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Abstract - Shallow parsing is one of the natural language processing tasks, where various syntactic phrases 
such as noun phrases, verb phrases, and others, are identified. Here shallow parsing is considered as a 
sequence tagging task, and this paper presents the application of deep learning approach using recurrent 
neural networks (RNN) for shallow parsing. Specifically, gated recurrent unit (GRU), and bidirectional 
gated recurrent unit (BiGRU) are applied in parsing Khasi, an Austro-Asiatic language. These variants of 
the RNN address the vanishing gradient problem and the dependency of the chunk tags on both preceding 
and subsequent information from the sequential input data. The results have shown an improved 
performance compared to an existing shallow parser for Khasi. 
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1. Introduction 
Shallow parsing is a natural language processing task, where syntactic phrases such as noun phrases, verb phrases, 
prepositional phrases, and others are identified in a sentence. According to Abney [Abney (1991)] these phrases, 
also known as chunks, are non-recursive and do not contain each other. Natural language processing (NLP) tools 
and resources are still lacking for Khasi, a resource poor language, spoken by one of the tribes inhabiting the state 
of Meghalaya located in the northeastern part of India, which is one of the challenges faced in this work. Hence, 
when complete syntactic parsing for Khasi is not yet available, shallow parsing is a viable option as a means for 
providing sufficient information that can be used in other natural language processing tasks such as information 
extraction, Question Answering (QA) systems, and others. Deep learning approaches have shown very promising 
performances on sequence tagging [Yao et al. (2014)], and in this work, shallow parsing is also taken as a sequence 
tagging task. A deep learning mechanism with the use of gated recurrent unit (GRU), bidirectional gated recurrent 
unit (BiGRU) have been carried out in a recurrent network to perform shallow parsing for Khasi. The results have 
shown an improved performance when compared to an existing Khasi shallow parser. However, shallow parsing 
for Khasi is still in its infancy, where it has been possible to identify only noun and verb chunks. The data of what 
constitutes other types of chunks in Khasi are yet to be in place. 

2. Related Work 
Gated Recurrent Unit was introduced by Cho et al. [Cho et al. (2014)] to handle long distance data dependencies. 
It is an alternative to long short-term memory (LSTM) [Hochreiter and Schmidhuber (1997)] as suggested by 
Chung et al. [Chung et al. (2014)]. In their experiments, they concluded that the performance of a GRU versus an 
LSTM depended on the datasets and the task at hand, and neither is superior to the other. Neural networks have 
been applied to shallow parsing also known as chunking using convolutional neural network (CNN), but the 
problem was not approached sequentially [Collobert and Weston (2008)]. Here the chunks were part of a multi 
tasks learning which includes part-of-speech (POS) tags, named entity recognition (NER), and others. Another 
application of CNN with minimal pre-processing of input features gave encouraging results on chunking and other 
natural language processing tasks [Collobert et al. (2011)]. A variety of LSTM networks [Huang et al. (2015)] 
such as bidirectional LSTM (BI-LSTM) networks, LSTM with a Conditional Random Field (CRF) layer (LSTM-
CRF), and bidirectional LSTM with a CRF layer (BI-LSTM-CRF) have been carried out on POS tagging, 
chunking, and NER, and the  BI-LSTM-CRF model gave the best performance for chunking. Yang et al. [Yang 
et al. (2016)] carried out a multi-tasking and cross lingual training on English and Spanish. They employed gated 
recurrent units and CRFs and showed promising results for POS tagging, chunking, and NER tasks. State of the 
art performances based on task specific modeling on chunking have been reported by Shen and Sarkar [Shen and 
Sarkar (2005)] as well as Sun et al. [Sun et al. (2008)] with F1 scores of 94.01 and 94.34 respectively. Another 
work [Zhai et al. (2017)] which incorporates CNN for extracting features from chunks and integrating different 
neural models for chunking on the CoNLL shared task [Tjong Kim Sang and Buchholz (2000)] achieved F1 
measure of 94.72. For Khasi, the only reported work on shallow parsing was the use of a specialized Hidden 
Markov Model (HMM) with an F1 measure of 95.51 [Tham (2018b)]. This accuracy is possibly due to the 
identification of only noun and verb chunks, which are the only available chunk representations for the language.  
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3. A Brief Description of Deep Learning Approach to Shallow Parsing 
3.1.  Recurrent neural networks (RNNs) 

RNNs ability to capture previously seen information in predicting their output is well suited with sequential data 
[Graves (2012)]. Fig. 1 shows an unrolled RNN where each hidden state h is evaluated not only from its input 
value x but from its previous state. For a given input sequence x1, x2, …xn, the RNN is represented by Eq. (1) and 
Eq. (2) to evaluate the output yt. ht denotes the hidden state at time step t, and Whh, Whx, and Wyh are the weights 
for the hidden-to-hidden layer connection, the input connection, and the hidden-to-output connection respectively. 
bh denotes the bias for the hidden state and by denotes the bias for the output state. f is the activation function 
applied on the hidden and output nodes throughout the network. 
 

