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Abstract: The last few years have brought tremendous
progress in experimental methods for metabolic flux de-
termination by carbon-labeling experiments. A signifi-
cant enlargement of the available measurement data set
has been achieved, especially when isotopomer fractions
within intracellular metabolite pools are quantitated.
This information can be used to improve the statistical
quality of flux estimates. Furthermore, several assump-
tions on bidirectional intracellular reaction steps that
were hitherto indispensable may now become obsolete.
To make full use of the complete measurement informa-
tion a general mathematical model for isotopomer sys-
tems is established in this contribution. Then, by intro-
ducing the important new concept of cumomers and cu-
momer fractions, it is shown that the arising nonlinear
isotopomer balance equations can be solved analytically
in all cases. In particular, the solution of the metabolite
flux balances and the positional carbon-labeling bal-
ances presented in part | of this series turn out to be just
the first two steps of the general solution procedure for
isotopomer balances. A detailed analysis of the isoto-
pomer network structure then opens up new insights
into the intrinsic structure of isotopomer systems. In par-
ticular, it turns out that isotopomer systems are not as
complex as they appear at first glance. This enables
some far-reaching conclusions to be drawn on the infor-
mation potential of isotopomer experiments with respect
to flux identification. Finally, some illustrative examples
are examined to show that an information increase is not
guaranteed when isotopomer measurements are used in
addition to positional enrichment data. © 1999 John Wiley
& Sons, Inc. Biotechnol Bioeng 66: 69-85, 1999.
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INTRODUCTION

data analysis for positional carbon-labeling experiments.
This theoretical development was driven by the necessity to
guantitate bidirectional reaction steps in the metabolic net-
work in order to attain an accurate, comprehensive flux
analysis based oh®C-labeling experiments. Although an
optimized analysis was indeed established, it was shown
that the evaluation of labeling experiments must always rely
on certain assumptions on bidirectional fluxes, because the
amount of measurement information available from posi-
tional *°C labelings is generally not sufficient.

Isotopomers

Isotopomer analysis has the potential to solve this problem.
Considering only thé’C and*°C isotopes in the carbon
backbone of a molecul®! with n carbon atoms, aisoto-
pomerof M is one of the 2 possible labeling states in which
this molecule can be encountered (Fig. 1) (Malloy et al.,
1988). The correspondinigotopomer fractiordenotes the
percentage of molecules in this specific labeling state. The
positional enrichmenégt theith carbon atoniM#i within a
metaboliteM (as examined in parts | and Il) is then the sum
of all isotopomer fractions ol where theith carbon atom

is labeled (Fig. 1). An important difference between the two
concepts is that the isotopomer fractiond/bélways add up

to 100%, whereas positional labeling fractions have no such
constraint.

If all isotopomer fractions of a metabolite withcarbon
atoms can be measured instead of only positional enrich-
ments an increase frommeasured positional enrichments
to a maximum of 2 — 1 measured isotopomer fractions is
achieved (the 2h measurement is redundant due to the

Parts | and Il of this series (Wiechert and de Graaf, 1997:100% constraint). For certain metabolites like sedoheptu-
Wiechert et al., 1997b) (henceforth called parts | and 11,/0se-7-phosphate this will yield a maximal information in-
respectively) dealt with modeling, simulation, and statisticalcrease by a factor of 127 / # 18. Although this factor
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cannot be reached in practice, this illustrates the tremendous
potential of isotopomer measurements for flux quantitation
as compared with positional measurements.

Clearly, by measuring isotopomers one expects an im-
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Isotopomer Fractions More details concerning the different measurement tech-
2 S 2 niques for isotopomers and their modeling will be presented
‘ i in part 1V of this series. The only basic fact that is important
| i for the understanding of the following is that, in general, the

i described methods do not enable isotopomer fractions to be
L] measured directly. Instead, they all essentially produce lin-

2C T 54% ear combinations of such fractions (up to a scaling factor

5 71 that will be examined in part IV). For example, with proton

< : N i : !

=C2 LJ_I_I 2 NMR, all isotopomers labeled on a certain carbon atom

§C3 | RS position produce the same spectral peak. Likewise, an MS

S Isotopomers Positional measurement peak is (up to a certain isotope effect correc-
Enrichments

tion) produced by all isotopomers with the same molecular

Figure 1. The 2 = 8 isotopomers of a molecule with three carbon atoms Welght; that is, the same number of labeled carbon posi-

together with the corresponding isotopomer fractions and positional carboHONS. These are also calledass isotopomerf_ee et al.,
enrichments. 1991). Henceforth, the terrnsotopomer measuremeis

used for any measurable linear combination of isotopomer

o ) ) fractions.
provement of statistical quality for the flux estimates due to

the far greater quantity of measured data. Moreover, as- . ] .
sumptions about the biochemistry may be dropped. TherdVlodeling, Simulation, and Data
fore, the availability of a unifying mathematical modeling Analysis Frameworks

