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Abstract 
Unlike traditional manufacturing methods, additive manufacturing can produce parts with 

complex geometric structures without significant increases in fabrication time and cost. One 

application of additive manufacturing technologies is the fabrication of customized lattice-skin 

structures which can enhance performance of products while minimizing material or weight. In 

this paper, a novel design method for the creation of periodic lattice structures is proposed. In 

this method, Functional Volumes (FVs) and Functional Surfaces (FSs) are first determined based 

on an analysis of the functional requirements. FVs can be further decomposed into several sub-

FVs. These sub-FVs can be divided into two types: FV with solid and FV with lattice. The initial 

design parameters of the lattice are selected based on the proposed guidelines. Based on these 

parameters, a kernel based lattice frame generation algorithm is used to generate lattice 

wireframes within the given FVs. At last, traditional bidirectional evolutionary structural 

optimization is modified to optimize distribution of lattice struts’ thickness. The design method 

proposed in this paper validated through a case study, and provides an important foundation for 

the wide adoption of additive manufacturing technologies in the industry. 
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Abbreviation 
AM  Additive Manufacturing 

BESO  Bidirectional Evolutionary Structural Optimization 

BNF  Backus Normal Form 

DFAM  Design For Additive Manufacturing 

ESO  Evolutionary Structural Optimization 

FEA  Finite Element Analysis 

FS  Functional Surface 

FV  Functional Volume 

RBE  Rigid Body Element 

SMS  Size Matching and Scaling 

1 Introduction 
Additive Manufacturing is defined by ASTM as a “process of joining materials to make an 

object from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing 



methodologies” [1]. Compared to traditional manufacturing methods, AM technologies have two 

remarkable advantages. Firstly, as opposed to casting or forging, customized manufacturing tools 

such as moulds or dies are no longer needed, which significantly shortens the time from design 

to production. Secondly, since materials are joined together layer by layer, structures with 

complex geometry or material distribution can be fabricated without dramatically increasing 

their manufacturing cost. For example, parts with hierarchical complexity or functionally graded 

material can be fabricated by carefully controlling the fabrication parameters layer by layer. This 

advantage largely expands the design space and provides opportunity for designers to further 

improve the performance of their designed parts. However, this advantage also puts forward 

much higher requirements on the design phase. 

 

Most traditional design methods cannot take advantage of the unique capabilities of AM, because 

they are established on the manufacturability of traditional manufacturing methods. To solve this 

problem, a new design paradigm, known as DFAM, was introduced to “maximize product 
performance through the synthesis of shapes, sizes, hierarchical structures, and material 

compositions, subject to the capabilities of AM technologies.”[4]. This concept provides a 

general scope for designers who want to use AM to improve the performance of their products.  

Based on the modification and combination of traditional design methods, many innovative 

DFAM methods have been proposed to tackle the challenges and opportunities of AM. Among 

these, the design methods which focus on lattice structure or cellular structure at the meso level 

(i.e. feature size ranges from 0.1mm to 10mm) have received considerable attention. Due to the 

excellent properties of lattice structures, they can be designed for multiple purposes, such as 

weight reduction, energy absorption, heat transfer, thermal protection and insulation [1-5].  

 

Based on the degree of order, lattice structures on a meso-level can be divided into three main 

types. The first type is called a disordered cellular structure. Lattice units of different size and 

shape are randomly distributed within these structures. The second type is called a periodic 

lattice structure. These can be regarded as three-dimensional structures created by the regular 

repetition of an object with a certain topology and size in space. In some literatures [6-8], this 

type of lattice is also referred to as a uniform lattice structure. Periodic lattice structures can be 

further divided into two types. If all the struts in the structure have the same thickness, it is 

referred to as a homogeneous periodic lattice structure. Otherwise, if the strut thickness varies, it 

is called a heterogeneous periodic lattice structure. The difference between these two types is 

shown in Figure 1. Besides disordered and periodic lattice structures, there is one other type of 

lattice structure, called pseudo-periodic, which is shown in Figure 2. Here, the size and shape of 

each lattice unit cell can be varied for special design purposes. The only constraint being that 

they all share the same general topology. 

  

                 

(a) Heterogeneous periodic lattice   (b) Homogenous periodic lattice 



Figure 1 Difference between two types of periodic lattice structure 

 

                             

                                              (a) Periodic lattice structure            (b) Pseudo-periodic lattice structure 

Figure 2 Difference between periodic lattice and pseudo-periodic lattice  

Compared to periodic and pseudo-periodic lattice structures, the properties of disordered lattice 

structures are hard to control. Thus, lattice design methods on a meso-level now focus on the 

former. In heterogeneous periodic and pseudo-periodic lattice structures, material distribution 

and lattice framework can be customized to satisfy given functional requirements. As such, these 

two types of lattice structures can also be referred to as customized lattice structures.  