 
Fig. 1. An Unrolled RNN [Adapted from Graves (2012)] 

 
 ℎ 𝑓 𝑊 ℎ 𝑊 𝑥 𝑏  (1) 
 𝑦 𝑓 𝑊 ℎ 𝑏   (2) 
3.2. Gated Recurrent Unit (GRU) 

One variation of RNNs is a GRU [Cho et al. (2014)], which captures long term dependency and addresses the 
vanishing gradients problem often encountered when training RNNs. In this unit the hidden state ht of the GRU 
is calculated as follows: 
 ℎ 𝑢 ⨂ ℎ 1 𝑢 ⨂ ℎ  (3) 
where u is the update gate, which decides whether ht is updated or not, and ⨂ is an element-wise multiplication. 
The update gate u is updated by applying a sigmoid logistic function σ in this way: 
 𝑢 𝜎 𝑊 ℎ 𝑊 𝑥 𝑏  (4) 
The candidate cell is updated by using the hyperbolic tangent as 
 ℎ 𝑡𝑎𝑛ℎ 𝑊 𝑥 𝑊 𝑟 ⊗  ℎ 𝑏  (5) 
where r is the reset gate to compute the relevance of ht-1 to ht . The reset gate r is calculated in the following way, 
 𝑟 𝜎 𝑊 ℎ 𝑊 𝑥 𝑏  (6) 
Fig. 2 depicts a pictorial representation of the GRU given in Eq. (3), Eq. (4), Eq. (5), and Eq. (6) 
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Fig. 2. Gated Recurrent Unit [Adapted from Cho et al. (2014); Chung et al. (2014)] 

3.3. Bidirectional Gated Recurrent Unit (BiGRU) 

In the current problem, the entire sequence of input is available to the parser. Hence, to take advantage of not only 
previously seen input, but also the next available input sequences, a BiGRU is incorporated. Here, instead of one 
GRU cell, two GRU cells are placed between the input and the output. One GRU cell’s input (e.g htf) is the normal 
input sequence, while the other GRU cell’s input (e.g htb) is the same input sequence in reverse order. Fig. 3 shows 
how these cells are placed in the network. 

Fig. 3. Bidirectional Gated Recurrent Unit [Adapted from Graves (2012); Cho et al. (2014)] 

4. Implementation 
The annotated corpus for Khasi used in this work is specified in [Tham (2018b)]. The corpus contains 3,997 
sentences, 86,087 tokens and 24,194 of noun and verb chunks. The present format of the training set contains only 
noun and verb chunks using the BIO labeling [Ramshaw and Marcus (1995)], since other chunk types are yet to 
be identified. Here B stands for beginning of a chunk, I means it is part of a preceding chunk, and O means it is 
outside of any chunk. A sample sentence from the annotated corpus is as follows: 
Tiap/RB/O tang/RB/O shu/RB/O poi/V_VM/O ha/IN/O bri/N_NN/B-NP ,/RD_PUNC/O u/PR_PRP_M/B-NP 
slap/N_NN/I-NP u/PR_PRP/O sdang/V_VM/O hap/V_VM/O ./RD_PUNC/O 
‘Immediately when he reached the field the rain started falling.’ 
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For instance the word slap ‘rain’ is tagged with the Khasi BIS POS tag N_NN [Tham (2018a)], which stands 
for common noun. It is also tagged with I-NP using the BIO labeling which means it is part of the preceding noun 
phrase [Tham (2018b)]. Since, only noun and verb chunks are annotated in the corpus, the total number of chunk 
tags utilized is 5. However, the total number of chunk tags used for training is 83.  This is due to the transformation 
of the training and test data as carried out in [Tham (2018b)]. The transformed input data comprises only of POS 
tags, and the transformed output comprises of a combination of POS tags along with the chunk tags. The output 
tag is a concatenation of the POS tag along with the chunk tag using a period (.). The sample sentence given above 
is therefore transformed in the following way: 

RB/RB.O RB/RB.O RB/RB.O V_VM/V_VM.B-VP IN/IN.O N_NN/N_NN.B-NP RD_PUNC/RD_PUNC.O 
PR_PRP_M/PR_PRP_M.B-NP N_NN/N_NN.I-NP PR_PRP/PR_PRP.O V_VM/V_VM.B-VP V_VM/V_VM.B-
VP RD_PUNC/RD_PUNC.O 

The above sentence is a sample of the training data format given to the neural network. The training is carried 
out using the Keras library in Google Colab a Jupyter notebook environment. As per Keras specification, the input 
and output data are uniquely indexed into integers i.e., a unique integer is assigned to each input token and each 
output tag. Another requirement of Keras is that the input sequence be of fixed length. To estimate the maximum 
length possible, the maximum length of the input sentence present in the training corpus is taken to be the standard 
length for all input sentences during training. Any sentences that are shorter are zero padded to the right during 
training and likewise during testing.  

