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ABSTRACT Neuromorphic computing embraces the “device history” offered by many analog non-volatile
memory (NVM) devices to implement the small weight changes computed by a gradient-descent learn-
ing algorithm such as backpropagation. Deterministic and stochastic imperfections in the conductance
response of real NVM devices can be encapsulated for modeling within a pair of “jump-tables.”
Such jump-tables describe the full cumulative distribution function of conductance-change at each
device conductance value, for both weight potentiation (SET) and depression (RESET). First, using
several types of artificially constructed jump-tables, we revisit the relative importance of deviations
from an ideal NVM with perfectly linear conductance response. Then, using jump-tables measured
on improved non-filamentary resistive RAM devices based on Pr0.7Ca0.3MnO3[see companion paper],
we simulate the effects of their nonlinear conductance response on the training of a three-layer fully
connected neural network. We find that, despite the relatively large conductance changes exhibited
by any Pr0.7Ca0.3MnO3device when either potentiating from its lowest conductance state or depress-
ing from its highest conductance states, neural network training accuracies of >90% can be achieved.
Highest accuracies are achieved by programming both conductances on each timestep (“fully bidirec-
tional”), with the improved conductance on/off ratio of Al/Mo/PCMO resulting in marked improvements
in training and test accuracy. Further accuracy improvements can be obtained by tuning the relative
learning rate for potentiation (SET) by a factor of 1.66× with respect to depression (RESET), to off-
set the slight asymmetry between the average size of the associated SET and RESET conductance
changes. Finally, we show that the bidirectional programming of Al/Mo/PCMO can be used to implement
high-density neuromorphic systems with a single conductance per synapse, at only a slight degradation
to accuracy.

INDEX TERMS Multi-layer neural network, neural network hardware, nonvolatile memory.

I. INTRODUCTION

Neuromorphic systems offer strong potential for fault-
tolerant, massively parallel, energy-efficient computation [8].

Tasks involving image classification, speech recogni-
tion, machine translation and other pattern recognition
tasks can potentially be more efficiently implemented
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FIGURE 1. Non-Von Neumann computing [1], [4]–[6] for implementing
brain-inspired algorithms calls for multi-layer networks, in which each
layer of neurons drives the next through dense networks of programmable
synaptic weights. Dense crossbar arrays of nonvolatile memory (NVM) and
transistor device-pairs, or potentially two-terminal selectors [7], can
efficiently implement such neuromorphic networks [1].

in such architectures than in conventional Von-Neumann
hardware. For a practical VLSI implementation, both
CMOS-based neurons and peripheral circuitry as well
as artificial synapses for storing weight data will be
required.
Numerous neuromorphic algorithms have been discussed,

ranging from unproven and still immature brain-inspired
Spiking Neural Network algorithms [8], [9] such as Spike-
Timing-Dependent-Plasticity [10], to older and quite mature
algorithms such as backpropagation [11] for Deep Neural
Networks (DNNs) [12] (Fig. 1). While binary or trinary
weights have been shown to be sufficient for forward-
evaluation of DNNs [13], [14], weight update during training
seems to require multiple bits of precision [15] or analog
weights [4].
Numerous analog memory devices have been discussed

for such neuromorphic applications, ranging from filamen-
tary Resistive RAM (RRAM) [16]–[18], Phase Change
Memory (PCM) [4], [19], [20], Conductive-Bridging RAM
(CBRAM) [21], [22], and even Ferroelectric RAM [23].
Desirable characteristics include scalability, low power oper-
ation, high endurance, multi-level data storage, and a com-
pact 4F2 cell size suitable for implementation in high-density
crossbar arrays [8].
One of the weaknesses of filamentary RRAM and PCM

is the asymmetry between the gradual changes of ana-
log conductance in one direction (which depend, as is
desired, on “device history”), and abrupt changes in the
other direction (which are, unfortunately, nearly indepen-
dent of device history). For instance, conductance increases
of a PCM device by partial-SET pulses can be gradual,
as successive pulses – even if identical – can crystal-
lize more and more of an amorphous plug within the
device [24]. In contrast, conductance decreases (the RESET
step) are difficult to implement gradually, especially when
one is constrained to a single pulse condition across a
large array. For filamentary RRAM, it is the filament dis-
solution process (RESET) that can be gradual, while it is
filament formation (SET) that is abrupt, requiring external

