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Abstract: The last few years have brought tremendous
progress in experimental methods for metabolic flux de-
termination by carbon-labeling experiments. A signifi-
cant enlargement of the available measurement data set
has been achieved, especially when isotopomer fractions
within intracellular metabolite pools are quantitated.
This information can be used to improve the statistical
quality of flux estimates. Furthermore, several assump-
tions on bidirectional intracellular reaction steps that
were hitherto indispensable may now become obsolete.
To make full use of the complete measurement informa-
tion a general mathematical model for isotopomer sys-
tems is established in this contribution. Then, by intro-
ducing the important new concept of cumomers and cu-
momer fractions, it is shown that the arising nonlinear
isotopomer balance equations can be solved analytically
in all cases. In particular, the solution of the metabolite
flux balances and the positional carbon-labeling bal-
ances presented in part I of this series turn out to be just
the first two steps of the general solution procedure for
isotopomer balances. A detailed analysis of the isoto-
pomer network structure then opens up new insights
into the intrinsic structure of isotopomer systems. In par-
ticular, it turns out that isotopomer systems are not as
complex as they appear at first glance. This enables
some far-reaching conclusions to be drawn on the infor-
mation potential of isotopomer experiments with respect
to flux identification. Finally, some illustrative examples
are examined to show that an information increase is not
guaranteed when isotopomer measurements are used in
addition to positional enrichment data. © 1999 John Wiley
& Sons, Inc. Biotechnol Bioeng 66: 69–85, 1999.
Keywords: metabolic flux analysis; 13C-isotope-labeling
experiments; isotopomers; cumomers; network analysis;
parameter identifiability

INTRODUCTION

Parts I and II of this series (Wiechert and de Graaf, 1997;
Wiechert et al., 1997b) (henceforth called parts I and II,
respectively) dealt with modeling, simulation, and statistical

data analysis for positional carbon-labeling experiments.
This theoretical development was driven by the necessity to
quantitate bidirectional reaction steps in the metabolic net-
work in order to attain an accurate, comprehensive flux
analysis based on13C-labeling experiments. Although an
optimized analysis was indeed established, it was shown
that the evaluation of labeling experiments must always rely
on certain assumptions on bidirectional fluxes, because the
amount of measurement information available from posi-
tional 13C labelings is generally not sufficient.

Isotopomers

Isotopomer analysis has the potential to solve this problem.
Considering only the12C and 13C isotopes in the carbon
backbone of a moleculeM with n carbon atoms, anisoto-
pomerof M is one of the 2n possible labeling states in which
this molecule can be encountered (Fig. 1) (Malloy et al.,
1988). The correspondingisotopomer fractiondenotes the
percentage of molecules in this specific labeling state. The
positional enrichmentat the ith carbon atomM#i within a
metaboliteM (as examined in parts I and II) is then the sum
of all isotopomer fractions ofM where theith carbon atom
is labeled (Fig. 1). An important difference between the two
concepts is that the isotopomer fractions ofM always add up
to 100%, whereas positional labeling fractions have no such
constraint.

If all isotopomer fractions of a metabolite withn carbon
atoms can be measured instead of only positional enrich-
ments an increase fromn measured positional enrichments
to a maximum of 2n − 1 measured isotopomer fractions is
achieved (the 2nth measurement is redundant due to the
100% constraint). For certain metabolites like sedoheptu-
lose-7-phosphate this will yield a maximal information in-
crease by a factor of 127 / 7≈ 18. Although this factor
cannot be reached in practice, this illustrates the tremendous
potential of isotopomer measurements for flux quantitation
as compared with positional measurements.

Clearly, by measuring isotopomers one expects an im-
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provement of statistical quality for the flux estimates due to
the far greater quantity of measured data. Moreover, as-
sumptions about the biochemistry may be dropped. There-
fore, the availability of a unifying mathematical modeling
framework for both positional labelings and isotopomer dis-
tributions would be invaluable.

Available Measurement Data

Carrying out an isotopomer labeling experiment only makes
sense if powerful methods for measuring isotopomer frac-
tions are available and the number and quality of measured
values is significantly higher than that of potential labeling
data. Fortunately, due to recent experimental progress, these
requirements have been met and the corresponding mea-
surement techniques are well developed.

An early application of isotopomer measurements for in
vivo flux determination was given by Malloy et al., (1988)
where whole animal hearts were studied inside a nuclear
magnetic resonance (NMR) instrument. This enabled only a
single intracellular pool (glutamate) to be observed. Later, a
series of applications for different systems was reported
using NMR (Künnecke et al., 1993; Lapidot and Gopher,
1994) as well as mass spectrometry (MS) (Di Donato et al.,
1993; Katz et al., 1993). In each case, only a few measure-
ments were obtained.

This situation has been changed dramatically by recent
developments. The most important change is that, with the
experimental technique of preparing proteinogenic amino
acids (Marx et al., 1996), the labeling state of many intra-
cellular pools can now be measured indirectly using a ret-
robiosynthetic approach (Szyperski, 1995). In addition, be-
cause the measurement is performed separately from the
actual labeling experiment, high precision can be achieved.
This enables one-dimensional1H and 13C NMR, two-
dimensional1H–13C NMR, and MS to be applied for iso-
topomer quantitation, yielding a large variety of different
measurement data that are directly related to isotopomer
fractions. The present situation is reviewed in Wiechert and
de Graaf (1996) and Szyperski (1998).

More details concerning the different measurement tech-
niques for isotopomers and their modeling will be presented
in part IV of this series. The only basic fact that is important
for the understanding of the following is that, in general, the
described methods do not enable isotopomer fractions to be
measured directly. Instead, they all essentially produce lin-
ear combinations of such fractions (up to a scaling factor
that will be examined in part IV). For example, with proton
NMR, all isotopomers labeled on a certain carbon atom
position produce the same spectral peak. Likewise, an MS
measurement peak is (up to a certain isotope effect correc-
tion) produced by all isotopomers with the same molecular
weight; that is, the same number of labeled carbon posi-
tions. These are also calledmass isotopomers(Lee et al.,
1991). Henceforth, the termisotopomer measurementis
used for any measurable linear combination of isotopomer
fractions.

Modeling, Simulation, and Data
Analysis Frameworks

To evaluate isotopomer labeling experiments mathematical
models are required. The basic principles of isotopomer
balancing were first presented by Jeffrey et al. (1991) and
Künnecke et al. (1993). Because one balance equation has
to be given for each isotopomer fraction in the system the
result is about 500 or more equations for the central me-
tabolism. About 65% of the equations are required for gly-
colysis and the pentose phosphate pathway. For instance,
128 equations must be formulated for the sedoheptulose-7-
phosphate pool alone. Because previous applications have
concentrated only on metabolic subsections, like the citric
acid cycle, the number of equations considered has not been
that high until now.

Those cases in which only some of the isotopomer bal-
ances were exploited yielded highly application-specific
formulas that cannot be generalized easily to arbitrary net-
works with less strict assumptions on bidirectionality or
differently labeled substrates (Klapa et al., 1999; Lee, 1993;
Malloy et al., 1988; Szyperski, 1995). Moreover, such ex-
plicit formulas for flux determination do not exploit all the
available measurement information; that is, the statistical
quality of the estimated fluxes cannot be improved from
redundant data. For this reason, all interdependencies be-
tween fluxes and measurements must be represented in the
model, which means that the complete balances must be
incorporated in a holistic manner (Schmidt et al., 1997).

Clearly, manual input of the balance equations must be
ruled out because it is extremely time-consuming and will
almost certainly produce typing errors. For this reason, a
general mathematical modeling framework accompanied by
the appropriate tools for automatic model generation, simu-
lation, parameter estimation, and statistical analysis is re-
quired, as has been established in parts I and II for the case
of positional labeling systems. For isotopomer systems,
only parts of such a general framework are currently avail-
able (Schmidt et al., 1997).

Figure 1. The 23 4 8 isotopomers of a molecule with three carbon atoms
together with the corresponding isotopomer fractions and positional carbon
enrichments.
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As was the case with positional carbon labeling, there are
basically two formal approaches for establishing a general
model structure. The mapping matrix approach recently pre-
sented by Schmidt et al. (1997) generalizes the work of
Zupke and Stephanopoulos (1994), whereas the transition
matrix approach of Wiechert (1996) generalizes Wiechert
and de Graaf (1997). Of course, both approaches are equiva-
lent but use different notations. Mapping matrices describ-
ing single reaction steps can be used easily for quick model
implementation using a computer algebra system like
MAPLE or a numerical analysis system like MATLAB . On the
other hand, transition matrices simultaneously describe the
whole reaction network, and are thus much more suitable
for establishing high-performance numerical algorithms and
for doing system analysis. In each case, the mapping or
transition matrices can be generated automatically so that
the user is not aware of the technical details of model gen-
eration (Möllney et al., 1999; Schmidt et al., 1997).