 

For cases involving homogenous periodic lattice structures, the material selection method [9] can 

be used to select the appropriate lattice cell topology and parameters. Besides that, some 

topology optimization methods [10-16] have been successfully used to optimize lattice cell’s 
topology and parameters. Unlike the aforementioned homogenous lattice design methods which 

only focus on the topology or parameters of a lattice cell, several concurrent optimization 

methods [17-20] have been proposed to optimize cell’s topology as well as structures’ macro 
shape. As to heterogeneous periodic lattice structures, some structural optimization methods, 

such as size optimization [21] and  topology optimization method [22, 23] have been applied to  

optimize struts’ thickness distribution. For pseudo-periodic lattices, the concept of conformal 

lattice structures is proposed by Rosen’s research group [24]. In this type of pseudo-periodic 

lattice structure, the shape and orientation of each lattice unit cell are designed to conform to the 

part’s macro geometry. To further improve lattice performance, a heuristic optimization method 

called the SMS method [7] is used to optimize distribution of struts’ thickness in conformal 

lattice [25]. Apart from conformal lattice structures, a force flux based design method has been 

proposed by Teufelhart and Reignhart [26-28]. In this method, each lattice unit cell is built based 

on force flux in the design domain under a given load. This design method can guarantee that the 

lattice struts are under purely axial load. Another pseudo-periodic lattice design method based on 

3D texture mapping was proposed by Chen [29]. In this design method, a space warping 

technique is used to distribute materials based on stress distribution. Essentially, the unit cells are 

stretched from low stress areas to high stress areas. 

 

Currently, the consensus among researchers is that a customized lattice structure will tend to 

have better structural properties than its counterpart. However, some issues still exist in current 

design methods. Firstly, some of pseudo-periodic lattice design methods cannot deal with parts 

that have complex macro-level geometry, since it becomes difficult to make all lattice unit cells 

in the design domain conform to the complex boundary or force flux. Secondly, for customized 



lattice structure, most current design methods neglect the functional roles of skin or solid 

material. Thirdly, as for periodic lattice structures, most design methods for customized lattice 

only focus on redistributing mass in the given design domain without considering lattice 

orientation which is another very important design variable of periodic lattice design. 

 

In this paper, an innovative design method for periodic lattice structures on a meso-level is 

proposed. Unless otherwise stated, the lattice structures mentioned in the following paragraphs of 

this paper are all indicate periodic lattice structures. Compared to most existing methods for 

periodic lattice structures, the proposed method in this paper has four unique features. Firstly, 

both solid volume and skin structure are considered in the proposed design method. It broadens 

the application range of the proposed design method. Secondly, in the proposed method, the 

orientation of the periodic lattice structure is considered as a design variable. It may further 

enhance the mechanical performance of designed products. Thirdly, in the proposed lattice frame 

generation method, the trimming operations only have been done on those lattice frame of 

boundary kernels. Thus, the speed of lattice generation can be increased. Fourthly, the BESO 

based optimization method has been applied to obtain the optimal distribution of lattice struts’ 
thickness, which can further improve the structural stiffness compared to the unoptimized 

homogenous lattice structure. In Section 2, four basic concepts in the proposed design method 

are firstly introduced. Based on these four basic concepts, the proposed design method of lattice 

structure is presented in Section 3. In Section 4, a case study is provided to validate this proposed 

design method. Finally this paper is wrapped up with the conclusion and future research 

directions.  

2 Basic Concepts  

2.1 Functional Volumes and Functional Surface 

In the proposed lattice structure design process, the FV and FS represent the geometrical 

elements designed for certain functional purposes. FS is defined as a surface that fulfills a certain 

functional requirement. In the proposed design method, skin with a certain thickness is designed 

to cover FSs for certain function.  For example, Figure 3 shows the surface of an airfoil which 

can provide lifting force for aircraft. For structural part, most FSs play roles as restriction of 

DOF or bearing load.  

 

The FVs are defined as geometry volumes which are used to combine FSs and assist FSs in 

fulfilling their functional roles. For example, in Figure 3, the volume enclosed by FS is the 

functional volume. In this case, the FV plays the role of supporting the FS and transmits lifting 

forces from the wing to a fuselage. In the proposed design method, the FV can be either filled 

with solid material or lattice structure at the meso-level. Thus, FVs can be further divided into 

two types: FV with solid material and FV with lattice structure.  