current compliance to avoid overly-thick and conductive
filaments [16].
In contrast, non-filamentary RRAM, such as devices based

on Pr0.7Ca0.3MnO3, show many of the desired characteristics
of analog synaptic devices including bidirectional gradual
conductance change. PCMO-based synapse devices with
Mo electrodes exhibit bidirectional change but low con-
ductance contrast [25]. Devices with Al/PCMO structure
have been reported showing multi-level states of conduc-
tance and excellent uniformity in a high-density, 1 kbit
cross-point array [26]. Feasibility for encoding neural net-
work weights was shown based on fits to the median device
characteristics [6]. However, Al/PCMO exhibits undesired
stability issues when placed in a more conductive state, due
to excessive reactive oxidation at the metal/oxide interface
after switching [27].
In this two-part paper, we address these two issues: the

need for PCMO-based devices with better stability in con-
ductance states offering high contrast, and the need to model
neural network behavior based on measured rather than fitted
device characteristics, including their stochastic behavior. In
Part I, we described improved Al/Mo/PCMO devices offering
improved retention and conductance contrast characteristics,
and measured both switching energy as well as “jump-tables”
describing both the median and stochastic device behavior
to successive application of the same set of programming
pulses (one pulse condition for potentiation (SET), and a
second pulse condition for depression (RESET)).
In this Part II, we use these measured jump-tables to

model the performance of PCMO-based devices on a typ-
ical multi-layer perceptron trained on MNIST. We revisit
earlier work in which we artificially constructed jump-tables
comprised of simple linear and non-linear functions of con-
ductance change, in order to straightforwardly illustrate their
impact on neural network classification performance. We
study the difference between older Mo/PCMO devices [25]
and these newer Al/Mo/PCMO devices [3], using two dif-
ferent weight-update schemes, “alternate bidirectional” and
“fully bidirectional.” These two schemes differ only in which
conductance(s) get(s) programmed to achieve the weight
change called for by backpropagation through the neural
network. By use of an additional artificial jump-table, we
prove that the accuracy issues of Pr0.7Ca0.3MnO3devices
cannot be simply assigned to the very large conduc-
tance changes exhibited when either potentiating from the
lowest conductance states or depressing from the high-
est conductance states. We show that, by offsetting the
slight asymmetry between the average size of the SET
and RESET conductance changes, tuning of the relative
learning rate for potentiation (SET) with respect to depres-
sion (RESET) can provide further accuracy improvements.
And finally, we show that the bidirectional programming
of Al/Mo/PCMO can be used to implement high-density
neuromorphic systems with only a single conductance
per synapse, at only a slight degradation to classification
accuracy.
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FIGURE 2. (a) Artificial conductance response (for illustration of the
jump-table concept, not representing any particular PCMO device) as a
function of pulse (median response in blue, ±1σ response in red), and
(b) corresponding “jump-table” plotting likelihood of conductance-change
(cumulative probability in color from dark blue (0%) to dark red (100%)).

II. THE ”JUMP-TABLE” CONCEPT

In [6], TiN/PCMO RRAMs were used as synaptic devices
in a simulated neuromorphic system with a measure-then-
fire programming scheme. The intrinsic non-linearity of the
resistive switching was nearly completely compensated by
choosing programming voltage carefully for each initial con-
ductance value. It was observed that, when parameters were
tuned so that the effective conductance response was lin-
ear, very high classification accuracy (up to ≈ 90.55%)
could be reached for a three-layer perceptron architecture
when trained on MNIST [6]. However, for real VLSI sys-
tems where millions of artificial synapses will need to be
implemented [28], it will be highly impractical to sequen-
tially measure every device before programming. Thus it is
critical to determine if the native response of these NVM
devices will be sufficient to deliver similarly high accuracy
when programmed in a true “open loop” fashion.
Even when each programming pulse uses the same pre-