Given the model equations, several simulation algorithms
for general isotopomer labeling systems have been pre-
sented. Because isotopomer balance equations are nonlin-
ear, iterative procedures have been used in the past like a
modified Euler algorithm (Wiechert, 1996), a modified Ja-
cobi iteration scheme (Schmidt et al., 1997), or a Newton
formula (Wiechert et al., 1997a). In each case, the presence
of large exchange fluxes causes severe instability or con-
vergence problems for each of these algorithms (Wurzel,
1997), which is not surprising because the positional car-
bon-labeling system is known to be ill-conditioned in that
case (Siefke, 1996; Wiechert, 1996). Thus, more sophisti-
cated algorithms are needed to establish a generally appli-
cable solution.

Study Aims

The aim of this study and part IV is the generalization of all
models, methods, and tools introduced in parts I and II to
general isotopomer systems. In particular, part III covers the
following:

1. The isotopomer balance equations are generally ex-
pressed by introducing transition matrices, and the soft-
ware tools for the automatic generation of these complex
matrices are supplied.

2. Although the contrary was recently conjectured by Klapa
et al. (1999), it is shown that the nonlinear isotopomer
balances can always be solved analytically, and an ap-
propriate solution algorithm based on matrix calculus is
presented. To this end, the important concept of cumo-
mers and cumomer fractions is introduced.

3. The solution algorithm for the isotopomer balances also
has great impact on flux identifiability analysis. For this
purpose, the concept of cumomer redundancy and the
new method of cumomer network analysis is introduced.
It represents a powerful tool to gain insight into the
information that can be obtained from isotopomer ex-
periments.

4. Some instructive examples will be studied using the
newly developed tools. It appears that isotopomer net-
works are not as complex as suggested by their large
dimensionality. Some far-reaching conclusions can be
drawn on the identifiability of fluxes and the improve-
ment to be achieved by using isotopomer data.

The statistical analysis of isotopomer experiments and their
comparison with positional labeling experiments is carried
out in part IV. This enables the different methods currently
being promoted to be compared on the basis of quantitative
criteria.

ISOTOPOMER LABELING BALANCES

The principles of formulating isotopomer labeling balances
are now briefly presented using a simple example. This
example is used throughout the following sections to intro-
duce the concept of cumomer fractions and to relate them to
the isotopomer fractions.

A Simple Example

The example network with its metabolite fluxes and carbon
atom transitions is given in Figure 2. It is modeled on the
citric acid cycle together with the anaplerotic reaction sec-
tion, but is simplified to a few metabolites with a maximum
of four carbon atoms. Using the formal notation for carbon
atom transitions introduced in part I, the network has the
following structure:

Figure 2. Example network used for the introduction of isotopomer and
cumomer balances. (a) Metabolic network with flux names. (b) Corre-
sponding carbon atom transitions.
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v1: A . B v5: B . K
#xy . #xy #xy . #xy

v2: B . E v6: C . D + F
#xy . #xy #uvxy . #vxy + #u

v3: B + E . C v7: D . E + G
#xy + #uv . #xyuv #uxy . #ux + #y

v4: E . H
#xy . #xy

Flux v1 is an input flux and thus assumed to be unidi-
rectional (i.e.,v←

1 4 0). The reason for this directionality
convention is that a backflux inv1 would have no effect on
the intracellular labeling state (cf. part I). Fluxesv4, v5, v6,
v7 are output fluxes. If one of these fluxes would have a
backflux another labeling source from the surrounding cell
would have to be introduced into the network. By conven-
tion (cf. part I), such an input is allowed only as a dedicated
system influx. Because such additional input is not assumed
in the example the output fluxes are also unidirectional (i.e.,
v←

4 4 v←
5 4 v←

6 4 v←
7 4 0). The remaining intracellular

fluxes v2, v3 are assumed to take place in both directions.
This yields the following flux balances:

B: v1
→ + v2

← + v3
← = v2

→ + v3
→ + v5

→

C: v3
→ = v3

← + v6
→

D: v6
→ = v7

→

E: v2
→ + v3

← + v7
→ = v2

← + v3
→ + v4

→

(1)

Choosingv→
1 , v→

2 , v←
2 , v→

3 , v←
3 as the free fluxes, the re-

maining fluxes are expressed as:

v6
→ = v7

→ = v3
→ − v3

←

v4
→ = v2

→ − v2
←

v5
→ = v1

→ + v2
← − v2

→ + v3
← − v3

→

(2)

Isotopomer Fractions

The isotopomers of a metaboliteM are denoted using an
obvious binary notationM#abc. . . , with a,b,c,. . . 4 0 or
1. Here, a1 indicates that the corresponding carbon atom
position is labeled and a0 indicates that it is not labeled. For
example,C#0101 denotes the isotopomer ofC, which is
labeled at the second and fourth position.

The state variables usually used for the description of the
system’s isotopomer labeling state are the isotopomer frac-
tions of all input and intracellular metabolites (see Fig. 1).
For the input metaboliteA this yields 22 4 4 variables, and
for the intracellular metabolitesB, C, D, E this yields 22 +
24 + 23 + 22 4 32 variables. The isotopomer fractions ofM
are denoted using an index notation corresponding to the
isotopomer name asmabc.... For example, the isotopomer
fractions ofD are written asd000, d001, d010, d100, d101, d110,
d111. In the following, the isotopomer fractions are denoted
using a more compact notation byusing indicesi, j, k, l ∈
{0, 1} as:

aij , bij , cijkl , dijk, eij , i, j, k, l = 0, 1

Clearly, the sum of all isotopomer fractions corresponding
to one metabolite is 100%; that is,

(
i,j=0

1

aij = 1, (
i,j=0

1

bij = 1, (
i,j,k,l=0

1

cijkl = 1, (
i,j,k=0

1

dijk = 1, (
i,j=0

1

eij = 1.

(3)

Balance Equations

Assuming isotopic stationarity (Marx et al., 1996; Wiechert,
1996), a balance equation can now be formulated for each of
the 32 intracellular isotopomer pools as previously de-
scribed (Schmidt et al., 1997; Wiechert and de Graaf, 1996).
As opposed to positional labeling systems, unimolecular
and bimolecular reaction steps must be treated separately.
Furthermore, a distinction must be made between bimolecu-
larity on the educt side and on the product side.

As an example of bimolecularity on the educt side, the
balance for the poolC#1001 is given by:

C#1001: c1001~v3
← + v6

→ ! = b10 e01v3
→ (4)

Here, the effluxes are collected on the left side and the
influxes are collected on the right side. The efflux is given
by the total amount of molecules carried out of the metabo-
lite pool C by the fluxesv←

3 andv→
6 times the percentage of

the isotopomer considered (i.e.,c1001). On the right-hand
side, a product of the isotopomer fractionsb10 ande01 oc-
curs because the target isotopomer is formed from two educt
isotopomers. The product is the probability that both educt
isotopomers happen to be combined by the bimolecular re-
action stepv3.

The right side of Eq. (4) is nonlinear with respect to the
isotopomer fractions because the quadratic termb10 e01 oc-
curs. This means that isotopomer balance equations cannot
be written simply by using transition matrices as in part I
and that they cannot be solved easily for the labeling vari-
ables when all fluxes are known. However, such a quadratic
term only occurs when a metabolite is formed in a bimo-
lecular reaction step, and in all other cases the arising terms
are linear as is shown in what follows.

Another important difference between positional and iso-
topomer balances occurs when there is a bimolecularity on
the product side. When an educt metabolite is split into
parts, the product isotopomers (unlike carbon atoms) can be
obtained from more than one educt isotopomer. This is
shown by the example:

B#10: b10~v2
→ + v3

→ + v5
→! =

~c1000+ c1001+ c1010+ c1011! v3
← + a10 v1

→ + e10 v2
← (5)

Here, all educt isotopomersC#1000, C#1001, C#1010,
C#1011 yield the same productB#10 in reaction stepv3.