 

Figure 3 an example of FS and FV 

2.2 Lattice Unit Cell 

In the proposed design method, a lattice unit cell is used to build a lattice frame based on the 

frame generation method described in Section 3.2. To achieve this purpose, a lattice unit cell is 

defined as a simplest repeating unit in a lattice structure in this paper. Some typical lattice unit 

cells are shown in Figure 4. To describe the relative node position and topology of lattice unit 

cell, a tri-dimensional bounding box of unit cell is used and the center of this bounding box is 

defined as the origin of local coordinate system of a lattice unit cell. The three axes of the local 

coordinate system are parallel to the three orthogonal edges of the bounding box. The 

relationship between the lattice unit cell’s bounding box, local coordinate system and global 
coordinate system is shown in Figure 5. In order to maintain continuity of repeated lattice cells, 

the defined pattern of lattice unit cells must be symmetric with respect to three local coordinate 

planes. Additionally, in the proposed design method, the lattice orientation is of particular 

importance. Based on its local coordinates, orientation 𝐷𝑂  of lattice unit cell is defined as: 𝐷𝑂 = (𝑒𝑥′ , 𝑒𝑦′ , 𝑒𝑧′ )            (1)  

Where 𝑒𝑥′ , 𝑒𝑦′ , 𝑒𝑧′  are the three base vectors of lattice cell’s local coordinate system. A graphic 
review of the lattice unit cell’s data model is shown in Figure 6. 

 

 

 
      (a) Hexagon      (b) “X” shape    (c) octahedron      (d) cubic grid 

Figure 4 Some typical lattice unit cells 



 

Figure 5 local and global coordinates of lattice unit cell 
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Figure 6 Graphic view of unit cell’s data model 

The proposed lattice unit cell model enable designers to select the particular orientation of lattice, 

which may further improve the mechanical performance of a designed product. A simple case 

has been done and shown in Figure 7. In this case, strain energy of lattice structures with 

different orientation angle θ has been calculated based on FEA. By comparing the strain energy 

of lattice structures with different orientation angles, it is clear that the orientation of lattice 

structure has a significant effect on the mechanical performance of the designed product.  
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Figure 7 The effect of lattice orientation on the structural performance 

 

2.3 Lattice frame 

In the proposed design method, lattice frame is simply the wireframe of the lattice structure. 

Figure 8 shows the relationship between lattice structure and lattice frame. This frame is 

represented by line segments and points of connection, which we call nodes. Furthermore, 

through implementation of a wireframe solidifying method [30], the lattice frame can be 

converted to lattice structure, based on a given strut thickness list and cross-sectional shape. That 

being said, the lattice frame plays an imperative role in the proposed design method. The data 

model of the lattice structure and its frame is shown in Figure 9.  

            

(a) Lattice structure                   (b) Lattice frame 

Figure 8 The relationship between a lattice structure and a lattice frame 
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Figure 9 Graphic view of lattice structure’s data model 

From the Figure 9, it is clear that the data structure of a lattice structure mainly consists of two 

parts. They are lattice frame and struts’ thickness. For the lattice frame, it can be generated based 
on selected lattice unit cell by the generation method described in the Section 3.2. As to struts’ 
thickness, the optimization method described in Section 3.3 can be applied to calculate the 

thickness for each strut.  

2.4 Kernel point 

The concept of a kernel point is introduced in this paper to improve efficiency of the lattice 

frame generation algorithm. Essentially, a kernel point represents the center point of a unit cell 

inside the FV. Its data structure is shown in Figure 10. Kernel points are used in the early stages 

of the lattice frame generation algorithm, to represent unit cells before any wireframes are 

generated. 
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Figure 10 Graphic view of kernel point’s data model 



 

Figure 11 The general design flow of the proposed design method 

3 Design method of lattice structure 
The design flow of this proposed method for periodic lattice is shown in Figure 11.  Generally, it 

consists of three design stages. The first design stage is called the initial design stage, where FSs 

and FVs are generated based on an analysis of functional requirements of the part. Moreover, the 

initial design parameters of the lattice structure are selected. In the second design stage, a lattice 

frame is built by implementing the proposed kernel based lattice frame generation method. In the 

last design stage, Modified BESO method is used to optimize thickness of the lattice struts, 

further improving performance of the part. These three design stages will be discussed in the 

following three subsections. 

3.1 Initial design 

The initial design stage can be divided into three main design steps. 

 



Firstly, FSs and FVs are determined based on an analysis of the part’s functional requirements. 

For example, a typical aircraft engine bracket is shown in Figure 12. Clearly, this engine bracket 

is meant to transfer loads between two connected parts. Based on a functional analysis, the part 

in Figure 12 is represented by fifteen FSs and one FV. These FSs are shown in Figure 13. 