defined amplitude, shape and duration, the conductance
response of an array of NVM devices can exhibit signif-
icant non-idealities. Conductance response — e.g., the size
of the conductance change induced by each pulse — can be
nonlinear as a function of conductance, with identical SET
pulses causing large jumps at low conductance, but much
smaller jumps at high conductance. There can be asymmetry
between positive (SET) and negative (RESET) conductance
changes, even after the amplitude, shape and duration of
the single pulse used for SET, and of the single pulse for
RESET, are independently optimized for best match. And
finally, in many real NVM devices, each conductance jump
is inherently stochastic in nature.
All these behaviors can be compactly captured in the form

of a pair of jump-tables, one for SET and one for RESET.
Fig. 2(a) plots median conductance change just for SET
(potentiation, blue curve), together with the ±1σ stochastic
variation about this median change (red lines). Fig. 2(b)
shows the jump-table that fully captures this conductance
response, plotting the cumulative probability (in color, from
0 to 100%) of any conductance change �G-per-pulse at
any given initial conductance G. This number represents,
for devices starting at the conductance G, the likelihood that

a single programming pulse induces a conductance change
smaller than the given �G.
Jump-tables can be empirically constructed by using

constant-amplitude and duration pulses to explore the full
range of conductances exhibited by the device [3]. Each
measured programming pulse results in an increment of
one and only one integer “bin” within an initially all-zero
matrix spanning the expected range of (initial-conductance,
conductance-change) space. After accumulating a large
amount of data, this data is simply normalized within each
initial-conductance-bin column (creating a probability den-
sity function (PDF) of conductance-change at a given initial
conductance), and then integrated along the conductance-
change axis to turn that PDF into a cumulative distribution
function (CDF). By representing this data in terms of a
monotonic CDF, a computer simulation need only sample
a uniform random deviate for random number r, and then
search the appropriate column of the jump-table (correspond-
ing to the initial conductance before the pulse) to find the
first �G entry which exceeds r.

III. BIDIRECTIONAL NON-FILAMENTARY RRAM: WHAT

MAKES FOR A GOOD JUMP-TABLE

In addition to using a measured jump-table to simulate
the SET response of PCM devices [1], we have previ-
ously studied various artificially-constructed jump-tables [2].
Because of their relevance in understanding the general role
of different features found within jump-tables, we include
these results here. These studies help provide an intuitive
understanding of the impact that various features of such
jump-tables have on the classification performance in the
ANN application.
Except for the specific jump-tables, the ANN simula-

tions performed here are identical to those in Ref [1]. A
large-scale 3-layer perceptron (916 neurons and 164,885
synapses [1], [2], [4]–[6], [29]) was trained for 20 epochs
on the first 5000 examples of the MNIST handwritten digit
database, with images cropped to 22×24 pixels. The full
“test” dataset of 10,000 different images was used for testing
generalization after training was complete. Unless otherwise
noted, two resistive switching devices are used to realize one
synapse, with positive and negative weights encoded as the
difference between the value of the two paired conductances.
Fig. 3 shows the network architecture used in the simu-

lations. Every synapse is composed of two NVM devices,
referred to as G+ and G−, each with its own selection tran-
sistor. In our crossbar-compatible weight update scheme [1],
both the upstream and downstream neurons fire between
zero and four pulses towards their shared synapse, based on
their internal knowledge of the most recent x (δ) value [28].
For bidirectional RRAM, unlike with PCM or unidirectional
RRAM, the upstream neuron must change the voltage polar-
ity of its pulses based on whether a partial SET or partial
RESET operation is desired. Since the upstream neuron has
no knowledge of the possible sign of the update, it must
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FIGURE 3. (a) Circuit implementation of the analog multiply-accumulate
operation (MAC) during the forward inference phase calls for
highly–parallel current integration [28]. Weight update, in both (b) the
‘alternate bidirectional’ scheme and (c) the ‘fully bidirectional’ scheme,
uses crossbar-compatible weight update [1] to program NVM devices only
when both the upstream and downstream neurons have received a large x

(δ) value during forward inference (reverse propagation). Learning rate (η)
is used to scale from x (δ) to the actual number of programming pulses
fired from the upstream (downstream) neuron.

