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Abstract: Nowadays, the real life constraints necessitates
controlling modern machines using human intervention
by means of sensorial organs. The voice is one of the hu-
man senses that can control/monitor modern interfaces.
In this context, Automatic Speech Recognition is princi-
pally used to convert natural voice into computer text as
well as to perform an action based on the instructions
given by the human. In this paper, we propose a general
framework for Arabic speech recognition that uses Long
Short-Term Memory (LSTM) and Neural Network (Multi-
Layer Perceptron: MLP) classifier to cope with the non-
uniform sequence length of the speech utterances issued
fromboth feature extraction techniques, (1)Mel Frequency
Cepstral Coefficients MFCC (static and dynamic features),
(2) the Filter Banks (FB) coefficients. The neural architec-
ture can recognize the isolated Arabic speech via classifi-
cation technique. The proposed system involves, first, ex-
tracting pertinent features from the natural speech signal
using MFCC (static and dynamic features) and FB. Next,
the extracted features are padded in order to deal with the
non-uniformity of the sequences length. Then, a deep ar-
chitecture represented by a recurrent LSTM or GRU (Gated
Recurrent Unit) architectures are used to encode the se-
quences ofMFCC/FB features as a fixed size vector thatwill
be introduced to a Multi-Layer Perceptron network (MLP)
to perform the classification (recognition). The proposed
system is assessed using two different databases, the first
one concerns the spoken digit recognition where a com-
parison with other related works in the literature is per-
formed, whereas the second one contains the spoken TV
commands. The obtained results show the superiority of
the proposed approach.
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1 Introduction
Speech is one of the most direct means of information ex-
change used by human being. This advantage has given
rise to several developments where the aim is the design
of systems to recognize spoken words. Automatic Speech
Recognition (ASR) is an active area of study allowing the
communication between human and machine. It is the
process of understanding the human speech by a com-
puter. In this context, Automatic Digit/Command Recog-
nition is considered as one of the most challenging do-
mains in ASR. The growing importance of Digit/Command
recognition is mainly due to the increasing demand for
applications that deal with human-machine interaction
through natural languages such as command systems via
pronounced digit [1, 2].

The implementation of these kinds of systems requires
a particular process for the speech signal to provide reli-
able features that can recognize properly the input spo-
ken words. Therefore, wide range of techniques have been
proposed in the literature to represent the speech signal
[3]. The most commonly used one, is the Mel-Frequency
Cepstral Coefficients (MFCC),which is a popular technique
that attempt tomimic someparts of the human speechper-
ception and speech production [4].

In the present study, the obtainedMFCC coefficients of
the spoken utterances will be introduced to a Long Short-
Term Memory (LSTM) architecture [5], which treats the
general sequence-to-sequence problems. The idea is to use
a bidirectional LSTM layer included in the deep architec-
ture to encode the sequence as a fixed size vector, then
this vector will be fed to a Multi-Layer Perceptron (MLP)
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classifier to carry out the recognition task. The whole pro-
posed model is trained to perform two recognition tasks:
1) digit recognition and 2) Command TV recognition. The
proposed systemwithMFCC features is comparedwith Fil-
ter Banks features applied to command TV corpus.

The remainder of the paper is organized in six sections
as follows: Section 2 highlights some related works. Sec-
tion 3 explains the methodologies proposed in this study.
Section 4 presents the data used to validate the proposed
methodology. Section 5 presents the performance criteria
used to evaluate the proposed model, presents the experi-
mental results obtained on the two datasets and compares
with other existing approaches in the literature. Finally,
section 6 draws the conclusion of this work.

2 Related works
Arabic is the official language of twenty-five countries.
It denotes a semitic language and one of the oldest lan-
guages in the world. Different studies have been inves-
tigated in the literature to propose recognition systems
using different approaches [6–8]. However, compared to
other languages such as English, the number of research
papers inArabic language is limited. Inwhat follows, some
studies concerning ASR systems for Arabic language will
be discussed.

In [9], the authors proposed a Speech-And-Speaker
(SAS) identification system based on spoken Arabic digit
recognition. They treated the speech signals as an image
object and used the algorithm of Teplitz matrix minimal
eigenvalues as a feature extraction method and both con-
ventional and Artificial Neural Networksmethods for clas-
sification.