Among them, FS1 to FS3 are designed as contact surfaces, while the rest of them are designed for 

assembly of connecting bolt. The FV is the volume enclosed by the fifteen FSs, which is 

essentially the same as the original part shown in Figure 12. 

F =4.2KN

 
(a)Original design  (b) loading condition 

Figure 12 An example of aircraft engine bracket [31] 
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Figure 13 Functional Surfaces of engine bracket 

Secondly, the FVs generated in the first design step are further decomposed into several sub-FVs 

according to their specific functional roles. In this design step, some typical structural analysis 

methods can be used to determine the role of each sub-FVs. In this example, FEA has been used 

to analyze the stress distribution within the FV of the engine bracket. The load condition shown 

in Figure 11 is applied as the boundary condition for the FEA. Specifically, to apply the force on 

the top bolt holes, RBE is used to represent the bolt. Thus, the load is applied at the center of the 

RBE element shown in the Figure 14. For the displacement boundary condition, four RBEs are 

used to represent four connection bolts at the bottom of the bracket. The DOFs of these four 

RBEs have been constrained and shown in the Figure 14.  



        

Figure 14 The boundary condition for FEA of engine bracket 

The FEA result is shown in Figure 15. Based on this result, it is clear that the stress in the lifting 

lug is much higher than that in the bracket base. Hence, the FV of this bracket is decomposed 

into two sub-FVs. The solid material will be used to fill the sub-FV with high stress distribution, 

while the lattice structure will be used to fill the FV with low stress. Additionally, in order to 

connect two sub-FVs, a new FS is added and shown in Figure 15. 

 

 

Figure 15 Sub-FVs generation 

In the third design step, design parameters of the lattice structure, such as topology and cell size, 

are computed. In this design step, the lattice structure on a meso level can be regarded as a 

homogenous material on a macro level. By doing so, traditional material selection method [9] 

can be used to select an appropriate lattice topology for the given set of functional requirements.  

Besides lattice topology, the size and orientation of lattice unit cells are also decided in this 

design step. Due to the symmetrical characteristics of lattice topologies, most lattice structures 

exhibit orthotropic mechanical properties. That is to say, the lattice structure is stronger in certain 

directions. Thus, higher mechanical performance can be achieved by aligning the strongest 



direction of the lattice unit cell along the principle stress direction of the maximum stress point. 

As for the unit cell size, it should be smaller than the minimum geometrical feature size of the 

FV. Besides this condition, manufacturability of existing additive manufacturing methods should 

also be considered as a limitation of size of the lattice unit cells.  

3.2 Kernel based lattice generation  

In the second design stage of the proposed method, the internal lattice frame is generated for the 

chosen FVs. To reduce the computation load and time, a kernel based lattice generation 

algorithm is proposed in this paper. The general flow of the lattice frame generation for a given 

cylinder boundary is shown in Figure 16. The methodology of the presented algorithm can be 

explained by a set of logical rules, as follows. 
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Figure 16 Lattice frame generation flow for cylinder  

Step1. A standard lattice unit cell wireframe 𝑐 is generated with a specified topology, size and 

orientation, centered at the origin. This is a temporary template unit cell which will be used in 

steps 6 and 7. As mentioned, the orientation of the unit cell defines a local coordinate system. 

The origin of the unit cell’s local coordinate system coincides with the origin of the global 
coordinate system. 

 

Step2. The axis-aligned minimum bounding box of each FV is built. This bounding box is 

aligned with local coordinates of the standard unit cell. A grid of points is generated sequentially 

inside this bounding box along each axis of local coordinate, which is shown in Figure 16(b). 

The distance between two adjacent grid points along each axis is equal to the size of a lattice unit 

cell along that direction. These grid points represent the center of each unit cell; they are referred 

to as the kernel points of the lattice. 

 Step3. Rather than generating a lattice frame for the entire grid of kernel points, which would 

need significant trimming, the kernel points are categorized to the following sets: 



 a. Internal points set 𝑃𝑖 – Points located inside the FV. 

 b. External points set 𝑃𝑒 – Points located outside the FV. 

 c. Boundary points set 𝑃𝑏 – Points neighboring the boundary of the FV (partially inside        

and outside). 

d. Totally Inside points set 𝑃𝑡𝑖 – Points in 𝑃𝑖 which are not in 𝑃𝑏. 