FIGURE 4. (a) For a set of constructed linear conductance responses
where the depression (RESET, magenta) response is steeper than the base
potentiation (SET, green) response, the (b) resulting jump-table shows
larger (but constant) steps for RESET. (For clarity, only median response is
shown.) (c) Although even a small SET/RESET asymmetry causes
performance to fall off steeply (solid curves with filled symbols), the
downstream neuron can partially compensate for this asymmetry by firing
fewer RESET pulses (or more SET pulses). Inset shows same data plotted
on a linear horizontal scale.

fire its pulses twice, in two separate time intervals. In con-
trast, the downstream neuron with knowledge of the sign
of the update through the sign of δ fires its pulses only
during the appropriate time interval. Conductance update
occurs when the synapse receives pulses from both neurons
simultaneously, as mediated by the selection transistor.
Since RRAM devices such as Al/Mo/PCMO are them-

selves Back-End-Of-the-Line (BEOL)–compatible, inte-
grated two-terminal bidirectional-capable access devices —
such as the Mixed-Ionic-Electronic-Conduction (MIEC)–
based devices presented in [30] — could also be used, in
order to have more silicon area available for implementing
the required peripheral circuitry [28]. For the purposes of
this study, artificial neurons are considered here to be ideal,
implementing a perfect tanh() nonlinear activation function,

FIGURE 5. Impact of the relative extent of the linear region of conductance
change on neural network performance [2]. (RESET conductance response
remains linear at all times). a) Conductance vs. number of pulses,
b) hypothetical jump-tables studied, and c) impact on training and test
accuracy. A substantial non-linear conductance region (up to ∼50%) could
be accommodated without loss in application performance.

although imperfect neurons can have their own effect on
accuracy [29], [31].
In this paper, two variants on this weight update scheme

will be discussed, as shown in Figs. 3(b) and (c). In the
‘alternate bidirectional’ scheme, only one conductance is pro-
grammed for every update step, alternating on each example.
For instance, for an even-numbered example, only the pos-
itive conductance G+ might be adjusted, either potentiated
if the backpropagation algorithm calls for a weight increase,
or depressed if the backpropagation algorithm requests a
weight decrease. On odd-numbered examples, the weight
change would be implemented using only changes to the
G− conductance. In contrast, in the ‘fully bidirectional’
scheme, both synapses are adjusted for each example, with
both G+ increased and G− decreased, or vice-versa. We
have previously shown that, for ideal bidirectional conduc-
tances, the ‘fully bidirectional’ scheme is preferable – and
this scheme will be used throughout this first section on
artificial deviations from such ideal jump-tables.
The first question we addressed was the impact of asym-

metry in conductance response [2]. Here we assumed that
both conductance responses were linear (Fig. 4(a)), but that
RESET conductance response was much steeper than SET,
so that the stepsize of the depression (RESET) jump-table
was increased (Fig. 4(b)). As shown by the solid curves with
filled symbols in Fig. 4(c), even a small degree of asymmetry
tended to make classification accuracy fall steeply. However,
each downstream neuron has knowledge of the sign of the
backpropagated correction, δ, and thus knows whether it is
attempting a SET or RESET. This implies that asymme-
try can be partly offset by “correcting” a steeper RESET
response by firing commensurately fewer RESET pulses (or
more SET pulses). As shown by the dotted curves with open
symbols in Fig. 4(c), this markedly expanded the asymmetry
that could potentially be accommodated [2].
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FIGURE 6. Impact of the “strength” of an initial non-linearity on neural
network performance [2]. a) Conductance vs. number of pulses,
b) hypothetical jump-tables studied, and c) impact on training and test
accuracy. Strength of an initial non-linearity does not impact test
classification accuracy, so long as a sufficiently large linear region is
available.