A reaction step that is bimolecular on the educt and on the
product side like, for example:

w: M + N . P + Q
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can be reduced easily to the two cases just discussed by
introducing an intermediate metabolite and splitting the re-
action into two steps:

w1: M + N . MN w2: MN . P + Q

Finally, the balances for unimolecular reaction steps are
obtained by the same principles as for positional labeling
systems. All balance equations are finally summarized by
using indicesi, j, k, l ∈ {0, 1} in the compact notation:

B#ij : bij ~v2
→ + v3

→ + v5
→! = ~cij00 + cij01 + cij10 + cij11! v3

← + aij v1
→ + eij v2

←

C#ijkl: cijkl ~v3
← + v6

→! = bij ekl v3
→

D#ijk : dijk v7
→ = ~c0ijk + c1ijk! v6

→

E#ij : eij ~v2
← + v3

→ + v4
→! = ~c00ij + c01ij + c10ij + c11ij ! v3

← + ~dij0 + dij1! v7
→ + bij v2

→

(6)

These 32 equations must be combined with Eq. (3) so that
there are finally more equations than fractional variables.
This is explained by a redundancy in the combined equation
set (6) that is obtained by adding up all balance equations
corresponding to one metabolite. For instance, all balances
for the poolB add up to:

=1

S(
i,j=0

1

bijD (v2
→ + v3

→ + v5
→ ) =

S(
i,j=0

1

c00ij + c01ij + c10ij + c11ijD v3
← + S(

i,j=0

1

aijD v1
→ + S(

i,j=0

1

eijD v2
←

=1 =1 =1

This is exactly the metabolite flux balance for poolB from
Eq. (1).

CUMOMER LABELING BALANCES

At first glance there is no way to solve the isotopomer
balance equations analytically due to their nonlinear struc-
ture and high dimensionality. This has given rise to the
different iterative numerical solution approaches mentioned
in the Introduction. Surprisingly, after a suitable variable
transformation, the equations can always be solved explic-
itly. After transforming the equations they have a much
simpler, but still familiar, structure.

Cumomer Fractions

The transformed variables are calledcumomer fractions.
The artificial word “cumomer fraction” is an abbreviation
for “cumulated isotopomer fraction,” and means a certain
sum of isotopomer fractions of a metabolite. Cumomer frac-
tions are introduced by the running example for metabolite
D. The so-called 0-cumomer fraction ofD is simply the sum
of all its isotopomer fractions; that is:

dxxx =def (
i,j,k=0

1

dijk = 1 (7)

Here, indexx has the obvious meaning “0 or 1.” Using the
same notational convention, the 1-cumomer fractions ofD
are obtained as:

d1xx =def (
j,k=0

1

d1jk, dx1x =def (
i,k=0

1

di1k, dxx1 =def (
i,j=0

1

dij1 (8)

Thus, the 1-cumomer fractions are the percentages of all
isotopomers that are labeled at least at the single position
indicated by the index 1. Of course, these are exactly the
familiar positional labeling fractionsd1 4 d1xx, d2 4 dx1x,
d3 4 dxx1 introduced in part I.

Continuing the idea of cumulative isotopomer fractions
the 2-cumomer fractions are formed from all isotopomers
with at least two specified labeled carbon atoms as indicated
by the index 1:

d11x =def(
k=0

1

d11k, d1x1 =def(
j=0

1

d1j1, dx11 =def(
i=0

1

di11 (9)

Finally, there is the single 3-cumomer fractiond111, which
is identical to the corresponding isotopomer fraction. It is
shown in the sectionThe General Modelthat the linear
transformation:

~d000, d001, d010, d011, d100, d101, d110, d111! ↔
~dxxx, dxx1, dx1x, dx11, d1xx, d1x1, d11x, d111!

is always a one-to-one correspondence; that is, the cumomer
fractions can be calculated from the isotopomer fractions
and vice versa.

From now one, the termcumomeris used to denote a
“virtual molecule,” to which a cumomer fraction is as-
signed. For example, the notationC#1xx1 is used for a
cumomer andc1xx1 for the corresponding cumomer fraction.
Clearly, a cumomer is not a real particle but rather a set of
different isotopomers. However, this terminology makes it
more convenient to examine the cumomer balance equa-
tions introduced in the next subsection. In particular, acu-
momer networkcan be constructed that is in the same rela-
tion to the cumomer balances as the isotopomer network is
to the isotopomer balances.

Balance Equations

The cumomer balances are computed by transformation of
the isotopomer balances. This is achieved by summing up
the equations of all isotopomers belonging to a certain cu-
momer. As an example, to obtain the cumomer balance
equation for the cumomerC#1XX1 the equations for the
isotopomersC#1001, C#1011, C#1101, and C#1111
must be summed up. The result is:
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C#1XX1: S(
i,j=0

1

c1ij1D (v3
← + v6

→) = (
i,j=0

1

b1i ej1 v3
→ =

=c1xx1

S(
i=0

1

b1iD S(
j=0

1

ej1D v3
→ (10)

=b1x =ex1

This shows that, in the case of a bimolecular product, the
corresponding cumomer balances can be constructed simply
from the isotopomer balances by replacing each index 0 in
Eq. (4) by x. This is not so simple for the product of a
splitting reaction step, as can be observed forB#1x:

B#1X: S(
i=0

1

b1iD (v2
→ + v3

→ + v5
→! =

=b1x

S(
i=0

1

c1i00 + c1i01 + c1i10 + c1i11D v3
← + S(

i=0

1

a1iD v1
→ + S(

i=0

1

e1iD v2
←

=c1xxx
=a1x =e1x

(11)

This is simply the carbon balance equation forB#1 written
in an unfamiliar notation. But, more important is the fact
that the original sumc1000 + c1001 + c1010 + c1011 from Eq.
(5) is reduced to only one cumomer termc1xxx; that is, the
index replacement rule “0→ x” does not hold in this situ-
ation.

Weight Preservation

To understand the general principle of cumomer balance
formulation, the key concept of theweight of each isoto-
pomer or cumomer is defined. The weight of an isotopomer
denotes the number of its labeled carbon atoms; for ex-
ample:

weight~B#ij! = i + j, weight~C#ijkl! = i + j + k + l,
weight~D#ijk! = i + j + k

Likewise, the weight of ann-cumomer is defined to ben;
that is, the weight of the isotopomer that is created by re-
placing the letterX in the cumomer notation with0. For
example:

weight~C#1XX1! = weight~C#1001! = 2

The term “weight” is also used for the corresponding label-
ing variablesbij , cijkl , dijk.

The general rule now becomes clear by observing that
cumomer balances are alwaysweight preserving.This
means that, in balance Eq. (11) for the 1-cumomerB#1X,
all the involved labeling fractionsa1x, b1x, c1xxx, e1x corre-
spond to cumomers with weight 1. The same rule applies for

the 2-cumomer fractionC#1XX1 from Eq. (10), if the ad-
ditional convention is made that the weight of a quadratic
term is the sum of its factor weights. Thus, the quadratic
termb1x ex1 and the linear termc1xx1 both have weight 2 in
Eq. (10).

Weight preservation does not hold for the isotopomer
balances. For example, the isotopomer fractionsc1000, c1001,
c1010, c1011 of weights 1, 2, and 3 are all involved in the
balance forB#10 from Eq. (5). So, the general procedure
for converting isotopomer into cumomer balances is as fol-
lows:

1. First replace each index 0 byx in all isotopomer
balance equations

2. Then remove all sum terms that are not weight
preserving

(12)

The correctness of these rules can be generally proven for
arbitrary networks (Wurzel, 1997). The complete cumomer
balances for the running example can thus be compactly
written by using indicesi, j, k, l ∈ { x, 1} as:

B#ij : bij ~v2
→ + v3

→ + v5
→! = cijxx v3

← + aij v1
→ + eij v2

←

C#ijkl: cijkl ~v3
← + v6

→! = bij ekl v3
→

D#ijk : dijk v7
→ = cxijk v6

→

E#ij : eij ~v2
← + v3

→ + v4
→! = cxxij v3

← + dijx v7
→ + bij v2

→

(13)

The reader should verify these equations by comparison
with Eq. (6).

Solution of the Example System

The cumomer labeling balances from Eq. (13) turn out to be
slightly simpler than the isotopomer balances from Eq. (6),
because non-weight-preserving terms are omitted. This has
dramatic consequences for the solution of the equations,
because the cumomer balance equation for ann-cumomer
can only contain cumomer fractions with a weight less then
or equal ton. Consequently, the cumomer balances are less
strongly coupled than the isotopomer balances.

The second important observation is that, in ann-
cumomer balance, a fraction variable of weight less thann
can only occur as a factor of a bilinear term. In particular,
the factors of this term have either both weights less thann
or one weight isn and the other is 0. Because a 0-cumomer
fraction has value 1, by definition, the 0-cumomer fractions
can be left out so that only then-cumomer fraction remains.
Consequently, the terms of weightn always occur linearly
in ann-cumomer balance equation. This is the key for solv-
ing them explicitly.