The neural network is initially trained on a GRU with various numbers of neurons. The test data consist of 
unseen data during training with 402 sentences and 2,210 noun and verb chunks. The above input sentence 
comprises of the Khasi BIS tags explicated in [Tham (2018a)]. The sample indicates that given any Khasi 
sentence, the first step required before parsing is for the sentence to be tagged with POS tags.  This can be carried 
out using an existing Khasi POS tagger. The next step is to extract only the POS tags from the sentence, which 
then becomes the input sequence for the parser. The results of the network comprising GRUs are shown in Table 
1. The network performed best with 256 neurons, but its performance is not at par with the existing Khasi HMM 
shallow parser. 

Table 1.  Parsing with GRU 

Parser No. of Neurons Precision Recall F1 score 
HMM Parser [Tham (2018b)] - 94.39 96.65 95.51 

GRU 64 91.9 93.92 92.9 
GRU 128 91.71 93.77 92.73 
GRU 256 91.17 94.99 93.04 

Therefore, as explained earlier, to incorporate information from the future input along with previously seen 
input, a network comprising of BiGRU is also carried out. The results of the BiGRU parser are shown in Table 2. 
In both cases (GRU as well as BiGRU), a softmax function is used in the output layer for multi-classification 
along with the default embedding provided by Keras. In the case of the BiGRU, best performance is obtained with 
256 neurons with an F1 score of 98.91. This shows that the ability to extract information from the future improves 
the performance of the parser when compared to the HMM parser. Table 3 shows the noun (NP) and verb (VP) 
chunks precision and recall of the BiGRU parser with 256 neurons. 

Table 2. Parsing with BiGRU 

Parser No. of neurons Precision Recall F1 score 
HMM Parser [ Tham (2018b)]  - 94.39 96.65 95.51 

BiGRU 64 97.11 98.06 97.58 
BiGRU 128 98.45 98.79 98.62 
BiGRU 256 98.79 99.03 98.91 

Table 3. Noun and verb chunk results 

BiGRU parser (256 neurons) Precision Recall F1 score 
NP 97.87 98.24 98.05 
VP 99.8 99.9 99.85 
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The results shown in Table 2 and Table 3 are very optimistic. One reason is that the HMM parser and the BiGRU 
parser are tested on an input sequence where the POS tags are extracted from gold data which is deemed to be a 
correct input sequence. The input sequence is not influenced by the performance of the Khasi POS tagger which 
is reported to have 95.68% accuracy [Tham (2018a)]. To gain insights to the extent of the influence of the Khasi 
POS tagger on the performance of the BiGRU parser, the output of the Khasi POS tagger is given as input to the 
BiGRU parser. In other words, firstly, the same test data is tagged with the existing POS tagger, and secondly, it 
is parsed by the BiGRU parser. Table 4 and Table 5 indicate the results of the BiGRU parser on the POS tagged 
data. Here, we can see that the performance of the parser is greatly affected by the performance of the tagger. This 
is a natural occurrence when one phase depends on another phase. 

Table 4.  Parsing on data that is already tagged by the Khasi POS tagger having 95.68% accuracy  

 Precision Recall F1 score 
BiGRU parser (256 neurons) 89.59 90.24 89.91 

Table 5. Noun and verb chunk results on data that is tagged by the Khasi POS tagger 

BiGRU parser (256 neurons) Precision Recall F1 score 
NP 85.0 85.24 85.12 
VP 94.57 95.72 95.14 

5. Conclusion 
The performance of a deep learning approach with an F1 score of 98.91 has shown considerable improvement 
when compared to an existing HMM Parser for Khasi. BiGRUs have proven again that they work well with 
sequence labeling task because of the accessibility of the preceding and subsequent information in the input 
sequence. In reality, both the HMM parser [Tham (2018b)] and the BiGRU parser depend on the output of the 
POS tagger to perform shallow parsing. The effect of the dependency on the POS tagger’s performance is tested 
with the BiGRU parser which has a better performance on test data than the available HMM parser (Table 2).  
Table 4 clearly indicates that even with the POS tagger’s accuracy of 95.68% [Tham (2018a)], it drastically affects 
the BiGRU parser where naturally it’s F1 score is 89.91.  Because of this dependency, hopefully a POS tagger 
with a higher accuracy for Khasi will be available. 
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