Fig. 5 examines jump-tables that incorporated some degree
of initial non-linearity in the SET conductance response
(Fig. 5(a)) [2]. The relative extent of the linear region was
varied from 100% (fully linear) down to near 0% (fully non-
linear). For this and all subsequent studies in this section,
we assumed that RESET operations were perfectly linear
and symmetric to SET (Fig. 5(b)). We found that a substan-
tial non-linear conductance region (up to ∼50%) could be
accommodated without a significant drop-off in the neural
network performance (Fig. 5(c)) [2].
Fig. 6 examines the impact of the strength of this ini-

tial non-linearity on the neural network performance [2]. In
these experiments, a stronger (weaker) non-linearity implied
fewer (more) steps to traverse the extent of the non-linear
region (representing 25% of the total conductance range,
Fig. 6(a)). The strength was defined as the ratio between
the size of the final (minimum) conductance jump and the
initial (maximum) conductance jump (Fig. 6(b)). Again, we
found that the strength of the non-linearity had little impact
on the test accuracy (Fig. 6(c)), so long as the linear region
was sufficiently large [2].
We also investigated fully non-linear conductance

responses of varying strengths (Figs. 7(a) and (b)). We found
that it was still possible to achieve high classification accu-
racies (Fig. 7(c)), so long as the ratio of the minimum to
maximum conductance jumps was >0.5. However, larger
non-linearities caused a marked drop-off in network perfor-
mance, as a large portion of the dynamic range could be
used up by just a few training pulses [2].

IV. AL/MO/PCMO: SIMULATED NETWORK

PERFORMANCE

In order to model the rate and variability of PCMO-based
weight elements, jump-tables from measured device charac-
teristics were constructed [3]. In Fig. 8, data from 50,000
SET (−4.0V , 10ms) and RESET pulses (3.5V , 10ms) applied

FIGURE 7. Impact of fully non-linear conductance response [2].
a) Conductance vs. number of pulses, b) hypothetical jump-tables studied,
and c) impact on training and test accuracy. Even in the absence of a linear
region it is possible to achieve high performance — however, the ratio of
minimum to maximum conductance change needs to be sufficiently large
(>0.5) [2].

FIGURE 8. (a), (b) SET and RESET jump-tables for Mo/PCMO devices. (c),
(d) SET and RESET jump-tables for Al/Mo/PCMO devices. The colormap
indicates the cumulative distribution function of
conductance-change-per-pulse (�G-per-pulse), as a function of the
conductance (G). To synthesize the first SET-RESET pair of jump-tables (a),
(b), data from initial conductance and resulting conductance change
across 50000 total switching pulses applied across three different
Mo/PCMO resistive switching memories with via-hole size of 200nm were
measured. Similarly, three different Al/Mo/PCMO devices, also of 200nm
via size, and a similar number of programming pulses were used to
generate (c), (d). All SET pulses were (−4.0 V, 10 ms), all RESET pulses were
(3.5V, 10 ms). See companion article [3] for more details.

to three 200nm-sized devices is plotted, for both Mo/PCMO
and Al/Mo/PCMO devices. Due to intrinsic non-linearity,
jump sizes at the extremes of both tables appear very large
for both Mo/PCMO and Al/Mo/PCMO. Moreover, the aver-
age RESET jump size for intermediate conductance values
is slightly larger than the SET. As we will see in this sec-
tion of the paper, these two characteristics can each have an
adverse effect on neural network classification performance.
Fig. 9 shows training and testing accuracy with varying

values of the global learning rate, η. In the context of the
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FIGURE 9. Training and test accuracy comparison (vs. global learning rate
η) for Mo/PCMO and Al/Mo/PCMO with (a) ‘alternate bidirectional’ and
(b) ‘fully bidirectional’ weight update schemes. Al/Mo/PCMO-based
devices consistently show better neural network training accuracies.

crossbar-compatible weight update, the learning rate rep-
resents the average number of programming pulses fired
per update, and modulates the conversion of the local
information within the neuron of x or δ to the number of pro-
gramming pulses to fire. If the learning rate is very low, for
example, no programming occurs at all, since pulses are only
fired for exceedingly large x or δ values. Once learning rate is
increased beyond some ‘critical’ threshold at which the sys-
tem starts learning, classification accuracy tends to decrease
as the learning rate increases, affected strongly by the dis-
crepancy between desired and actual weight-changes as
implemented within the imperfect memory devices. Because
of the more limited conductance range over which similar
SET and RESET characteristics are achieved, Mo/PCMO
devices exhibit lower overall neural network accuracies than
with Al/Mo/PCMO devices. Some of the characteristics high-
lighted in Part I of this paper [3], such as higher ON/OFF
ratio, do in fact help make Al/Mo/PCMO a more promising
candidate as a neuromorphic synapse.
Despite this improved performance, Al/Mo/PCMO-based