An automatic discrete speech recognition system
based on a tree distribution classifier has been described
in [10]. The MFCC feature extraction method was used to
extract features followed by a Vector Quantizationmethod
(VQ). The VQ output was provided as an input to a classi-
fier, which deliver the class-label according to each feature
using an optimal spanning tree model in order to approxi-
mate the true class probability.

A fast learning method with a graphical probabilis-
tic model for discrete speech recognition based on spoken
Arabic digit recognition is introduced in [11]. The authors
proposed amethod based on spanning tree structure takes
advantage of the temporal nature of speech signal. The ob-
tained results suggests that the proposed method was effi-
cient in termsof time computation than the state-of-the-art

algorithms that use the Maximum Weight Spanning Tree
(MWST).

An arabic digits classifier systemwith 450 Arabic spo-
ken digits has been proposed in [12]. The system is based
on combining Wavelet Transform with Linear Prediction
Coding (LPC) method to extract the features and the Prob-
abilistic Neural Network (PNN) for classification. The pro-
posed classifier provided a high recognition rate, reaching
about 93% of accuracy based on a speaker-independent
system.

Whereas, in [13], the authors used Sphinx tools to rec-
ognize isolated Arabic digits with data issued from six dif-
ferent speakers. The system realized a digits recognition
accuracy of 86.66%.

Recently, excellent performances on these systems
have been achieved using Deep Neural Networks (DNNs)
which are recent and extremely powerful machine learn-
ing models [14].

An important study has been presented in [15]. The au-
thors used an end-to-end deep Recurrent Neural Networks
(RNN)model with suitable regularization. They concluded
that RecurrentNeuralNetwork,more precisely LongShort-
Term Memory reach a test error of 17.7% on the TIMIT
phoneme recognition benchmark.

However, a DeepBelief Networks (DBN) has been used
for a development of a novel context-dependent model
for Large-Vocabulary SpeechRecognition (LVSR) for phone
recognition in [16]. The obtained results outperform signif-
icantly the conventional context-dependent GaussianMix-
ture Model- Hidden Markov Models GMM-HMMs.

A success of applying DNNs for acoustic modeling in
speech recognition has been described in [17]. The authors
proposed a new approach to train deep neural networks.
They have shown that the proposed model outperforms
the Gaussian Mixture models on a variety of speech recog-
nition benchmarks, sometimes by a large margin.

Other researches have used the KALDI toolkit for the
development of a recipe and language resources for train-
ing and testing Arabic broadcast news speech recognition
systems [18]. The authors described in detail the decisions
made to build the system using the MADA toolkit. They
give results in terms of Word Error Rate (WER), where the
broadcast news system obtained 15.81% WER on Broad-
cast Report and 32.21% WER on Broadcast Conversation,
with a combined WER of 26.95%.

An Arabic Multi-Genre Broadcast (MGB-2) Challenge
for Spoken Language Technology 2016 has been presented
[19]. The authors focused on handling the diversity in di-
alect in arabic speech. The audio data used are from 19 dis-
tinct programs recorded fromAljazeera Arabic TV channel
in the period (2005-2015). The authors divided the research
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into two tasks: standard speech transcription, and word
alignment. On the first task, the baseline WER was 34%,
however, on the second one, the baseline system obtained
a precision of 0.83 and 0.7 as recall.

Also, anArabicMulti-Genre Broadcast 3 (MGB-3) Chal-
lenge – Arabic Speech Recognition in the Wild has been
described in [20]. The MGB-3 emphasises dialectal Arabic
usingamulti-genre collectionof EgyptianYouTubevideos.
It comprised two tasks: (1) Speech transcription, evaluated
on the MGB-3 test set, (2) Arabic dialect identification, in-
troduced in order to distinguish between four major Ara-
bic dialects. Themost accurate result on theMGB-3 test set
was 37.5% average WER and 29.3% multi-reference WER.
The authors reported that the obtained results outperform
those obtained by MGB-2.

A description of a system that participated in the
broadcast news evaluation for Arabic has been presented
in [21]. The authors have shown how to build a phonetic
system. They demonstrated that switching to phonetic
models is capable to reduce the word error rate by up
to 14% compared to the traditional grapheme based ap-
proach.

In [22], the authors described the JHU team’s Kaldi
system submission of the Arabic MGB-3. They used an
architecture neural network in the form of Time-Delay
Neural Network/Long Short Term Memory (TDNN-LSTM)
trained using Lattice-Free Maximum Mutual Information
(LF-MMI). The authors reported that their primary sub-
mission to the challenge gives a multi reference WER of
32.78% on the MGB-3 test set.