To demonstrate this by the running example a cascade of
linear equations is constructed from which the 1-, 2-, 3- . . .
cumomer fractions are computed successively. We start
with the 0-cumomers. The corresponding equations are,
from Eq. (13):
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B#XX : bxx ~v2
→ + v3

→ + v5
→! −cxxxx v3

← −exx v2
← = axx v1

→

C#XXXX: cxxxx~v3
← + v6

→! −bxx exx v3
→ = 0

D#XXX : dxxx v7
→ −cxxxx v6

→ = 0

E#XX : exx ~v2
← + v3

→ + v4
→! −cxxxx v3

← −dxxxv7
→ −bxx v2

→ = 0

(14)

Because all 0-cumomer fractions are 1, these are exactly the
metabolite flux balances from Eq. (1).

It is now continued with the 1-cumomer fractions that are
exactly the positional carbon labeling equations from part I.
Here, all 1-cumomer terms have been arranged on the left
side and the 0-cumomer fractions have been eliminated. The
known input cumomer fractionsa1x, ax1 can be found on the
right side:

B#X1 : bx1 ~v2
→ + v3

→ + v5
→! −cx1xx v3

← −ex1 v2
← = ax1 v1

→

B#1X : b1x ~v2
→ + v3

→ + v5
→! −c1xxx v3

← −e1x v2
← = a1x v1

→

C#1XXX: c1xxx ~v3
← + v6

→! −b1x v3
→ = 0

C#X1XX: cx1xx ~v3
← + v6

→! −bx1 v3
→ = 0

C#XX1X: cxx1x ~v3
← + v6

→! −e1x v3
→ = 0

C#XXX1: cxxx1 ~v3
← + v6

→! −ex1 v3
→ = 0

D#1XX : d1xx v7
→ −cx1xx v6

→ = 0

D#X1X : dx1x v7
→ −cxx1x v6

→ = 0

D#XX1 : dxx1 v7
→ −cxxx1 v6

→ = 0

E#1X : e1x ~v2
← + v3

→ + v4
→! −cxx1x v3

← −d1xx v7
→ −b1x v2

→ = 0

E#X1 : ex1 ~v2
← + v3

→ + v4
→! −cxxx1 v3

← −dx1x v7
→ −bx1 v2

→ = 0
(15)

From this linear equation system the 1-cumomer fractions
can be computed as a function of the free fluxes with the
help of a computer algebra system. The resulting lengthy
formulas are not reproduced here for the sake of brevity.

Going over to the 2-cumomer fractions, all 1-cumomer
fractions can be assumed to be known and are thus put on
the right side:

B#11 : b11 ~v2
→ + v3

→ + v5
→! −c11xx v3

← −e11 v2
← = a11 v1

→

C#11XX c11xx ~v3
← + v6

→! −b11 v3
→ = 0

C#1X1X: c1x1x ~v3
← + v6

→! = b1x e1x v3
→

C#1XX1: c1xx1 ~v3
← + v6

→! = b1x ex1 v3
→

C#X11X: cx11x ~v3
← + v6

→! = bx1 e1x v3
→

C#X1X1: cx1x1 ~v3
← + v6

→! = bx1 ex1 v3
→

C#XX11: cxx11 ~v3
← + v6

→! −e11 v3
→ = 0

D#11X : d11x v7
→ −cx11x v6

→ = 0

D#1X1 : d1x1 v7
→ −cx1x1 v6

→ = 0

D#X11 : dx11 v7
→ −cxx11 v6

→ = 0

E#11 : e11 ~v2
← + v3

→ + v4
→! −cxx11 v3

← −d11x v7
→ −b11 v2

→ = 0 (16)

Again, the solution of this linear equation system is not
given here for shortness.

There are only a few 3-cumomer equations, because they
can only occur inC andD:

C#111X: c111x ~v3
← + v6

→! = b11 e1x v3
→

C#11X1: c11x1 ~v3
← + v6

→! = b11 ex1 v3
→

C#1X11: c1x11 ~v3
← + v6

→! = b1x e11 v3
→

C#X111: cx111 ~v3
← + v6

→! = bx1 e11 v3
→

D#111 : d111 v7
→ −cx111 v6

→ = 0 (17)

Finally, the only 4-cumomer fraction in the system is de-
scribed by:

C#1111: c1111~v3
← + v6

→! = b11 e11 v3
→ (18)

By successive substitution of the analytically computed
0, 1, . . . ,n − 1-cumomer fractions, a representation of the
n-cumomer fractions is obtained in terms of the known in-
put cumomer fractionsaij and the free fluxes. From this, the
isotopomer fractions are computed using the linear trans-
formations from Eqs. (7–9). Thus, as a main result, the
cumomer and isotopomer fractions are always rational func-
tions of the input fractions and the free fluxes. Moreover,
the cumomer balance equation system presents a unifying
formalism for metabolite flux balancing (0-cumomer bal-
ances), positional carbon fraction balancing (1-cumomer
balances), and isotopomer fraction balancing.

THE GENERAL MODEL

All procedures demonstrated by the example are now car-
ried over to a more abstract matrix notation suitable for
computer implementation, numerical computations, and
systems analysis. We restrict ourselves to networks contain-
ing only unimolecular and bimolecular reaction steps. Apart
from the fact that the central metabolism does not contain
any reaction step with three or more labeled partners on the
educt side, this situation can be handled easily by replacing
a reaction step:

A + B + C . D + E + F

by the sequence:

A + B + C . AB + C, AB + C . DE + F,
DE + F . D + E + F

The restriction to bimolecular steps will keep the formal
efforts low in the following.

Isotopomer and Cumomer State Vectors

As has been done with the positional labeling fractions, all
input isotopomer fractions and all intermediate isotopomer
fractions are numbered consecutively and collected within
the vectorsx inp andx. In the example, they are given by:

x inp = ~a00, a01, a10, a11!
T (19)
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and

x = ~b00, b01, b10, b11,
c0000, c0001, c0010, c0011, c0100, c0101, c0110,

c0111, c1000, c1001, c1010, c1011, c1100, c1101,
c1110, c1111,

d000, d001, d010, d011, d100, d101, d110, d111,
e00, e01, e10, e11!

T

Here, the variables are first arranged by the metabolites they
belong to. Second, within each metabolite they are arranged
by their index that is interpreted as a binary number. This
type or ordering is henceforth called abinary orderingas
opposed to aweight ordering,which will be used in the
Appendix.

Similar to the isotopomer fractions, the cumomer frac-
tions are collected within the vectorsxinp andx, which, by
convention, are always ordered in the same way as the
isotopomer fractions (i.e., binary or by weight). In the fol-
lowing, the bar decoration always indicates that this vector
or matrix belongs to the isotopomers, whereas nondecorated
vectors or matrices belong to the cumomers.

Three-Dimensional Matrices

To formulate the isotopomer and cumomer balance equa-
tions with a formalism similar to that introduced for posi-
tional labeling in part I it is necessary to introduce a matrix
notation that helps to express the newly arising quadratic
terms. Usually, quadratic terms in the state variablesx are
written with a symmetric square matrix M asxT M x. For
example, the cumomer balance from Eq. (10) can be for-
mulated as:

b1x ex1

↓ ↓

C#1xx1: 0 =
1

2
xT ?1

? ? ? ? ?? ? ? ? ?? ? ? ? ?

??? ? ??? 1 ???

? ? ? ? ?? ? ? ? ?? ? ? ? ?

1 ? ? ???? ? ? ?? ? ?

? ? ? ? ?? ? ? ? ?? ? ? ? ?

2
Q3,1xx1

→

? x ? v3
→ + (? ? ?

c1xx1

↓
−1 ? ? ?) ? x ? ~v3

← + v6
→!

where the dots indicate zero entries. The factor1⁄2 ensures
that the quadratic termb1x ex1 is not counted twice in the
matrix Q→

3,1xx1. The symmetry ofQ→
3,1xx1 will be a useful

property, as shown later (see Appendix).
One such square matrixQ→

i,j or Q←
i,j has to be constructed

for each bimolecular fluxvi
→ or vi

← and for each target
cumomer fractionxj. Herein, a nonzero entry (Q→

i,j )k,l cor-
responds to two cumomers with indexesk and l that con-

tribute to the balance ofxj through a bimolecular reaction
stepvi

→.
To obtain a more compact notation, the matricesQ→

i,j , j 4
1, 2, . . . are now combined to a three-dimensional matrix:

Qi
→ = 1

Qi,1
→

???

Qi,dim x
→ 2

andQi
← is formed analogously. Then, a vector-valued vec-

tor–matrix–vector product is defined to be:

xT Qi
→ x = 1

xT Qi,1
→ x

???

xT Qi,dim x
→ x

2
and similarly forQ←

i . The vector-valued termxT Q→
i x can

now be used together with the matrix–vector products for
unimolecular transitions from part I (i.e.,P→

i x, P←
i x and

Pinp
i x) to formulate the cumomer balances. In the same way,

the matricesP→
i , P←

i , Pinp
i and the three-dimensional ma-

tricesQ→
i , Q←

i will be used to express the isotopomer bal-
ance equations.