RRAM still exhibit some undesirable characteristics. Fig. 10
shows the Al/Mo/PCMO conductance response (median
and stochastic variance) produced by integrating the jump-
table from minimum to maximum conductance and back.
Although switching characteristics are somewhat linear over
a portion of the conductance range, two very steep regions
are present at the edges (as expected from inspection of
Fig. 8). This causes identical programming pulses to induce
very different conductance changes (and thus weight updates
that fail to achieve those requested by the neural network)
depending on the particular conductance state before pro-
gramming. Unfortunately, prior measurement of the device
initial conductance before each weight-update would intro-
duce impractically-large time and energy demands to the
neural network training procedure.
Fig. 11 shows another artificial jump-table experiment,

to assess the impact of very large jumps at the lower and
upper edges of the conductance range. This study, carried
out using the ‘alternate bidirectional’ weight update scheme,
shows that good performance can be maintained for very

FIGURE 10. (a) Resulting median and ±1σ conductance response of
Al/Mo/PCMO devices under successive 10ms-long programming pulses, as
computed from the measured jump-tables (Fig. 8). The median switching
characteristic is plotted in blue, with the response at ±1σ of the C.D.F.
drawn in red. (b) Insets show the correspondence between the
approximate conductance response of a PCMO-like NVM and (c) the
expected effects within the G-diamond. The large conductance increases
upon potentiating any low conductance state (orange rectangles) and the
large conductance decreases upon depressing any high conductance state
(light blue rectangles) leave only a small portion in the center of the
G-diamond where synapses can be somewhat protected from large, abrupt
weight changes.

FIGURE 11. (a), (b) Artificial jump-tables of conductance-change-per-pulse
(�G) constructed for both SET and RESET to simulate the effect of large
jumps at the edges of the conductance range. Large jumps (�Gmax ) are
produced over the ≈ 10% of the total conductance range at the left edge
of the SET table (potentiating low conductances) and over a similar extent
of the right edge of the RESET jump-table (depressing high conductances).
The rest of the table represents a much smaller (but here symmetric) jump,
�Gmin. (c) Training and test accuracy while varying the amplitude of the
large �Gmax jump with respect to the small fixed �Gmin, using the
‘alternate bidirectional’ configuration. The system is capable of achieving
good performance up to values of �Gmax/�Gmin ≈ 100. For comparison,
the measured value for Al/Mo/PCMO is ≈ 189.

high jump-size disparity. This makes sense since, according
to Fig. 5, large nonlinearities can be tolerated if the portion
of the conductance regime over which they occur is small.
Another feature of Al/Mo/PCMO devices is that, because

of the structure and switching asymmetry, the size of the
conductance change for a single RESET pulse applied to an
Al/Mo/PCMO device in an intermediate conductance state
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FIGURE 12. NVMs often show asymmetric conductance response due to
the differing physics controlling potentiation and depression.
Al/Mo/PCMO -based RRAM tend to exhibit a RESET transition which is
steeper than the SET transition. This characteristic must to be taken into
account when building large scale neuromorphic systems. (b) and (c) show
how differentiated learning rates can be chosen in the ‘alternate
bidirectional’ weight update, and (d) in the ‘fully bidirectional’ scheme.