3 Methodology
The speech signal is not an ordinary signal, it represents a
complex phenomenon. This complexity is due to its statis-
tical properties, which varies over time [1]. An ASR system
takes an audio signal as input and classifies it into a set of
words. In order to allow the ASR system to realize its task,
it is important to extract and deliver reliable features us-
ing feature extraction technique. One of the well known
techniques is the Mel Frequency Cepstral Coefficients [23].
Generally, Automatic Speech Recognition researchers in-
vestigated spoken alphabets, digits, commands with dif-
ferent languages [7].

In this paper, we propose to recognize a set of iso-
lated Arabic utterances issued from two ASR applications,
namely: spoken digit recognition and TV spoken com-
mand recognition. The proposed automatic recognition

Figure 1: Block diagram of the proposed ASR architecture.

system is composed from several modules namely: sig-
nal acquisition, feature extraction, corpus construction,
model training and finally a classification, all modules are
illustrated in Figure 1.

3.1 Acquisition

Thefirstmodule denotes the acquisitionmodule employed
to record the different speech utterances (digits / TV com-
mands) using a microphone. A recorded audio signal con-
veys, not only the speech, but also an additive noise issued
from the recording environment. It should be noted that,
for each dataset, all speech signals were recorded in a nat-
ural environment under similar setting conditions, which
are the same length of recording time, the same sampling
frequency and the same recording microphone. Next, the
silence recordedwith the speech is removed (filtered) lead-
ing to new wave forms with different sizes. The different
parameters used by the acquisition module are illustrated
in Table 1.

Table 1: Recording parameters.

Parameters Values
Sampling rate 16000 Hz, 16 bits
Number of bits 16 bits
Time 2 s

3.2 Feature extraction with MFCCs

To design an ASR system, it is very important to select the
best parametric representation of acoustic data. The com-
mon purposes in selecting the best representation are to
compress the speech data and eliminate information not
pertinent for recognition of speech. Several techniques are
defined in literature and used by researchers. For a long
time, Mel-Frequency Cepstral Coefficients was the most
popular and used features extraction technique [24].



Bidirectional deep architecture for Arabic speech recognition | 95

Figure 2:MFCC block diagram.

This technique is used to approximate the nonlinear
frequency resolution of the human ear using the following
formula [25]:

Mel(f ) = 2595 * log10(1 + f /700) (1)

MFCC technique gives a valuable representation of
the speech signal by extracting the significant information
from it. The different steps involved in the conventional
MFCC parameterization techniques are: 1) Pre-emphasis,
2) Framing, 3) Windowing, 4) Fast Fourier Transform
(FFT), 5) Mel scale Filter Bank, and 6) Discrete Cosine
Transform (DCT) as shown in Figure 2. Thus, after signal
digitization, a pre-emphasis step is performed to increase
the amplitude of high frequency bands and decrease that
of lower frequency bands. Next, Discrete Fourier Trans-
form is applied to extract the spectral information of each
windowed frame speech signal. Then, the latest result is
passed through a bank of triangular Mel filters, which pro-
vide a natural logarithmof the filter bank energies. Finally,
a DCT is used to decorrelate the log energies output of a fil-
ter banks [26–28].

3.3 Dynamic features of MFCC

TheMFCC features have been used effectively in a range of
speech processing systems[1],where they provide a signifi-
cant features of the speech spectra. However, the speech
is a natural dynamic signal varying in time. Hence, it is
necessary to use a representation that contains some as-
pects of the dynamic nature of the speech signal [29]. Here,
the MFCC derivatives can be an appropriate mean to get
these features. Thefirst derivative is calleddelta coefficient
and the second order derivative is called delta-delta coeffi-
cient [30]. Therefore, the delta and delta-delta coefficients
are added to the original MFCCs. This addition can signifi-
cantly improve speech recognition performance by remov-
ing the distortion effects using the differencing operation
[31, 32].

The delta features are computed from the static fea-
tures using the following formula [32]:

dt =
∑︀N

n=1 n(Ct+n − Ct−n)
2
∑︀N

n=1 n2
(2)

where dt is a delta feature, i.e., dynamic coefficient at time
t computed in terms of the corresponding static coeffi-
cients Ct−n to Ct+n. Whereas, the N value is, in general,
equal to 2.