 

Step4. Based on the distinctions made in step 3. The following rules were established to 

recognize boundary points 𝑃𝑏 and totally inside points 𝑃𝑡𝑖 
Rule 1: Suppose points 𝑘1 and 𝑘2 are two adjacent kernel points in the kernel grid of FV, 

if  (𝑘1 ∈ 𝑃𝑖)⨁(𝑘2 ∈ 𝑃𝑖), then both 𝑘1 and 𝑘2 are boundary kernel points, denoted as 𝑘𝑏 ∈𝑃𝑏. In this rule, the symbol “⨁” means “exclusive or”. The boundary kernel points are 

shown in Figure 16 (e).  

Rule 2: Suppose point 𝑘1 is a kernel point of FV  𝑓, if 𝑘1 ∈ 𝑃𝑖⋀𝑘1 ∉ 𝑃𝑏 , then 𝑘1 is a 

totally inside kernel point, which is denoted as 𝑘𝑡𝑖 ∈ 𝑃𝑡𝑖 . The totally inside kernel points 

are shown in Figure 16(c). 

 

Step5. Instead of generating a fresh unit cell wireframe at each kernel point, the template unit cell 

from step 1 is copied and translated to its respective location; a matter of computational 

efficiency. The translation vector 𝑣𝑡𝑝  of each kernel point 𝑘 ∈ 𝑃𝑡𝑖⋃𝑃𝑏 is calculated based on: 𝑣𝑡𝑝 = 𝑣𝑝 − 𝑣𝑐             (2) 

Where 𝑣𝑝 is the position vector of kernel point 𝑘 and 𝑣𝑐 is the position vector of a template unit 

cell 𝑐, with respect to the global coordinate system. Since in step 1, we centered the template unit 

cell at the origin, 𝑣𝑡𝑝  can be simplified to 𝑣𝑝 . Based on the translation vectors 𝑣𝑡𝑝 , unit cell 

wireframes will be mapped to each of the kernel points 𝑘. 

 

Step6. A unit cell wireframe is moved to every boundary kernel point 𝑘𝑏 ∈ 𝑃𝑏. Next, parts of the 

wireframes that are outside the FV are removed, through the following trimming algorithm: 

a. Suppose 𝑝1 and 𝑝2 are the endpoints of a strut 𝑙. 
 b. If 𝑝1 and 𝑝2 are both outside the FV, strut 𝑙 is removed. 

 c. If 𝑝1 and 𝑝2 are both inside the FV, strut 𝑙 is preserved. 

d. If 𝑝1 and 𝑝2 are on opposite sides of the FV boundary, strut 𝑙 is trimmed. To do this, 

strut 𝑙 is intersected with the FV boundary, and split into two sub-struts 𝑙1 and 𝑙2. The 

sub--strut that is outside the FV is removed. 

The result of this step is shown in is shown Figure 16(f). 

 

Step7. A unit cell wireframe is generated at every Totally Inside kernel point 𝑘𝑡𝑖 ∈ 𝑃𝑡𝑖 . No 

trimming is required for these unit cells. This greatly reduces computation time. The result of 

this step is shown in Figure 16(d). 

 

Step 8. Finally, the unit cell wireframes generated in step 6 and 7 are consolidated into a single 

network by removing duplicate nodes and lines, and merging the remaining elements. The result, 

known as the lattice frame, is shown in Figure 16(g). 



 

It should be noted that the proposed lattice generation method described in this section can only 

be used to deal with periodic lattice structures. Moreover, even though boundary connectivity is 

predefined by periodicity, the positions of lattice kernel points are not predefined. These kernel 

points should be determined based on the selected lattice orientation. Figure 17 shows a 

comparison between kernel points for the same FV with different orientation angles. It is clear, 

for the same FV, different orientations will generate different distributions of kernel points inside 

the design domain even for periodic lattice structures. 
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Figure 17 Kernel points distributions for different lattice orientations 

3.3 BESO based optimization algorithm 

The BESO method is a finite element based topology optimization method, where inefficient 

material is iteratively removed from a structure while efficient material is simultaneously added 

to the structure. Compared to ESO, that is limited to material removal, the BESO method is 

much more efficient. This method was first proposed by Querin et al [32, 33] to enhance the 

optimization results and speed of the ESO algorithm. Later, a modified version of the BESO 

algorithm was presented by Huang and Xie [34] to solve non-convergence and mesh-dependency 

problems associated with earlier BESO algorithms.  