FIGURE 13. Training and test accuracy plotted vs. ‘asymmetry correction
factor’, defined as the ratio between the learning rate for SET and RESET
operation (ηSET /ηRESET ) for (a) ‘alternate bidirectional’ and (b) ‘fully
bidirectional’ weight update schemes. By decreasing the relative RESET
learning rate (ηSET /ηRESET > 1), it is possible to increase classification
accuracy, which peaks for ηSET /ηRESET ≈ 5/3. However, over-correcting can
cause performance to decline steeply.

is larger than the conductance change induced by a sin-
gle SET pulse. In Fig. 12, we show a zoomed version of
the Al/Mo/PCMO jump-table, clearly showing two different
jump-sizes for SET and RESET at intermediate conductance
values. Nevertheless, as was already shown in Fig. 4, it is
possible to use peripheral circuitry to compensate for this
phenomenon — by defining two different learning rates for
SET and RESET operation. As a result, the downstream
neuron — which knows whether it is inducing a SET or
RESET through its knowledge of the sign of δ – can choose
to intentionally fire more pulses when performing a SET
operation.
The result of this correction is plotted in Fig. 13. For both

update algorithms, it is possible to increase the accuracy and
find an optimum correction factor (defined as the ratio ηSET
/ηRESET ) which, in both cases, is equal to ≈ 1.66.

FIGURE 14. Optimized training evolution for Al/Mo/PCMO-RRAMs with
the (a) ‘alternate bidirectional’ and (b) ‘fully bidirectional’ weight update
schemes (purple curves), compared to ideal bidirectional NVMs (green
curves). The inset shows the G-diamond plot of synapse distributions
before and after training for the Al/Mo/PCMO-RRAMs.

In Fig. 14, training accuracy seems to converge very
rapidly to high values (> 90%) after the first few epochs.
However, accuracy improvements then seem to saturate after
this point within the training. It appears as if the network
finds it impossible to tune the weights carefully, due to the
occasional disruptions introduced by large jumps induced
when potentiating a device from a low conductance value
or depressing a device from a high conductance value. By
looking at the G-diamond plots (inset), we note that the
‘alternate bidirectional’ weight update scheme tends to push
synapse states to the lateral extents of the G-diamond (e.g.,
far to the left, towards G+ ∼ G— ∼ Gmin, or far to the
right, towards G+ ∼ G— ∼ Gmax). As we have observed
before [4], such synaptic states in which low weight is
represented by two similarly-low or two similarly-high con-
ductances tend to make it more difficult for the network to
move this synapse to a state with a large magnitude should
it wish to do so, which then seems to reduce the maximum
accuracy achievable. Even with ideal synaptic devices, train-
ing accuracy with the ‘alternate bidirectional’ scheme can
never exceed a maximum value of ≈ 95% [4]. For ideal
linear bidirectional NVMs, the ‘fully bidirectional’ scheme
works better than the ‘alternate bidirectional’ scheme [4].
For the highly imperfect Mo/PCMO device, we observe
that the ‘alternate bidirectional’ scheme is preferable (see
Fig. 9), as if the adverse G-diamond effects of this scheme
were outweighed by the benefits of only having to fire one
potentially-problematic programming pulse instead of two.
In contrast, with the improved characteristics and higher
usable conductance range of Al/Mo/PCMO, and with the
mild asymmetry between SET and RESET pulses compen-
sated by tuning ηSET/ηRESET , then the ‘fully bidirectional’
scheme becomes slightly preferable, producing a final test
accuracy of just under 90% (Fig. 14).
Two-NVM synapses are always needed in order to repre-

sent negative weights using only-positive physical quantities
(conductances). However, there is no reason that one of
these two NVM devices could not be shared amongst many
different synapses, with all programming taking place on
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FIGURE 15. (a) Sketched circuit implementation of the ‘single
bidirectional’ weight-update scheme with ideal reference current source.
(b) Implementation of such a scheme using a shared conductance column.
Note that when the reference current is implemented with reference
conductances, it will be critical to compensate for any long-term
time-dependent changes in their programmed conductance values,
whether due to drift, decay, or any other thermal-switching effect.

just G+. This allows implementation of a neuromorphic
system in which the density of synapses is very close to
the density of conductances. However, for devices such as
PCM or filamentary-RRAM, an explicit two-NVM scheme
is essential in order to achieve smooth bidirectional weight
change [4], since each device only supports gradual conduc-
tance change in only one direction (SET for PCM, RESET
for filamentary-RRAM).
As shown in Fig. 10, Al/Mo/PCMO offers a truly bidi-

rectional analog conductance behavior, making it possible
to use just one device to represent each synaptic weight,
together with a shared reference current. The value of such
a reference should be