Similarly, the delta-delta coefficients are calculated
using the same formula (2) by replacing Ct with dt ( fea-
tures with delta features).

3.4 Recurrent neural networks and gated
recurrent neural networks

In this subsection, we describe the elementary theory of
Recurrent Neural Networks (RNN). These later are consid-
ered as a powerful models for sequential and time series
data [5]. They are trained in a discriminativeway, and their
internal state provides a powerful, general framework to
model time series. Furthermore, they tend to be robust to
temporal and spatial noise [33]. RNNs comprise a loop,
making them recurrent and permitting information to per-
sist. Simple recurrent neural networks contain just one
loop while other, more complex RNN, are composed with
one or more gates allowing them to retain and forget infor-
mation [34].

The success of this type of neural network is due
mainly to the specific variant, which are the Long Short
TermMemory (LSTM) proposed by Sepp Hochreiter and Jr-
gen Schmidhuber in 1997 [5] and the Gated Recurrent Unit
(GRU) proposed by Junyoung Chung et al in 2014 [35].

The main idea behind these networks is to use several
gates to control the information flow from previous steps
to the current steps [36]. By employing the gates, any recur-
rent unit can learn a mapping from one point to another.

LSTM network, which was designed to model tempo-
ral sequences and their long-range dependencies more ac-
curately than conventional RNNs, contains three gates: an
input gate, an output gate and a forget gate. At each itera-
tion, the three gates try to remember when and howmuch
the information in thememory cell shouldbeupdated [36].
A single LSTMmemory cell is depicted in Figure 3 [37, 38].
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where
– ft = σg(Wf xt + Uf ht + bf )
– it = σg(Wixt + Uiht−1+bi )
– ot = σg(Woxt + Uoht−1 + bo)
– ct = ft ∘ ct−1 + itoσc(Wcxt + Ucht−1 + bc)
– ht = ot ∘ σh(ct)
– ∘ is Hadamard product

and
– xt = input vector, ht = output vector
– ct cell state vector
– W,U,b: parameter matrices and vector
– ft, it and ot

– ft: Forget gate vector: weight of remembering old
information

– it: Input gate vector: weight of acquiring new in-
formation

– ot: Output gate vector: Output candidate

Figure 3: A long short-term memory cell.

3.5 Classification with multi-layer
perceptron

The last step in the ASR process is the classification, where
the goal is to classify the input speech utterances, based
either on a priory knowledge or statistical information ex-
tracted from the speech signals [39].

In the present study, the classifier input is the set of
equal-size vectorswith lowdimensional features delivered
by LSTM network. In what follows, a brief presentation of
the classifier used in this study is given. A MultiLayer Per-
ceptron (MLP) is a subclass of Artificial Neural Network,
widely applied in classification [40].

The MLP architecture is variable, but generally orga-
nized in several layers of neurons. It consists of three se-

quential layers: input, hidden and output layer. In this
study, the MLP is used as multi-classifier, where its inputs
represent theMFCC (or FB) fixed size vector givenbyLSTM.

The MLP neural networks classifier acts usually in a
supervised manner. To build an MLP classifier, a set of
training data including the inputs and their associated
outputs are requested. Hence, the classification is done by
assigning a maximum value to the output neurons to rep-
resent the desired class [6, 41]. Figure 4 represents theMLP
architecture used in this study.

Figure 4:MLP architecture used in the present study.

4 Experimental data
To assess the different proposed learning strategies, we
have used two data resources: (1) the digit data set [11]
where the authors have introduced a way to speed up the
learning of graphical model for speech recognition based
on spoken arabic digit and (2) the TV command data set
that was created using different individual (male/female)
records with different age groups for the two sexes.
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4.1 Spoken digit dataset

The first dataset is the spoken Arabic digit which contains
time series of MFCCs corresponding to spoken Arabic dig-
its (as show in Figure 5) collected by the laboratory of auto-
matic and signals, University of Badji-Mokhtar - Annaba,
Algeria. A number of 88 (44 males and 44 females) arabic
native speakers were asked to utter all digits ten times. Ac-
cordingly, the database consists of 8800 tokens (10 digits
x 10 repetitions x 88 speakers) [42].

Figure 5: Arabic digit and their writing.

TheMFCCs of the spoken digit dataset were computed
with the following parameters, illustrated in Table 2.