framework for both positional labelings and isotopomer dis-Tq evaluate isotopomer labeling experiments mathematical
tributions would be invaluable. models are required. The basic principles of isotopomer
balancing were first presented by Jeffrey et al. (1991) and
Kinnecke et al. (1993). Because one balance equation has
to be given for each isotopomer fraction in the system the
Carrying out an isotopomer labeling experiment only makesesult is about 500 or more equations for the central me-
sense if powerful methods for measuring isotopomer fractabolism. About 65% of the equations are required for gly-
tions are available and the number and quality of measuredolysis and the pentose phosphate pathway. For instance,
values is significantly higher than that of potential labeling 128 equations must be formulated for the sedoheptulose-7-
data. Fortunately, due to recent experimental progress, thephosphate pool alone. Because previous applications have
requirements have been met and the corresponding meaencentrated only on metabolic subsections, like the citric
surement techniques are well developed. acid cycle, the number of equations considered has not been
An early application of isotopomer measurements for inthat high until now.
vivo flux determination was given by Malloy et al., (1988) Those cases in which only some of the isotopomer bal-
where whole animal hearts were studied inside a nucleasinces were exploited yielded highly application-specific
magnetic resonance (NMR) instrument. This enabled only dormulas that cannot be generalized easily to arbitrary net-
single intracellular pool (glutamate) to be observed. Later, avorks with less strict assumptions on bidirectionality or
series of applications for different systems was reportedlifferently labeled substrates (Klapa et al., 1999; Lee, 1993;
using NMR (Kinnecke et al., 1993; Lapidot and Gopher, Malloy et al., 1988; Szyperski, 1995). Moreover, such ex-
1994) as well as mass spectrometry (MS) (Di Donato et al.plicit formulas for flux determination do not exploit all the
1993; Katz et al., 1993). In each case, only a few measureavailable measurement information; that is, the statistical
ments were obtained. quality of the estimated fluxes cannot be improved from
This situation has been changed dramatically by recentedundant data. For this reason, all interdependencies be-
developments. The most important change is that, with théween fluxes and measurements must be represented in the
experimental technique of preparing proteinogenic aminanodel, which means that the complete balances must be
acids (Marx et al., 1996), the labeling state of many intra-incorporated in a holistic manner (Schmidt et al., 1997).
cellular pools can now be measured indirectly using a ret- Clearly, manual input of the balance equations must be
robiosynthetic approach (Szyperski, 1995). In addition, befuled out because it is extremely time-consuming and will
cause the measurement is performed separately from tt@most certainly produce typing errors. For this reason, a
actual labeling experiment, high precision can be achievedyeneral mathematical modeling framework accompanied by
This enables one-dimensiondH and *C NMR, two- the appropriate tools for automatic model generation, simu-
dimensional'H-*3C NMR, and MS to be applied for iso- lation, parameter estimation, and statistical analysis is re-
topomer quantitation, yielding a large variety of different quired, as has been established in parts | and Il for the case
measurement data that are directly related to isotopomensf positional labeling systems. For isotopomer systems,
fractions. The present situation is reviewed in Wiechert andnly parts of such a general framework are currently avail-
de Graaf (1996) and Szyperski (1998). able (Schmidt et al., 1997).

Available Measurement Data
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As was the case with positional carbon labeling, there ard.
basically two formal approaches for establishing a general
model structure. The mapping matrix approach recently pre-
sented by Schmidt et al. (1997) generalizes the work of
Zupke and Stephanopoulos (1994), whereas the transition
matrix approach of Wiechert (1996) generalizes Wiechert

Some instructive examples will be studied using the
newly developed tools. It appears that isotopomer net-
works are not as complex as suggested by their large
dimensionality. Some far-reaching conclusions can be
drawn on the identifiability of fluxes and the improve-
ment to be achieved by using isotopomer data.

and de Graaf (1997). Of course, both approaches are equiva- . i i ) .
lent but use different notations. Mapping matrices describ-The statistical analysis of isotopomer experiments and their

ing single reaction steps can be used easily for quick modeqomparison with positional labeling experiments is carried
implementation using a computer algebra system likePut in part IV. This enables the different methods currently
MAPLE or a numerical analysis system likea¥Las . On the being promoted to be compared on the basis of quantitative

other hand, transition matrices simultaneously describe thgnteria.

whole reaction network, and are thus much more suitable

for establishing high-performance numerical algorithms anqgoTOPOMER LABELING BALANCES

for doing system analysis. In each case, the mapping or

transition matrices can be generated automatically so thathe principles of formulating isotopomer labeling balances

the user is not aware of the technical details of model genare now briefly presented using a simple example. This

eration (MdIney et al., 1999; Schmidt et al., 1997). example is used throughout the following sections to intro-
Given the model equations, several simulation algorithmgluce the concept of cumomer fractions and to relate them to

for general isotopomer labeling systems have been prghe isotopomer fractions.

sented. Because isotopomer balance equations are nonlin-

ear, iterative procedures have been used in the past like

modified Euler algorithm (Wiechert, 1996), a modified Ja-

cobi iteration scheme (Schmidt et al., 1997), or a NewtornThe example network with its metabolite fluxes and carbon

formula (Wiechert et al., 1997a). In each case, the presencgom transitions is given in Figure 2. It is modeled on the

of large exchange fluxes causes severe instability or coreitric acid cycle together with the anaplerotic reaction sec-

vergence problems for each of these algorithms (Wurzekjon, but is simplified to a few metabolites with a maximum

1997), which is not surprising because the positional carof four carbon atoms. Using the formal notation for carbon

bon-labeling system is known to be ill-conditioned in thatatom transitions introduced in part I, the network has the

case (Siefke, 1996; Wiechert, 1996). Thus, more sophistifollowing structure:

cated algorithms are needed to establish a generally appli-

cable solution.

