalization (HE) [4, 5, 7, 9, 10], Adaptive Histogram 
Equalization (AHE) [4, 5], Contrast Limited Adaptive 
Histogram Equalization (CLAHE) [4, 7], LHE [4], BBHE [5, 
10], MMBEBHE [5, 6], BPDHE [5, 6, 8], RMSHE [6], 
BPDHE [6], DSIHE [6], BPDFHE [7], Deferent Techniques 
like GHE [8], Modified BHE, Brightness preserving BHE 
(BBHE) [10], Fuzzy logic based Adaptive Histogram 
Equalization (AHE) [5], Multi Scale Retinex (MSR) [9] and 
Non-sub sampled Contour-let Transform (NSCT)-FU 
[9].Different frequency based domain methods were 
proposed to enhance MRI brain images. Methods are Gabor 
Filter [13], Gaussian Filter [13, 23, 30, 29], salt and pepper-
noise [13, 23], Median Filter [16, 17, 18, 20, 22, 25, 26, 30], 
An-isotropic Diffusion Filter[15, 17], Linear Filter [29], 
Wiener Filter [33], Discrete Wavelet Transform (DWT) [14, 
15, 18, 21, 23, 27, 30] and Dynamic Stochastic Resonance 
(DSR) [17, 27, 29]. 

Before the revolution of deep learning, traditional 
semantic segmentation and handcrafted feature based 
classification methods were used. From the last decades 
deep-learning based approaches outstanding improvement in 
enhancement, segmentation and classification of images, 
they are CNN, RNN, FCN and GCN. Different CNN 
techniques were used for segmenting the brain of tumors like 
SegNet [34, 35], U-Net [35, 36, 37] and X-Net [38]. 
Similarly, AlexNet [39, 40], VGG-16 [39, 40] and 
GoogLeNet [39, 40] techniques are used to perform 
classification brain tumor. 

From the related work, it is observed that most of the 
work done on enhancement, segmentation and classification 
of brain tumor from MR Images, still there is much scope for 
improvement. In this paper, Bidirectional Convolutional 
Long Short Term Memory (LSTM) X-Net (BConvLSTMX-
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Net) is proposed as an extension of X-Net, The proposed 
method performs better than the existing methods. 
 
3 PROPOSED METHOD 
 

Here, the study focused on classification of tumor & non-
tumor and also segmenting the brain tumor. The flow of the 
present methods is shown in Fig. 1 and deferent stages are 
described below. 

 

 
Figure 1 Flow of present method. 

 
3.1 Prepossessing 
 

Initially, we take BRATS-2019 brain images, to improve 
quality of the image, Notch & LT methods are applied. We 
tried a different inner & inter class combination of spatial, 
frequency and fuzzy logic methods, in that Notch & LT 
method gives good qualitative results. 
 
3.2 Data Augmentation 
 

Since the data-set considered for experimentation is very 
small i.e., only 284 images, therefore, we artificially augment 
the training images to create larger data-set to avoid over-
fitting. Generally augmented images are obtained by using 
the geometrical operations like translations, rotation, shear 
and cropping. 

 
3.3 Classification 
 

For classification of tumor and non-tumor, we used 
predefined CNN based 22 layered GoogLeNet, The number 
of variables is small compared to Alex-Net & VGG-Net. The 
architecture of the Inception layer is given in Fig. 2. 

 

 
Figure 2 Architecture of the Inception Layer. 

 
3.4 Segmentation 
 

The BConvLSTMXNet method is proposed for 
segmentation of brain tumor, it is inspired by BConvLSTM 
[32] and X-Net [33] methods. The different stages of 
segmentation are discussed below and architecture is shown 
in Fig. 3. 

 

 
Figure 3 X-Net with BConvLSTM architecture 

 
3.4.1 Encoding Path  
 

The encoding path incorporates a sequence of steps. 
Each move consists, two convolutional 3×3 filters used for 
feature extraction along with 2×2 max-pooling function for 
down-sampling the input image and the activation function 
i.e, ReLU. Breaking up the down-sampling into multiple 
stages, features are doubled at each polling stage. The final 
encoded foot-path makes a big size with information. 
 