General Matrix Notation of the Balance Equations

Before the cumomer balance equations can be formally
written, the isotopomer balance equations have to be speci-
fied first. Using the notation for quadratic terms just intro-
duced, and keeping in mind that isotopomer-related terms
are written with a bar decoration, the general isotopomer
labeling balances can be formulated in a compact manner as:

1

2
xT ? S(

i

vi
→ ? Qi

→ + vi
← ? Qi

←D ? x

+ S(
i

vi
→ ? Pi

→ + vi
← ? Pi

←D ? x + S(
i

vi
→ ? P i

inpD ? x inp = 0

(20)

with the bimolecular isotopomer transition matricesQ→
i ,

Q←
i , the unimolecular isotopomer transition matricesP→

i ,
P←

i , and the unimolecular input isotopomer transition ma-
trices Pinp

i . It should be noted that bilinear terms are not
required for input metabolites, because the latter must enter
into the system by a unimolecular step through the conven-
tion made in part I. The precise definition of the bimolecular
transition matrices is given as follows:

~Qi,j
→!k,l = 5

1 if the ith forward reaction step combines

the isotopomers with indexk andl to the

isotopomer with indexj

0 else
(21)

It follows immediately thatQ→
i,j is a symmetric matrix. The

unimolecular transition matrices are defined in the same
way as for positional carbon fractions:
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~Pi
→!j,k =5

1 if the ith forward reaction step carries

an isotopomer with indexk over to the

isotopomer with indexj

−1 if j = k and theith forward reaction step

carries isotopomers away from the pool

with index j

0 else
(22)

The other matricesQ←
i,j , P←

i , Pinp
i are defined completely

analogously.
The same procedure can now be carried out for the cu-

momer labeling balances. To this end, the weight of an
index i within the vectorx is defined as the weight of the
corresponding isotopomer or cumomer. Now, bearing in
mind that the cumomer balances are weight preserving, the
procedure (12) can be immediately translated into the for-
mal definition:

~Qi,j
→!k,l = H ~Qi,j

→!k,l if weight ~k! + weight~l! = weight~j!

0 else

~Pi
→!k,l = H ~Pi

→!k,l if weight ~k! = weight~l!

0 else
(23)

and the general balance equation then has the same structure
as Eq. (20) with the bars removed:

1

2
xT ? S(

i

vi
→ ? Qi

→ + vi
← ? Qi

←D ? x

+ S(
i

vi
→ ? Pi

→ + vi
← ? Pi

←D ? x + S(
i

vi
→ ? P i

inpD ? x inp = 0

(24)

Transforming Isotopomer into
Cumomer Fractions

Based on Eq. (24) the cumomer fractionsx can be computed
by using matrix calculus, as explained in the Appendix.
Finally, it must be explained how the isotopomer fractions
x (if required) can be obtained from the cumomer fractions.
To this end, transformation Eqs. (7)–(9) are brought into a
general matrix notation. It can be shown that, for a single
metabolite withn carbon atoms, the transformation from its
2n isotopomer fractions into the corresponding 2n cumomer
fractions is given by the recursively defined square matri-
ces:

T0 = ~1!, Tn+1 = S Tn Tn

0 Tn
D

where 0 denotes the zero matrix. For example, it holds:

1
dxxx

dxx1

dx1x

dx11

d1xx

d1x1

d11x

d111

2 =1
1 1 1 1 1 1 1 1

? 1 ? 1 ? 1 ? 1

? ? 1 1 ? ? 1 1

? ? ? 1 ? ? ? 1

? ? ? ? 1 1 1 1

? ? ? ? ? 1 ? 1

? ? ? ? ? ? 1 1

? ? ? ? ? ? ? 1

2 ? 1
d000

d001

d010

d011

d100

d101

d110

d111

2
T3

Consequently, there is an overall block diagonal transfor-
mation:

x = 1
Tn1 0 ???

0 Tn2???

? ? ?? ? ?? ? ?
2 ? x =

def
T ? x (25)

where n1, n2, . . . are thenumbers of carbon atoms of all
intracellular metabolites in the system. Similarly, there is a
block diagonal transformation:

xinp = T inp ? xinp (26)

It can be easily proven that the inverse of Tn is given re-
cursively by:

T0
−1 = ~1!, Tn+1

−1 = STn
−1 −Tn

−1

0 Tn
−1 D (27)

For example, it holds:

1
d000

d001

d010

d011

d100

d101

d110

d111

2 =1
1 −1 −1 1 −1 1 1 −1

? 1 ? −1 ? −1 ? 1

? ? 1 −1 ? ? −1 1

? ? ? 1 ? ? ? −1

? ? ? ? 1 −1 −1 1

? ? ? ? ? 1 ? −1

? ? ? ? ? ? 1 −1

? ? ? ? ? ? ? 1

2 ? 1
dxxx

dxx1

dx1x

dx11

d1xx

d1x1

d11x

d111

2
T3

−1

Using these relations, the inverse matricesT−1, (T inp)−1 can
be computed easily from Eq. (25), so that the switching
between the coordinate systems poses no problem.

Central Theorem for Cumomer Systems

The main theorem for the structural analysis of isotopomer
labeling systems is the formal statement that the procedure
(12) is correct:

Theorem: x is a solution of the isotopomer balances from Eq.
(20) with input vectorxinp if and only ifx 4 T x is a solution of
the cumomer balances from Eq. (24) with input vectorxinp 4

T inp xinp.
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The rather technical general proof is given by Wurzel
(1997). Based on this theorem the cumomer fractions can be
computed explicitly by successively solving the linear equa-
tion systems for the 0-, 1-, 2-, . . . cumomer fractions as has
been demonstrated for the example from Figure 2. As a
consequence, the cumomer fractions are always uniquely
given as a rational functionG of the flux vectorsv→, v←.
The same holds for the isotopomer fractions, as shown by
using the transformation from Eq. (25). This finally gener-
alizes the complete theory developed for positional labeling
systems in part I. Several computational examples will be
presented in part IV.

CUMOMER NETWORKS

The isotopomer networkcorresponding to a certainmetabo-
lite networkconsists of all isotopomers in the system and
the reaction steps between them. For example, the backward
direction of the bimolecular stepv3: B + E > C in Figure 2
gives rise to the 22 ? 22 4 16 isotopomer reactions:

v3: C#ijkl > B#ij + E#kl, i,j,k,l = 0,1

Becausev3 is bidirectional all corresponding isotopomer
reactions are also bidirectional. The isotopomer balance
equations can be constructed directly from the isotopomer
network as has been explained previously. On the other
hand, the isotopomer network can be interpreted as a graphi-
cal representation of the isotopomer balance equations.
Such a graphical representation can be extremely helpful for
understanding the structural properties of the system and to
perform simplification operations (Reddy et al., 1993). For
this purpose, acumomer networkis now constructed in a
completely analogous way as a graphical representation of
the cumomer balances. This completes the diagram:

isotopomer → cumomer

network transformation network

formulation
rules

↓ ↓ formulation
rules

isotopomer → cumomer

balances transformation balances

Constructing the Cumomer Network

The cumomer network is constructed according to the fol-
lowing rules starting with the given isotopomer network.
These rules are simply a graphical representation of the
procedure (12). Note that, for bimolecular steps, the forward
reaction must be treated differently from the backward re-
actions:

CN0: Replace each bi–bi reaction stepw: M + N > P + Q
by a sequencew1: M + N > MN, w2: MN > P + Q
of two reactions, which are bimolecular on only one
side. It should be mentioned that this step is not ac-
tually necessary but simplifies the following expla-
nations.

CN1: Replace all isotopomers in the isotopomer network
by their corresponding cumomers (i.e., replace each
index0 by X). The result for the backward step ofv3
in the running example is:

v3: C#ijkl . B#ij + E#kl, i,j,k,l = X,1

CN2: Remove all 0-cumomers from the network, because
the corresponding cumomer labeling fractions are 1
and thus do not contribute to the balance equations.
Because the reactionsv3: C#XXXX > B#XX +
E#XX is completely eliminated by this rule, the 16
backward reactions ofv3 in the example reduce to
the following 15 reactions:

v3: C#ijkl . B#ij + E#kl , ij = X1, 1X, 11, kl = X1, 1X, 11

v3: C#XXkl . E#kl , kl = X1, 1X, 11

v3: C#ijXX . B#ij , ij = X1, 1X, 11,

CN3: Remove all reactions with two products that both
have positive weight and replace them with a system
efflux. Of 15 backward isotopomer reactions ofv3
only 6 reactions are thus kept in the cumomer net-
work:

v3: C#1XXX . B#1X v3: C#X1XX . B#X1
v3: C#XX1X . E#1X v3: C#XXX1 . E#X1
v3: C#11XX . B#11 v3: C#XX11 . E#11

while the others are replaced by an efflux:

v3: C#1X1X . v3: C#X1X1 . v3: C#1X11 .

v3: C#1XX1 . v3: C#111X . v3: C#X111 .

v3: C#X11X . v3: C#11X1 . v3: C#1111 .