 

In this paper, a modified BESO algorithm is proposed to optimize thickness of lattice struts in 

meso level. Instead of directly removing or adding elements as in the conventional BESO 

method, the thickness of each strut is updated during the optimization iteration to redistribute 

material in the design space. This optimization is designed to emulate the remodeling process of 

bone which is known as wolff’s law [35]. The material will be removed in low stress areas and 

formed in the high stress areas. The volume of material removed is equal to material added, 

which keeps the total volume unchanged. The mathematical representation of the proposed 

optimization problem for lattice structure can be expressed as: 

 

To Find: 𝑡𝑘, 𝑘 = 1,2 … , 𝑛            (3) 

Minimize: 𝑃𝐼 = (∑ 𝜎𝑉𝑀𝑖𝑉𝑖)/𝐹𝐿𝑖=𝑛𝑖=1  

S.T.  :   𝐾𝑢 − 𝑃 = 0 

      ∑ 𝑉𝑖𝑖=𝑛𝑖=1 ≤ 𝑉𝑐𝑜𝑛𝑠𝑡 



      𝑡𝑚𝑖𝑛 ≤ 𝑡𝑘 ≤ 𝑡𝑚𝑎𝑥 

Where 𝑡𝑘 is the thickness of the kth strut in lattice frame; n is the number of struts in the lattice 

frame; PI is the performance indicator of the structure proposed by Querin [32] and Steven 

[36]to measure how well the overall structure is performing against an idealised fully stressed 

design. 𝜎𝑉𝑀𝑖 and 𝑉𝑖  are the maximum Von-Mises stress and volume of ith strut; 𝐹  is a 

representational force and 𝐿 is a reference length. These two parameters are problem specific and 

constant throughout the optimization process. K is the global stiffness matrix of lattice structure 

and u is the node displacement vector; P is the external load. 𝑉𝑐𝑜𝑛𝑠𝑡 is the given volume of the 

lattice structure; 𝑡𝑚𝑖𝑛  and 𝑡𝑚𝑎𝑥  are the minimum thickness and maximum thickness of lattice 

struts, respectively. The general workflow of this algorithm is presented in Figure 18. The 

overall logic of this proposed algorithm is to relocate struts’ material or volume according to 
struts’ stress distribution calculated from FEA. In this optimization algorithm, the key is the 

volume relocation process. In this process, the volume of struts whose maximum Von-Mises 

stress is lower than the given volume is reduced by a certain percentage and the total removed 

volume is redistributed according to struts’ stress distribution. Based on this volume relocation 

process, the updated structure can gradually adapt to the given external load. The detailed 

description of main steps of proposed optimization algorithm is given as follows: 

Start

Generate initial thickness list

Set boundary conditions

FE analysis

Calculate  Maximum Von-Mises 

stress & PI Index

Calculate reduction volume 

Redistribute reduction volume 

Check stop condition

Select Optimized Result

End

NO

YES

  

Figure 18 General working flow of BESO based lattice optimization algorithm 

Step1: Set up FEA model. In this model, the Timoshenko beam element is used to describe 

mechanical behavior of each lattice strut. The triangle shell element is used to model the skin on 

the lattice. Moreover, the FVs with solid material are meshed with 4 nodal tetrahedron elements. 

Step2: Generate thickness list of lattice struts.  

Step3: Apply all kinematic boundary constrains, loads, element properties, etc. 

Step4: Carry out a linear static finite element analysis of the structure.  

Step5: Calculate maximum Von Mises stress 𝜎𝑉𝑀𝑖  of each lattice strut in lattice frame.  

Step6: The thickness of lattice can be reduced if the strut satisfies following rule: 



Rule 4: Suppose 𝜎𝑉𝑀𝑖 is the maximum Von Mises stress of lattice strut 𝑠𝑖, 𝑡𝑖 is the thickness of 

lattice strut 𝑠𝑖, 𝜎𝑉𝑀𝑀𝑎𝑥 in the maximum Von Mises stress of all struts in lattice frame, if (𝜎𝑉𝑀𝑖 ≤𝑅𝑅 × 𝜎𝑉𝑀𝑀𝑎𝑥)⋀(𝑡𝑖 > 𝑡𝑀𝑖𝑛), then the material will be removed from the lattice 𝑠𝑖  which can 

denoted as 𝑠𝑖 ∈ 𝑆𝑟. 

In Rule 3, RR is known as rejection ratio. 0 ≤ 𝑅𝑅 ≤ 1. RR initially equals to 0.01. 

Step7: The reduced thickness 𝑡𝑟𝑖  of each reduced lattice strut is calculated by 𝑡𝑟𝑖 = 𝑅𝑇 × 𝑡𝑖            (4) 

Where RT is known as thickness remove ratio.  If 𝑡𝑖 − 𝑡𝑟𝑖 < 𝑡𝑚𝑖𝑛, then the reduced thickness 𝑡𝑟𝑖is recalculated by  𝑡𝑟𝑖 = 𝑡𝑖 − 𝑡𝑚𝑖𝑛           (5) 

Based on calculated 𝑡𝑟𝑖, the thickness of reduced strut is updated. 