Table 2:MFCC parameters used for the Spoken digit dataset.

Parameters Values
Sampling rate 11025 Hz, 16 bits
Filter pre-emphasized 1-0.97*Z−1

Applied window Hamming

4.2 Spoken command TV dataset

In the second dataset, speaker-independent mode is con-
sidered, where one hundred of Arabic native speakers
were participated (50 males comprising 37 adults and 13
kids whereas 50 females including 31 adults and 19 kids)
to the construction of the corpus as shown in Table 3. The
native speakers record ten Arabic commands illustrate in
Figure 6 for ten times. Consequently, the dataset contains
10000 tokens (10 arabic commands x 10 repetitions x 100
speakers)

Table 3: Category and gender distribution of the speakers for the
Spoken command TV dataset.

Gender Male Female
Category Adult Kid Adult Kid Total
Speakers 37 13 31 19 100
Utterances 3700 1300 3100 1900 10000

Figure 6: Arabic TV commands.

For the constructed dataset (Arabic commands), the
list of parameters used to compute the MFCCs are enumer-
ated in Table 4. Once MFCC algorithm is applied, a numer-
ical values (features) of speech data were obtained and
saved in the dataset (Learning corpus).

Table 4: Parameters list of MFCC used in the TV command dataset.

Parameters Values
Sampling rate 16000 Hz, 16 bits
Filter pre-emphasized 1-0.97*Z−1

Applied window Hamming
Window Size 256
FFT Size 512
Linear filters 13
logFilters 27
Cepstral coeflcients 13

5 Experimental results
The different experiments in this study have been
performed using Python programming language and
keras/tensorflow libraries [43].
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5.1 Performance criteria

To evaluate the performance of the ASR systems, several
performance measures can be used [44]. Namely, recall,
precision, f- measure (F1), % of error and % of success.
These ones are used in this study as the standard classi-
fication criteria. They are defined below:

precision = number of correct predictions
number of predictions

recall = number of correct predictions
number of samples

F1 = 2 * (precision * recall)(precision + recall)
In the first dataset, 8.800 tokens were used, wheras in

the second corpus 10.000 instances were utilized. In both
cases, the two datasets were splited in two parts. The first
one is used for trainingwhile the second one is used to test
the different proposed models. The training data contains
70% of the whole dataset and the test data comprises 30%
of the whole dataset. This repartition is used to build the
learning models using a simple Hold-Out model selection
[45].

All models are trained using 50 epochs and the best
model on the training set is kept for final evaluation. This
is not an optimal model selection technique, since it may
privilege the model that have over-fitted the training data,
but we expect that the dropout regularization approach
counteract this effect. In order to have a better estima-
tion of themodel’s performances, all experiments are con-
ducted 10 times by averaging the obtained results.

The proposed neural network receives as input the
sequences of MFCC features and gives as output the class
of the uttered digit/command. First, the LSTMwill encode
the sequence of MFCC coefficients as a fixed size vector.
Then the MLP network receipts this fixed size vector to
classify the MFCC coefficients. This can be performed
through different steps, as follow:

– Encoding data as a matrix:
For instance in the second dataset (Command TV), the
data are encoded as a matrix of (7000,198,13) where
7000 denotes the size of samples in the training, 198
represents the size of the longest sequence of MFCC
coefficients (corresponding to the longest recorded
sequence) and 13 designates the MFCC’s coefficients
number used in this study. In casewhere the size of the
sequence does not reach 198, the sequence is padded
by a zeroed vector of size 13 until attaining the maxi-
mum size of 198.

– Encoding sequence as a fixed size:
The bidirectional LSTM layer receives the data result-

ing from the previous step and tries to encode the se-
quence as a fixed size vector. The choice of bidirec-
tional approach is justified by the results obtained in
earlier studies [34, 46].

– Classification with MLP:
The vector resulting from LSTM encoding is fed to the
MLP structure with one hidden layer. The various pa-
rameters have been fixed intuitively as follow:
1. The recurrent layer’s output is set to 100. 100 out-

put neurons is fixed for forward or backward re-
current layers and 2*50 for bidirectional models
whose outputs are concatenated to obtain the fi-
nal output vector.