The last rule is the most important because it enforces
weight conservation in the cumomer network. No cumomer
pool can have an influx from another pool with higher
weight. Consequently, if a cumomer is split into two prod-
ucts then one of the products must have weight 0 and is thus
omitted by rule CN2.

The Cascade of Cumomer Subnetworks

The resulting cumomer network has considerably fewer bi-
molecular reaction steps than the isotopomer network be-
cause only those bimolecular steps “survive” that combine
two cumomers with a product of higher weight. This im-
mediately induces a cascaded structure of the cumomer net-
work that is illustrated in Figure 3:

1. The nodes and edges of then-cumomer network are all
the n-cumomers and the cumomer reaction steps that
take place betweenn-cumomers. These steps are always
unimolecular by construction. it is helpful to arrange the
cumomer nets in a three-dimensional graphical represen-
tation where then + 1-cumomer net lies “above” the
n-cumomer net (Fig. 3).

2. The differentn-cumomer networks are “vertically”
linked by all the bimolecular reaction steps. Each of
these steps, by construction, combines two cumomers of
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weightsk andl to a cumomer of weightk + l; that is, the
bimolecular steps are always directed “upwards” in the
graphical representation (Fig. 3).

By construction, the sum terms in the cumomer balance
equations are in a one-to-one correspondence with the re-
action arrows in the cumomer network. In the same way, the
cascaded network structure corresponds directly with the
cascaded linear equation systems presented in Eqs. (14–18)
for the example.

An Alternative Notation

To obtain an easily readable visual representation of the
n-cumomer networks an alternative notation for cumomers
and cumomer fractions is now introduced. Thispositional
notation is much shorter than the binary notation used be-
fore. On the other hand, it is not well suited for the formu-
lation of general balance equations like that in Eqs (6) and
(13). In the positional cumomer notation, only the always-

labeled positions of a molecule are given by their positional
number. For example:

C = C#XXXX C#24 = C#X1X1 C#1234 = C#1111
C#2 = C#X1XX C#234 = C#X111

In the same way, the cumomer fractions are denoted byc,
c2, c24 and so on. Note thatc 4 1 and that, in the case of a
1-cumomer, this yields exactly the former notation of car-
bon atoms and positional labeling fractions. So, the posi-
tional notation is compatible with that introduced in part I.
On the other hand, it should not be confused with the po-
sitional isotopomer notation used in earlier publications
(Chance et al., 1983). Using positional notation, the ex-
ample ofn-cumomer networks is visualized by a cascade of
subnets in Figure 4.

The Paradox of Vanishing Cumomers

There is one paradoxical feature of cumomer networks re-
lated to those bimolecular reaction steps with two products.
This is the apparent vanishing of cumomers from the system
as induced by rule CN3. For instance, the bimolecular iso-
topomer reaction stepv3 in the example network induces
the reaction step:

v3: B#2 + E#12 . C#234

in the cumomer network. This step is a transition step from
the 1- and 2-cumomer networks to the 3-cumomer network.Figure 3. Cascaded structure of the cumomer network. Then-cumomer

networks are arranged vertically and linked by the bimolecular reaction
steps. The 0-cumomer network is identical to the underlying metabolic
network and is usually completely eliminated because all its cumomer
values are 1 by definition. However, it has been included for illustrative
purposes.

Figure 4. All n-cumomer networks (n 4 0, 1, 2, 3, 4) for the example
from Figure 2. The shaded bimolecular steps are only drawn within their
target subnetwork, but without their educts, which belong to a lower level.
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If the reverse reaction step is considered, there remains only
an efflux:

v3: C#234 .

from the system, because no reaction step can proceed
“downwards” in the cascaded reaction system by rule CN3.
Thus,C#234 seems to vanish from the system instead of
splitting intoB#2 andE#12. The explanation for this effect
is that the cumomerC#234—considered as a set of isoto-
pomers—is actuallycontainedin both cumomersC#2 and
C#34. But the latter have already been taken into account
on levels 1 and 2, which explains the paradox:

v3: C#2 . B#2
v3: C#34 . E#12

SOLVING STRUCTURAL FLUX
IDENTIFIABILITY PROBLEMS

This section is concerned with flux identifiability by isoto-
pomer labeling experiments. The question is whether there
is enough information contained in the cumomer labeling
fractions to identify all the three fluxes in the system. If this
is not the case, it is desirable to know which subset of fluxes
can be identified. In particular, it is of great interest if more
flux information can be obtained with isotopomer measure-
ments compared with only positional enrichment measure-
ments. As will be shown, a graphical analysis of the cu-
momer network helps to elucidate these problems.

The kind of identifiability analysis presented here relies
on the assumption that all cumomer fractions are potentially
measurable and measurement errors are negligible. Because
this is a rather optimistic assumption all results will be
best-case results: that is, in the practical experiment, even
fewer fluxes might be identified. However, the results will
not be that far from the real situation, because for metabo-
lites with at most three carbon atoms all cumomer fractions
can be determined currently by a combination of the differ-
ent measurement techniques (Wiechert and de Graaf, 1996).
More results on the achievable flux information that also
take the available measurements and the statistical aspects
into account will be presented in part IV.

Simplifying Cumomer Networks

As a first step in this analysis the cumomer network is
reduced to a simpler one by removing certain nodes. Con-
sider, for instance, the cumomers ofC andD in the example
network from Figure 2. Becausev6 andv7 are assumed to
be unidirectional (an extracellular metabolite splits off) it
follows immediately from the cumomer balance Eqs. (13)
and Eq. (2) that (using binary notation):

dijk = cxijk, i, j, k = x, 1 andcijkl = bij ekl, i, j, k, l = x, 1 (28)

[see also Eqs. (14–18)]. Such relations are called labeling
redundancies.

These redundancies imply that the cumomer fractions of
C andD contain no additional flux information as compared
with their predecessorsB and E. In particular, this redun-
dancy holds independently of the current flux values. Thus,
with respect to flux identification, redundant variables can
be eliminated from the balance equations.

An even better idea is to remove the redundant nodes
directly from the cumomer network. To this end, the fol-
lowing graphical rules for cumomer network simplification
by removing redundant nodes are generally valid (see
Fig. 5):

S1: If a metaboliteM has only one influxv: N > M andv
is unidirectional, thenM can be removed from the net-
work, and within all its (necessarily unidirectional) ef-
fluxesw1: M > P1, w2: M > P2, . . . the nodeM can
be replaced byN.

S2: If a metaboliteM has only one influxv: N > M andv
is bidirectional, then this flux can be assumed to be
unidirectional. Its value must be assigned to the net flux
of the original step.

By iteratively applying these rules the 3- and 4-nets from
Figure 4 vanish completely. Figure 6 shows what results for
the 1- and 2-cumomer network. From these networks, two
simplified sets of balance equations for the remaining two
intracellular metabolitesB andE can be read off directly:

B : v2
→ + v3

net + v5
→ = v1

→ + v2
←

B#1 : b1 ~v2
→ + v3

net + v5
→! = a1 v1

→ + e1v2
←

B#2 : b2 ~v2
→ + v3

net + v5
→! = a2 v1

→ + e2v2
←

B#12 : b12 ~v2
→ + v3

net + v5
→! = a12 v1

→ + e12v2
←

E : v2
← + v3

net + v4
→ = v2

→ + v3
net

E#1 : e1 ~v2
← + v3

net + v4
→! = b1 v2

→ + b2v3
net

E#2 : e2 ~v2
← + v3

net + v4
→! = b2 v2

→ + e1v3
net

E#12 : e12 ~v2
← + v3

net + v4
→! = b12 v2

→ + b2e1v3
net

(29)

As can be seen, only the net flux ofvnet
3 influences the

systems labeling state. Consequently,v→
3 andv←

3 cannot be
distinguished from flux or labeling measurements. Thus,v3

Figure 5. Schematic representation of the network simplification rules
for eliminating redundant nodes.
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can be assumed to be unidirectional without loss of infor-
mation.