Step8: The total removed volume 𝑉𝑟𝑡𝑜𝑡𝑎𝑙 is calculated by 𝑉𝑟𝑡𝑜𝑡𝑎𝑙 = ∑ (𝐴(𝑡𝑖) −𝑖=𝑛𝑖=1 𝐴(𝑡𝑖 − 𝑡𝑟𝑖))𝑙𝑖         (6) 

  

Where A is the function of struts cross section area with respect to its thickness; 𝑙𝑖 is the length of 

strut 𝑙𝑖. 
Step9: Redistribute removed volume to non-reduced struts whose thickness is lower than the 

maximum thickness. The added volume for strut 𝑠𝑖 can be calculated by: 𝑉𝐴𝑑𝑑𝑖 = (𝜎𝑉𝑀𝑖/ ∑ 𝜎𝑉𝑀𝑖𝑖=𝑘𝑖=1 ) × 𝑉𝑟𝑡𝑜𝑡𝑎𝑙          (7) 

Where k is the number of added volume struts. If  𝑉𝐴𝑑𝑑𝑖 + 𝑉𝑖 >  𝐴(𝑡𝑚𝑎𝑥)𝑙𝑖, the added volume 

will be recalculated by: 𝑉𝐴𝑑𝑑𝑖 = (𝐴(𝑡𝑚𝑎𝑥) − 𝐴(𝑡𝑖))𝑙𝑖           (8) 

The residual volume 𝑉𝑟𝑠𝑖 in the adding process of this strut can be expressed as: 𝑉𝑟𝑠𝑖 = (𝜎𝑉𝑀𝑖/ ∑ 𝜎𝑉𝑀𝑖𝑖=𝑘𝑖=1 ) × 𝑉𝑟𝑡𝑜𝑡𝑎𝑙 − (𝐴(𝑡𝑚𝑎𝑥) − 𝐴(𝑡𝑖))𝑙𝑖                    (9) 

The same method will be used to redistribute residual volumes into the remaining struts until the 

total residual volume equals to zero. 

Step10: Based on the calculated 𝑉𝐴𝑑𝑑𝑖 , the updated thickness of added volume struts can be 

calculated by: 𝑡𝑖′ =  𝐴−1(𝐴(𝑡𝑖) + 𝑉𝐴𝑑𝑑𝑖/𝑙 𝑖)         (10) 

Where 𝐴−1 is the inverse function of 𝐴. 

Step11: if |𝑃𝐼𝑖−1 − 𝑃𝐼𝑖| < 𝑐𝑠 or 𝑖 ≥ 𝑖𝑚𝑎𝑥, algorithm stop, else update RR by: 𝑅𝑅 = 𝑅𝑅 + 𝑟𝑖                    (11) 

Where ri is known as the rejection ratio incremental value.  

Step12: Repeat step4-step11, when condition in Step11 is not met. 

The optimized structure can be selected during the history of the optimization process.  

5 Case study 
In this section, a design optimization case for an aircraft engine bracket, shown in Figure 12, is 

given to validate the proposed design method of lattice structure. This part is originally designed 

with Ti-6Al-4V, whose material properties are shown in Table 1.  



Based on the functional analysis discussed earlier, two FVs and sixteen FSs are determined after 

the initial design stage. For the lattice structure FV, a periodic lattice structure with cubic grid 

topology is used. The initial design parameters of the lattice structure are given in Table 2. 

Table 1 Mechanical properties of material for engine bracket 

Material Name Young’s Modulus Poisson Ratio Yielding Stress Density 

Ti-6Al-4V 113Gpa 0.342 880 Mpa 4.43 kg/m3 

Table 2 Initial design parameters of lattice structure 

Lattice 

Topology 

Unit Cell 

Size /mm 

Orientation Cross Section 

Type 

Initial Struts’ Thickness 

(Radius) /mm 

Skin Thickness 

/mm 

Cubic 

Grid 
(5,5,5) 

(1,0.00,0.00), 

(0,0.66,-0.73), 

(0,0.73,-0.66) 

Circular Section 0.7 3 

Table 3 value of parameters in optimization algorithm 

RT 𝒓𝒊 𝒄𝒔 𝒊𝒎𝒂𝒙 F L tmax tmin 

0.1 0.01 0.001 50 42275 N 215 mm 1mm 0.3mm 

 

Based on the design parameters shown in Table 2, a lattice frame is generated through our kernel 

based approach. The result is shown in Figure 19(a). Meanwhile, the ordinary lattice generation 

method which trims all struts in FV has also been used to generate a lattice frame. Based on the 

same computer configuration (CPU: Intel® CoreTM i7 4770K, RAM: 24G), the computational 

time for these two lattice generation methods is recorded and shown in Table 4. In Table 4, 

Method 1 indicates the proposed lattice frame generation method which only trim the struts of 

boundary kernels, while the Method 2 indicates the lattice generation method which trim all 

lattice struts inside the FV. By comparing the computational time of these two lattice frame 

generation methods, it is clear that the computational time can be significantly shortened by only 

trimming the struts of boundary kernel in the proposed method. 