2. The hidden layer size has been fixed to 50 with
Rectified Linear Unit ”ReLU” as a non-linear ac-
tivation function.

3. The output layer size is defined by the number
of classes (10 classes: Digits/ Commands) using a
standard “softmax” activation functionwith cross
entropy loss.
With the purpose to regularize the network, the
Dropout technique is implemented. This tech-
nique allows to temporarily remove (hidden and
visible) units from the network, along with all its
incoming and outgoing connections, as shown in
Figure 7.
TheDropout technique is used to prevent the over-
fitting where the choice of which units to drop is
random. Thus, two Dropout layers are inserted re-
spectively after the LSTM output and theMLP hid-
den layer with a dropout probability of 0.2 and 0.5
respectively [47].

Figure 8 illustrates an example of neural network archi-
tecture with Bidirectional LSTM topology before and after
dropout operation.

Figure 7: Neural network architecture: (a) before dropout and (b) af-
ter dropout.
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Figure 8: Block scheme of the proposed model.

5.2 Results obtained on digit corpus

To approve the choice of the bidirectional recurrent archi-
tecture as encoder, different encoders usingboth combina-
tion of GRU and LSTM layers with forward/backward and
bidirectional encoding strategies are evaluated in terms of
performance. We fix the size of the vector that encode the
sequence to 100.

In the present study, the proposed architecture takes
as input the sequences of MFCC features and as output the
class of the spoken digit. First, the networkwill encode the
sequence of MFCC coefficients as a fixed size vector. This
fixed sized vector will feed an MLP network to classify the
MFCC coefficients. To do so, we, first, encode the data as
a matrix of (6600,93,13) where 6600 is the size of samples
in our training data, 93 is the size of the longest sequence
of MFCC coefficients (corresponding to the long time of
recording) and 13 is the number of MFCC coefficients used
in this study. When the size of the sequence is smaller
than 93, the sequence is padded by a zeroed vector of size
13 until reaching the maximum size of 93. The obtained
results are compared with those in [10] and [11], as shown
in Table 5, in terms of the following performance criteria:
precision, recall, F1 and % error.

5.3 Results obtained on TV commands
corpus

To evaluate the different strategies using FB, MFCC and
MFCC + double delta, practically the same approaches are
maintained and are listed below:
– Bidirectional LSTM of size 50;
– Bidirectional GRU of size 50;
– Bidirectional GRU of size 67;
– Bidirectional GRU of size 80;
– Forward LSTM of size 100;
– Forward GRU of size 100.

All encoder variants show good results. The performed
experiments confirm that bidirectional architectures are
more efficient than single direction ones.

The obtained results by the FBs using the same pa-
rameters as those used in MFCC’s experiments are less ef-
fective. Since, in the case of FBs, there are 40 features in-
steadof 13 in the case ofMFCC, thenetworkmayneedmore
parameters to learn from them. We did the experiment in-
creasing the size of theGRUembedding to 100 and thenext
hidden layer from 50 to 75 and report results in Table 7. In-
deed, with more parameters the networks is much more
effective, anyway it still less efficient using FB than MFCC
as input while using twice more parameters. Also, the ex-
periments done with double delta features (39 features),
the network need more parameters to learn from them.

Thus, It turns out that filter bank coefficients com-
puted in the early steps of MFCCs are highly correlated
[48], which could negatively affect the accuracy of ma-
chine learning algorithms (see Table 8).

Hence, Discrete Cosine Transform is used to decorre-
late the filter bank coefficients and produce a compressed
representation of the filter banks. Typically, for Automatic
Speech Recognition, the resulting cepstral coefficients (in
our case 13) are maintained and the rest are discarded, in
this case the results are reported in Table 9.

Table 10 illustrates the different results obtained us-
ing the dynamic features that provide more information
about the signal evolution (delta delta features) added to
the static ones (MFCC).

As it is shown, the delta-delta results (compare Tables
8, 9 and 10) outperform those obtained using the standard
MFCCs and FBs, this proves the utility to use the delta-
delta operators to the MFCCs which can affects positively
the classification accuracy.

It is worth noting that the experiments done with dou-
ble delta features (39 features) need more parameters to
learn the network, which increase the computational com-
plexity accordingly (see Table 10).
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Table 5: Results and comparison of the proposed approach with some previous published approaches on the digits dataset.