Iref =
Gmax + Gmin

2
·

n∑

1

xi = Gref ·

n∑

1

xi, (1)

which can be generated easily either by adding a shared
reference column where a large number of conductances
are programmed one-time to specific values, or with cir-
cuit techniques for generating a specified reference current
(Fig. 15).
In Figs. 16 and 17, high accuracy and tolerancing to

learning-rate is shown for single-Al/Mo/PCMO synapses.
As with the two-PCMO schemes already discussed, training
accuracy can be maximized by tuning the ratio of the learning
rates to compensate for the slight SET-RESET asymmetry
in intermediate conductance states exhibited in the jump-
tables (Fig. 8). The peak value (≈ 91.62% for training and
≈ 88.14% for testing) is reached for ηSET/ηRESET ≈ 5/4.
In this single-Al/Mo/PCMO configuration, there is a one-to-
one correspondence between conductance and weights, so the
single diagonal line left across the center of the G-diamond
can be plotted as a histogram. We note that, starting from
a uniform distribution, most of the weights (conductances)
become zero (e.g., their conductance approaches Gref ) dur-
ing training. During programming, the reference column is
disconnected from the firing neuron to prevent accidental

FIGURE 16. (a) Training and test accuracy (vs. relative learning rate) for
Al/Mo/PCMO with ‘single bidirectional’ weight update scheme compared
to the ‘alternate bidirectional’ weight update scheme. Despite having the
same peak accuracy, the ‘single bidirectional’ scheme offers a smaller
window for high-accuracy operation. (b) Training and test accuracy for the
‘single bidirectional’ scheme plotted vs. the ‘asymmetry correction factor.’
(c) Optimized training for image recognition with inset showing the
distribution of conductances before and after the training was performed.
(d) Circuit implementation of the ‘single bidirectional’ weight update
scheme.

FIGURE 17. (a) Training and test accuracy (vs. relative learning rate) for
Al/Mo/PCMO with ‘single bidirectional’ weight update compared to the
‘fully bidirectional’ weight update scheme. As with the ‘alternate
bidirectional’ results, the ‘single bidirectional’ scheme can offer the same
peak accuracy but a smaller operating window for learning rates.
(b) Training and test accuracy plotted vs. the ‘asymmetry correction factor.’

programming of the reference conductances. One of the con-
sequences of the ‘single bidirectional’ configuration is that
the weight range available for every synapse is inherently
smaller by a factor of two.

V. CONCLUSION

We have used measured jump-tables — which describe
the full cumulative distribution function (CDF) of
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conductance-change at each device conductance value, for
both weight potentiation (SET) and depression (RESET)
— to model the performance of PCMO-based devices
on a typical multi-layer perceptron trained on MNIST.
Artificially constructed jump-tables illustrated the impact
of simple deviations from linear and symmetric con-
ductance change on neural network classification per-
formance [2]. We studied the difference between older
Mo/PCMO devices and Al/Mo/PCMO devices [3], using two
different weight-update schemes, “alternate bidirectional”
and “fully bidirectional.” We showed that the accuracy
issues of Pr0.7Ca0.3MnO3devices are not simply due to
the very large conductance changes exhibited when either
potentiating from the lowest conductance states or depress-
ing from the highest conductance states. By offsetting the
slight asymmetry between the average size of the SET and
RESET conductance changes, tuning of the relative learn-
ing rate for potentiation (SET) with respect to depression
(RESET) was shown to provide further accuracy improve-
ments. When compared with phase-change memory (PCM),
PCMO synapses represent a potential improvement over pre-
vious work [1], [4] in terms of raw training accuracy and
support for bidirectional conductance response. We showed
that this can potentially support a more compact synap-
tic cell (1T1R instead of 2T2R) while avoiding the need
to perform an “Occasional RESET” step. Thus the bidi-
rectional programming of Al/Mo/PCMO can be used to
implement high-density neuromorphic systems with only a
single conductance per synapse, at only a slight degradation
to classification accuracy.
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