Solving the Flux Identifiability Problem

Taking v←
3 4 0, the aim is now to represent the remaining

four free fluxesv→
1 , v→

2 , v←
2 , v←

3 as a function of the six
cumomer fractionsb1, b2, b12, e1, e2, e12. There is a chance
to find such functions because the simplified network from
Figure 6 contains no more nodes that can be eliminated with
the simplification rules. But, unfortunately, it will be shown
now that the reduced net can still be used to derive another
type of redundancy relation.

To this end, it should be noticed that all remaining nodes
in the reduced network have only two influxes. In this situ-
ation, the ratio of these influxes can always be computed
directly from labeling fractions. For example, looking at
nodesB#1, B#2, andB#12, and using the flux balance for
B in Eq. (29), it immediately follows that:

v1
→

v2
← = −

e1 − b1

a1 − b1
= −

e2 − b2

a2 − b2
= −

e12 − b12

a12 − b12
(30)

which are three different formulas for the same flux ratio.
This is an immediate consequence of the fact that the net-
work has the same structure at all three cumomer nodes.
Similarly, another flux ratio can be computed threefold
from theE balances:

v2
→

v3
→ =

e1 − b2

e1 − b1
= −

e2 − e1

e2 − b2
= −

e12 − e1 ? b2

e12 − b12
(31)

As an immediate consequence there are four algebraic re-
lations from Eq.(30) and (31) between the labeling vari-
ables that hold independently from the actual flux situation.
These relations can be used to eliminate some variables
from the system. For example, it follows from Eq.(30) that

e2 = b2 +
e1 − b1

a1 − b1
? ~a2 − b2!

e12 = b12 +
e1 − b1

a1 − b1
? ~a12 − b12!

always holds. Substituting these equations into Eq.(31)

(which is not carried out here for the sake of brevity) it
finally turns out that four of the six labeling variables are
redundant with the others and thus carry no additional flux
information.

In summary, all cumomer labeling fractions in the system
can computed directly from the knowledge of only two
cumomer fractions as, for example,b1, e1, irrespective of
the current flux values. Even if one extracellular flux were
directly measured this would not help to determine all the
fluxes from whatever cumomer fractions are given. How-
ever, partial information can be obtained. If, for example,
v→

1 is measured, thenv←
2 can be determined from Eq.(30),

while v→
2 and v→

3 remain hidden. Finally, if two fluxes, for
example,v→

1 and v→
6, are measured, all other fluxes can be

computed from Eqs.(30) and(31) by using only fractional
enrichment data.

Another Interesting Example

The example just discussed is somewhat disappointing, be-
cause in this case isotopomer measurements are not superior
to positional measurements. However, this is generally not
the case as the example from Figure 7 shows, which was

Figure 6. Reduced 1- and 2-cumomer networks of the example network
from Figure 4. Bidirectional fluxes that have been replaced by net fluxes
(see Fig. 5) are indicated by a feathered arrow.

Figure 7. Example network proving the principal superiority of isoto-
pomer experiments over positional enrichment experiments.
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derived from an example in Schmidt(1998). It is now rig-
orously analyzed with the methods just presented. The cor-
responding reaction equations are given by (see Fig. 7):

u: A >B v1: B >C w1: C >F
#xy>#xy #xy>#xy #xy >#xy

r: F >G v2: B >E w2: E >F
#xy>#xy #xy>#yx #xy >#xy

v3: B >D +D w3: D +D >F
#xy>#x +#y #x +#y >#xy

The example is constructed such that the reactionsv1, w1
andv2, w2 keep the two carbon atoms of the input metabo-
lite A together (but with opposite orientation), whereasv3
splits moleculeD and w3 reunites the carbon atoms. All
fluxes are assumed to be unidirectional and the free fluxes
arev→

1, v→
2, v→

3. The substrate uptake:

u→ = v1
→ + v2

→ + v3
→ (32)

is assumed to be measured as usual. The remaining fluxes
are then given bywi

→ = vi
→, i = 1, 2, 3, andr→ = u→.

From Figure 7 it becomes immediately clear that all
nodes are redundant except forD#1, F#1, F#2, andF#12.
The reduced 1- and 2-cumomer networks are shown in Fig-
ure 8. From these nets, the reduced balance equations are
given as:

D#1 : d1 2 v3
→ = a1 v3

→ + a2 v3
→

F#1 : f1 ~v1
→ + v2

→ + v3
→! = a1 v1

→ + a2 v2
→ + d1v3

→

(33)
F#2 : f2 ~v1

→ + v2
→ + v3

→! = a2 v1
→ + a1 v2

→ + d1v3
→

F#12: f12 ~v1
→ + v2

→ + v3
→! = a12v1

→ + a12v2
→ + d1

2v3
→

The most important structural property of this example is
thatD-nodes occur only on levels 0 and 1. On level 1,D#1
has two separate influxes and it follows:

d1 =
1

2
~a1 + a2! (34)

Thus,d1 is a redundant node. Substituting the value ford1

into the balances forF#1, F#2, and summing up these two
balances, it turns out that:

a1 + a2 = f1 + f2 (35)

This means thatf1 is redundant withf2 and, consequently,
there is no chance to determine the three free fluxes from
positional labeling data, even if the influxu→ is measured
directly. Interestingly, by subtracting the balance forF#1
from that forF#2 in Eq. (33) it can be seen that:

v1
→ − v2

→ = u→ ?
f1 − f2
a1 − a2

(36)

that is, at least the difference flux can be obtained from the
positional enrichment data.

The last hope for flux identification is thatf12 contains
some additional information on the free fluxes. Indeed, from
the corresponding balance and Eq. (34) it follows:

v3
→ = u→ ?

a12 − f12

a12 − ~a1 + a2!2/4
(37)

Combining this result with Eqs. (32) and (36), all free fluxes
are determined from labeling measurements. Thus, an ex-
ample has been found in which the isotopomer measure-
ments containmoreinformation than the positional labeling
measurements.

The General Concepts

The aforementioned results have been derived in a rather
intuitive way. However, there is a systematic way to pro-
duce redundancy relations for labeling fractions like those
in Eqs. (30), (31), and (35) and identifiability relations for
fluxes like those in Eqs. (36) and (37) by using the computer
algebraic algorithms developed by Wiechert (1995). How-
ever, for ease of understanding, these algorithmic details
have been omitted in this text.

The most important concept for the analysis of cumomer
networks with respect to flux identifiability is the redun-
dancy of cumomer fractions. A (general)redundancyis a
(possibly nonlinear) equation,f(x) 4 0, which holds what-
ever the flux values in the metabolic system are. In this
situation, one variable,xi , can be expressed by the others
and thus contains no additional information on the fluxes.
So, the presence of redundancies reduces the available in-
formation for flux identification. Once all the redundancies
have been determined the flux identifiability problem can be
decided based on the dimensional relation:

Number of identifiable free fluxes
# Number of independently measured fluxes
+ Number of isotopomer measurements
− Number of redundant isotopomer fractions

(38)

However, it must be pointed out that the number of redun-
dant fractions may not equal the number of redundancy
relations found. The reason is that there may be complex
algebraic dependencies between the relations that are diffi-
cult to find in general (Cox et al., 1992). Fortunately, the

Figure 8. Reduced 1- and 2-cumomer networks from Figure 7.
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algebraic independence of the few nonlinear equations de-
rived in the examples just given can be proven by using the
computer algebraic methods of Cox et al. (1992).

CONCLUSION

In this study it has been shown that isotopomer systems
have much in common with positional labeling systems. In
fact, they are not as nonlinear as was previously assumed.
After a linear transformation from the isotopomer space to
the cumomer space the balances can be solved from a cas-
cade of linear equations. In particular, the balances for me-
tabolite fluxes, positional carbon enrichments, and isoto-
pomer fractions are just three facets of one unifying cu-
momer balance equation.

For this reason, cumomer systems now seem to be the
more adequate representation of the balances, because the
system can be better understood by using these coordinates.
The greater simplicity of the cumomer balances is reflected
by the cascaded structure of the cumomer networks, which
contain far fewer bimolecular steps. All numerical and sta-
tistical methods formerly derived for positional labeling
systems can now be extended to isotopomer systems in a
straightforward manner. This will be carried out in part IV.

A simple example shows that—compared with positional
labeling systems—isotopomer measurements, in principle,
enable additional fluxes to be determined. On the other
hand, the examples of cumomer systems given lead to the
conjecture that the achievable information increase is not as
large as might be expected from the sheer number of avail-
able measurements. In particular, the structures of the
higher cumomer networks become progressively simpler.
For example, all 5-, 6-, and 7-cumomer nodes and almost all
4-cumomer nodes in the pentose phosphate pathway are
isolated nodes; that is, their labeling state is determined
completely by the labeling state of the lower cumomer nets.
From these considerations, it can be conjectured that the
carbon atom network is generally the most informative part
of the network, and the higher networks contain progres-
sively less flux information due to redundancy.