(a) Results of the bidirectional approach.

dig. precision recall F1 %error
0 95.98 98.73 97.33 4.14
1 98.92 99.86 99.39 1.09
2 99.63 98.91 99.27 1.09
3 98.67 97.45 98.06 2.55
4 99.64 99.32 99.48 0.68
5 99.32 99.91 99.61 0.68
6 99.81 96.36 98.06 3.64
7 98.55 98.82 98.68 1.45
8 98.32 98.41 98.36 1.68
9 98.96 99.91 99.43 1.05
All 98.77 98.77 98.77 1.23

(b) Comparison with the approaches
by [10] and [11] in terms of % success.

dig. [10] [11] our BiLSTM
0 91.00 85.55 95.86
1 99.00 98.36 98.91
2 91.50 92.91 98.91
3 88.00 94.09 97.45
4 81.50 89.91 99.32
5 94.50 94.00 99.32
6 84.50 93.82 96.36
7 89.50 90.18 98.55
8 92.50 99.00 98.32
9 91.00 93.36 98.95
All 90.35 93.12 98.77

Table 6: Averaged results over 10 experiments on digits corpus with
different encoders.

Type of encoder #params F1 %error
BiLSTM 2*50 31.560 98.77 1.23
BiGRU 2*50 25.060 98.63 1.37
Forward GRU 100 40.060 97.26 2.74
Backward GRU 100 40.060 98.85 1.15
Forward LSTM 100 51.560 97.41 2.59
Backward LSTM 100 51.560 98.33 1.67

Table 7: Results obtained with more parameters on the TV com-
mands corpus with bidirectional GRU using FBs.

type of encoder #params F1 %error
BiGRU 2*100 100,435 95.7 4.3

Table 8: Averaged results over 10 experiments on TV commands
corpus with different encoders using FB.

Type of encoder #params F1 %error
BiLSTM 2*50 41.960 81.3 18.70
BiGRU 2*50 32.860 84.8 15.20
BiGRU 2*67 50.676 87.1 12.90
BiGRU 2*80 66.640 88.6 11.40
ForwardLSTM 100 61.960 79.13 20.87
ForwardGRU 100 47.860 85.26 14.73

In summary, in the case of the digit dataset, all en-
coder variants exhibit good results and outperform those
by [10] and [11] by at least 5% of accuracy.Whereas, for the
constructed dataset (TV commands corpus), all encoders
show good and comparable results (see Table 6) where the
global performance is over 95% for all models. We may
note that backward models reveal sometimes difficulties

Table 9: Averaged results over 10 experiments on TV commands
corpus with different encoders using MFCC.

Type of encoder #params F1 %error
BiLSTM 2*50 31.560 96.23 3.77
BiGRU 2*50 25.060 96.14 3.86
BiGRU 2*67 40.224 96.93 3.07
BiGRU 2*80 54.160 97.06 2.96
ForwardLSTM 100 51.560 97.03 2.97
ForwardGRU 100 40.060 97.11 2.89

Table 10: Averaged results over 10 experiments on TV commands
corpus with different encoders using MFCC+ double Delta features.

Type of encoder #params F1 %error
BiLSTM 2*100 133.110 97.36 2.64
BiGRU 2*100 105.110 97.66 2.34
ForwardLSTM 200 217.330 97.23 2.77
ForwardGRU 200 169.330 97.27 2.73

to converge and when they converge exhibits lower per-
formances (still over 95%). The fact that backward mod-
els are less efficient on this task may explain the relative
equivalent performances between forwards and bidirec-
tional model for an equivalent number of parameters.

6 Conclusion
In this study, an approach based on recurrent neural
networks to process sequences of variable lengths of (1)
MFCCs, (2) FBs and (3) delta-delta features of the different
spoken digits/commands was presented. The extracted
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features using the different techniques are, first, encoded
as a fixed size vector by a recurrent LSTM/GRU neural net-
work, next, a standard Multi-Layer Perceptron is used to
classify the spoken digits/commands with the obtained
vector as input. The efficiency of the proposedmethodolo-
gies is confirmed through the results and discussions pre-
sented in this paper.

In all the experiments carried out on the two datasets,
the proposed system presents an improved performance
and obtains promising results. The obtained results show
that Delta-delta features (introduced to a classification
system) are efficient enough to characterize the speech sig-
nal for the two studied tasks (Accuracy over 96%) com-
pared to those obtained using FBs and MFCCs as feature
extraction techniques.

The Challenge for future works is to assess this kind
of systems with other datasets constructed through a
recorder speech signals in a noisy (more realistic) environ-
ments.
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