Table 4 Comparison between two types of lattice generation method 

Lattice Frame 

Generation Method 

Computational Time /s 

Method 1 20.7 

Method 2 41.6 

 

Based on the generated lattice frame and the initial selected parameters of lattice structures, the 

homogenous lattice structure with initial struts’ thickness is generated, which is shown in Figure 

19(b). To further improve the performance of the currently homogeneous lattice structure, the 

BESO-based algorithm is used to optimize struts’ thickness distribution. The boundary condition 

for this optimization case is shown in Figure 14. The values of the parameters used in this 

optimization algorithm are shown in Table 3. In this table, the representative Force F and 

representative length L are determined based on the external force exerted on the structure, and 

length of the diagonal vector of the bounding box, respectively. After six iterations, the 

optimization converged (i.e. the change of PI is less than given value  𝑐𝑠). The optimization 

process is shown in Figure 20. The lattice struts’ thickness distribution is shown in Figure 21. 

Based on this result, the 3D model of optimized part is generated which is shown in Figure 22. 



Compared to the homogenous lattice structure, both the maximum Von-Mises stress and 

maximum displacement of lattice structure were significantly decreased. A comparison of the 

weight of the lattice optimized part and the original design is given in Table 5. Clearly, the 

design optimization significantly reduces the weight of the original part, while satisfying 

specified functional requirements.    

       

         (a) Lattice frame                                             (b) Homogenous lattice structure 

Figure 19 Lattice frame and the homogenous lattice structure 

 

(a) PI index with respect to number of iteration 

 

(b) Maximum displacement of lattice nodes with respect to number of iteration 



 

(c) Maximum Von Mises stress of lattice struts with respect to the number of iteration 

Figure 20 Optimization process of lattice structure 

 

Figure 21 Thickness distribution of lattice struts in optimized structure 

 

 

Figure 22 Optimized Engine Bracket 

Table 5 Comparison between different designs 

Type of design Mass (kg) Perform Index 

Original Solid Design 2 Not Applicable 

Homogenous Lattice 0.54 0.74 

Heterogeneous Lattice 0.53 0.58 

 



6 Conclusion and future research work 
Through AM technologies, parts designed with multi-level complexity can be fabricated, 

resulting in vast improvements of functional performance. At the meso level, weight reduction 

and porosity can be achieved by integrating lattice structures into the part’s topology. Based on a 

careful review of current design methods for lattice structure, three critical issues were 

summarized. To solve these problems, a novel design method is proposed in this paper. Firstly, 

the concept of FS and FV are given to consider the functional role of solid volume and skin. 

Secondly, to generate a lattice frame inside a given FV, a kernel based lattice frame generation 

algorithm is presented. In this algorithm, the rule to recognize boundary kernels is given. By only 

trimming the frames of boundary kernels, the computational efficiency of the algorithm has been 

improved. Thirdly, by considering the lattice orientation, a new design parameter is introduced 

that may be adjusted to improve performance. Fourthly, a BESO based optimization method is 

proposed to optimize thickness distribution of the lattice struts. Compared to other structural 

optimization methods, the BESO based optimization method is easy to implement with an 

existing FEA solver, since it does not request to calculate gradient. Furthermore, besides periodic 

lattice structures which are mainly focused in this paper, the BESO based optimization method 

can also be easily modified and applied to other pseudo-periodic lattice such as conformal lattice 

in the future. The proposed method was validated through a case study. Compared to the original 

design with totally solid material, the optimized lattice structure reduced weight by nearly 75%. 

The maximum displacement of the customized lattice structure was reduced by 70.4% and the 

maximum Von-Mises stress was reduced by 65.7%, relative to a homogeneous lattice of the 

same volume.  

 

Future research will be focused on the following ideas. Firstly, an approach for optimizing the 

orientation of the lattice should be developed. The concepts involved were discussed briefly in 

this paper. Secondly, it is necessary to consider the connection points between different FVs with 

different type of lattice structure. Extra care should be taken for continuity between different 

lattice topologies.  Thirdly, the optimization of solid volume and skin thickness should also be 

considered in the design method. Finally, the proposed optimization method can be further 

improved by removing some boundary struts with really low stress. The related removing 

algorithm should be proposed.  
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