A clear statement can be made concerning labeling ex-
periments with fully labeled substrates (Szyperski, 1995).
For such experiments, it is clear that all positionl enrich-
ments in the system will always become equal to the frac-
tion of fully labeled molecules in the input. Thus, the carbon
atom network contains absolutely no information for such
experiments and all fluxes must be computed from higher
cumomer measurements. Clearly, this approach will be sub-
optimal (which has also been found by Schmidt [1998]),
which will be demonstrated quantitatively in part IV. A
better approach might be to apply a mixture of a completely
labeled and a positionally labeled isotopomer as input. This
matter will also be examined in part IV.

APPENDIX: GENERAL SOLUTION OF THE
CUMOMER BALANCE EQUATIONS

The solution algorithm for general cumomer balance equa-
tions has been introduced by using the example from Figure

2. This algorithm will now be developed in complete gen-
erality to enable an automatic solution based on matrix cal-
culus. A complete software implementation of the compu-
tational procedures has been supplied by the authors.

Weight Ordering of the State Vector

The key feature of the cumomer fraction balances turned out
to be their weight preservation. In this section, another or-
dering of the vectorsxinp, x is used that is more feasible for
the exploitation of weight preservation than the binary or-
dering introduced in the main text. Aweight orderingof x
first arranges all cumomer fractions by their weight and then
orders the cumomers with equal weight binarily. For ex-
ample, a weight variable ordering for the example from
Figure 2 is given by [cf. Eq. (19)]:

x = (bxx, cxxxx, dxxx, exx, ~weight 0!

bx1, b1x, cxxx1, cxx1x, cx1xx, c1xxx, dxx1, dx1x, d1xx, ex1, e1x, ~weight 1!

b11, cxx11, cx1x1, cx11x, c1xx1, c1x1x, c11xx, dx11, d1x1, d11x, e11, ~weight 2!

cx111, c1x11, c11x1, c111x, d111, ~weight 3!

c1111)
T ~weight 4!

Using a weight ordering,x andxinp can be partitioned as:

xinp = 1
0xinp

1xinp

?
?
?
2 andx = 1

0x
1x
?
?
?
2

where the vextorskxinp, kx comprise all cumomer fractions
xi with weight (i) 4 k. It should be noted that there is a
change in the meaning of the state vectorsxinp, x compared
to their definition in part I. The former positional labeling
state vectors are exactly1xinp, 1x; that is a segment of the
new state vectors. Clearly, the defining Eqs. (21–23) pro-
duce different transition matrices for different orderings of
the state vector. However, Eq. (24) remains correct for any
ordering because vectors and matrices are permuted in the
same way.

This does not hold for the transformation from isoto-
pomer into cumomer fractions, as given in Eq. (26), because
this definition depends on a binary index ordering. If a
weight ordering is chosen forxinp, x, then, before applying
the transformation matrix from Eq. (25), all entries of the
state vectors must be first reordered into a binary ordering.
This is achieved by using permutation matricesPinp, P. The
general transformation rule then is:

xinp = Pinp,T T inp Pinp ? x inp andx = PT T P ? x

and the inverse transformation is also easy to compute by
using Eq. (27) andP−1 4 PT, which always holds for
permutation matrices.

Partitioning of the System Matrices

Corresponding to the partitioning of the state vectors into
segments of equal weight just given the unimolecular tran-
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sition matricesPi
→ can be partitioned into a block diagonal

structure as:

Pi
→ = 1

0Pi
→ 0 ? ? ? 0

0 1Pi
→ ? ? ? 0

?
?
?

?
?
?

?
?
?

?
?
?
2

with dim jx × dim jx matrices jQi
→. The reason for the

diagonal shape is that, due to weight preservation, a cu-
momer fraction can only contribute to the balance of a cu-
momer with identical weight. Consequently:

Pi
→ ? x =1

0Pi
→ ? 0x

1Pi
→ ? 1x

2Pi
→ ? 2x
?
?
?

2 (39)

Similar formulas hold forPi
→ ? x andPi

inp ? x inp.
In the same way, the three-dimensional bimolecular tran-

sition matricesQ i
→ partition into dimjx × dim kx × dim lx

submatrices, but only those submatrices withj 4 k + l are
nonzero. These nonzero submatrices are denoted byk,lQ i

→,
which contains all bimolecular transitions where ak-
comomer fraction combined with anl-cumomer fraction,
thus contributing to the balance of ak + l-cumomer fraction.
This yields the formula:

xT ? Qi
→ ? x =1

0xT ? 0,0Qi
→ ? 0x

0xT ? 0,1Qi
→ ? 1x + 1xT ? 1,0Qi

→ ? 0x
0xT ? 0,2Qi

→ ? 2x + 1xT ? 1,1Qi
→ ? 1x + 2xT ? 0,2Qi

→ ? 2x

?
?
?

2
and a similar one forxT ? Q i

← ? x.

General Solution of the Balance Equations

With these matrix partitions, the general algorithm for solv-
ing the cumomer balance equations can now be given. It
starts with 0x 4 1 (the vector composed of all 1s) and
continues recursively with the solution for1x, 2x, . . . . To
this end, it is now assumed that all cumomer fractions0x, 1x,
. . . ,n−1x have already been computed. Then, from Eqs. (24)
and (39), the balances for then-cumomer fractions can be
written as

1

2 (
k+l=n

FkxT ? S(
i

vi
→ ? k,lQi

→ + vi
← ? k,lQi

←D ? lxG
+ S(

i

vi
→ ? nPi

→ + vi
← ? nPi

←D ? nx + S(
i

vi
→ ? nPi

inpD ? nx inp = 0 (40)

Now, from the symmetry ofQ i
→ , Q i

← , with respect tox, it
follows:

0xT ? 0,nQ i ? nx = 1 ? 0,nQ i ? nx and also nx ? n,0Q i ? 0x = 1? n,0Q i ? nx

Here, 1 ? 0,nQ i and 1 ? n,0Q i are just ordinary matrices so

that all terms become linear with respect tonx. Rearranging
Eq. (40) by exposingnx now produces:

(
i

@vi
→ ? 1 ? ~n,0Q i

→ + 0,nQ i
→! + vi

← ? 1 ? ~n,0Q i
← + 0,nQ i

←! + vi
→ × nPi

→ + vi
← ? nPi

←# ? nx

known matrixnA(v)

+
1

2 (
k+l=n
k,lÞ0

FkxT ? S(
i

vi
→ ? k,lQi

→ + vi
← ? k,lQi

←D ? lxG + (
i
Svi

→ ? nPi
inpD ? nxinp = 0

known vectornb~v, 1x, . . . , n−1x!

From this the solution,nx is computed as:

nx = nA−1(v) ? nb~v, 1x, . . . , n−1x!

It can be proven that the matrixnA is invertible in all prac-
tically relevant situations (Wurzel, 1997).

In summary, the vectorx is computed as a function ofxinp

andv by solving a cascade of linear equations:

1 = 0x
0 = 1A(v) ? 1x +1b(v)

(41)
0 = 2A(v) ? 2x + 2b(v, 1x)
0 = 3A(v) ? 3x + 3b~v, 1x, 2x!
:

Here the 1-cumomer equation is exactly the well-known
positional carbon-labeling balance equation from part I.

Derivative of the Balance Equations

Numerical optimization algorithms and the statistical evalu-
ation methods that will be developed in part IV require the
knowledge of the derivative­x/­v (i.e., the sensitivity of the
labeling state with respect to the fluxes). The straightfor-
ward way to calculate these sensitivities is given by an
implicit differentiation of the balance Eq. (24). Although
this is quite easy to implement it is computationally rather
expensive because a matrix of dimension dimx has to be
inverted, which requiresO(dim x3) computational opera-
tions.

A much more efficient way is to differentiate the whole
cascade [Eq. (41)]. At leveln, an implicit differentiation
yields:

0 =
­~nA!

­vi
→ (v) ? nx + nA(v) ?

­~nx!

­vi
→ +

­~nb!

­v
?

­v

­vi
→

+ (
i=1

n−1
­~nb!

­ix
?

­~ix!

­vi
→ (42)

The only unknown quantity at this stage is­(nx)/­vi
→, which

means that the matrix factorization fornA(v) that was nec-
essary to solve Eq. (41) can be reused for solving Eq. (42).
Because matrix factorization is the most time-consuming
operation in the solution algorithm this shows that the sen-
sitivities can be computed with negligible effort. However,
the proper implementation of the implicit differentiation
procedure is rather difficult and must be tested carefully.
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This has been done by computing numerical derivatives in
parallel.
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