3.4.2 Decoding Path  
 

After feature extraction from the encoded path, decoded 
step to perform up-sample to make segmented mask-of equal 
size to the input image. Decoded step to perform an up-
sample to make a segmented mask of equal size to the input 
image. In XNet, the encoded steps feature maps are 
duplicated to decoded steps. The extracted features are map-
ed to concatenate with BConLSTM, and we used two 
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encoder-decoder modules in succession. Compared to other 
networks we avoid larger serial down-sampling of the input, 
due to the small data-sets. Number of down-sampling in 
series can determine accurate boundary level on details and 
also avoid reducing image resolution. 
 
3.4.3 Training and Optimization  
 

An augmented data is trained, so increase the number of 
samples and lower the over-fitting. Soft dice metric is used 
as cost function and Adam optimization is used to minimize 
the cost function. Stochastic gradient based Adam 
optimization with learning rate 0.0001 [30, 31] is initialized. 

The ground truth masks used for training and optimize 
by using cross-entropy loss. 
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Without augmented data testing process is performed. 

The next section, experimentation and results are described. 
 
4 RESULTS AND DISCUSSIONS 
 

Here we give the detailed experimented discussion. 
 
4.1 Result  
 

For the purpose of experimentation, we have used 284 
MRI brain images collected from BRATS-2019 repository to 
enhance, segment and classify brain images. Notch & LT 
methods are used to enhance brain image, GoogLeNet & 
BConvLSTM X-Net based deep convolutional networks are 
used for classification & segmentation of brain tumor. Result 
shows in Fig. 4 and Fig. 5. 
 

 
Figure 4 Classification of tumor and non-tumor results (a) Represents tumor and 

(b) Represents non-tumor. 
 

 
Figure 5 Segmentation of tumor results. Column, (a) Original image, (b) Ground 

truth and (c) Segmented tumor. 
 
4.2 Discussion 
 

To select the best segmentation and classification 
method quantitative analysis parameters are used, they are 
Accuracy, Specificity, Sensitivity, Precision, F1-Score and 
area under the curve (AUC). Tab. 1 and Tab. 2 gives the 
different quantitative measure results. 

From Tab. 1 and Tab. 2, observed that the presented 
work obtained good quantitative measure result. In Fig. 4, 
shows the segmented result. In Fig. 5, the first column is 
tumor image, the second one is non-tumor images. 
Classification of tumor & non-tumor training loss and 
accuracy is shown in Fig. 6, the ROC is shown in Fig. 7 and 
segmentation Accuracy & Loss is shown in Fig. 8. 
 

Table 1 Performance comparison methods for classification 
Methods Accuracy Precision Recall F1-Score 
AlexNet 0.81 0.85 1.00 0.92 
VGG-16 0.46 0.86 1.00 0.93 

GoogLeNet 0.91 0.95 1.00 0.92 
 

Table 2 Performance comparison methods for Segmentation 
Methods Accuracy Specificity Sensitivity Precision F1-Score 
SegNet 0.92 0.70 0.91 0.86 0.89 
U-Net 0.95 0.83 0.95 0.93 0.79 
X-Net 0.97 0.94 0.87 0.83 0.88 

Proposed 0.99 0.98 0.91 0.91 0.88 
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Figure 6 Accuracy and Loss for classification using GoogLeNet 

 

   
Figure 7 ROC diagrams of the present work for segmentation 

 

    
Figure 8 Accuracy and Loss diagrams for the proposed method 
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5 CONCLUSION 
 

In this paper, proposed a deep-learning based 
Bidirectional Convolutional LSTM XNet 
(BConvLSTMXNet) for segmentation of brain tumor and 
using GoogLeNet classify tumor non-tumor. Evaluated On 
BRATS-2019 data-set and the results are obtained for 
classifica-tion of tumor and non tumor with Accuracy: 0.91, 
Precision: 0.95, Recall: 1.00 & F1-Score: 0.92. Similarly for 
segmentation of brain tumor obtained Accuracy: 0.99, 
Specificity: 0.98, Sensitivity: 0.91, Precision: 0.91 & 
F1Score: 0.88. Further we plan to extend our work towards 
the segmentation of core (major affected area), enhanced 
region. 
 
Notice 
 

This paper was presented at IC2ST-2021 – International 
Conference on Convergence of Smart Technologies. This 
conference was organized in Pune, India by Aspire Research 
Foundation, January 9-10, 2021. The paper will not be 
published anywhere else. 
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