R Simple Example

Study Aims

The aim of this study and part IV is the generalization of all
models, methods, and tools introduced in parts | and Il to
general isotopomer systems. In particular, part Il covers the
following:

1. The isotopomer balance equations are generally ex-

pressed by introducing transition matrices, and the soft-

ware tools for the automatic generation of these complex
matrices are supplied.

. Although the contrary was recently conjectured by Klapa
et al. (1999), it is shown that the nonlinear isotopomer
balances can always be solved analytically, and an ap-
propriate solution algorithm based on matrix calculus is
presented. To this end, the important concept of cumo-
mers and cumomer fractions is introduced.

. The solution algorithm for the isotopomer balances also
has great impact on flux identifiability analysis. For this
purpose, the concept of cumomer redundancy and the
new method of cumomer network analysis is introduced.
It represents a powerful tool to gain insight into the _

information that can be obtained from isotopomer eX_F|gure 2. Example network use(_i for the |ntro_duct|on of isotopomer and
periments cumomer balances. (a) Metabolic network with flux names. (b) Corre-

sponding carbon atom transitions.
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vl: A > B v5: B > K a, by, Gj» ks €, ik, 1=0,1
#xy > #xy #xy > #xy Clearly, the sum of all isotopomer fractions corresponding
v2: B >E v6: C >D +F to one metabolite is 100%; that is,
#xy > #xy #uvxy > #vxy + #u ) ) ) ) )
v3:B +E >C v7: D >E +G Zaﬁl,Ebu:l,zci;m:lvEdukzl‘Eaﬁl-
#Xy + #uv > #xyuv #uxy > #ux +#y 1j=0 =0 i k!1=0 iJ.k=0 1j=0 3
v4: E > H
#xy > #xy

Balance Equations

Flux v1 is an input flux and thus assumed to be unidi- o ) ) ) i
rectional (i.e.v; = 0). The reason for this directionality Assuming isotopic stationarity (Marx et al., 1996; Wiechert,
convention is that a backflux il would have no effect on 1996), a balance equation can now be formulated for each of
the intracellular labeling state (cf. part I). Fluxes v5, ve,  the 32 intracellular isotopomer pools as previously de-
v7 are output fluxes. If one of these fluxes would have aScribed (Schmidtetal., 1997; Wiechert and de Graaf, 1996).
backflux another labeling source from the surrounding celf®S OPposed to positional labeling systems, unimolecular
would have to be introduced into the network. By conven-and bimolecular _re_act|_on steps must be treated sgparately.
tion (cf. part 1), such an input is allowed only as a dedicated™urthermore, a distinction must be made between bimolecu-
system influx. Because such additional input is not assumel@rity on the educt side and on the product side.
in the example the output fluxes are also unidirectional (i.e., AS @n example of bimolecularity on the educt side, the
V; = V5 = v =v; = 0). The remaining intracellular Palance for the poaC#1001 is given by:
fluxesv2, v3 are assumed to take place in both directions. ) e e — -
This yields the following flux balances: C#1001: C1004Vs + Ve ) =b1o€01V3 4)
Here, the effluxes are collected on the left side and the
influxes are collected on the right side. The efflux is given
Cvy vy +Vg by the total amount of molecules carried out of the metabo-
D: (1) lite pool C by the fluxesv; andvg times the percentage of
E:

Brvy +vy vy = vy vy v

Ve Ve the isotopomer considered (i.&,0). On the right-hand
side, a product of the isotopomer fractiomg, ande,, oc-

curs because the target isotopomer is formed from two educt
isotopomers. The product is the probability that both educt
isotopomers happen to be combined by the bimolecular re-

Vo V5 HVE TV v vy

Choosingvy, V5, V3, V3, v5 as the free fluxes, the re-
maining fluxes are expressed as:

— i

Vg =V = V3 - vy action stepv3.
Ve _ Ve — v @) The right side of Eq. (4) is nonlinear with respect to the
4 272 isotopomer fractions because the quadratic teyge,,; oc-
Vs’ SVt Vy oVt vy vy curs. This means that isotopomer balance equations cannot

be written simply by using transition matrices as in part |

and that they cannot be solved easily for the labeling vari-

ables when all fluxes are known. However, such a quadratic

The isotopomers of a metabolitd are denoted using an term only occurs when a metabolite is formed in a bimo-

obvious binary notatioM#abc. . ., with a,b,c,... = 0 or  lecular reaction step, and in all other cases the arising terms

1. Here, al indicates that the corresponding carbon atomare linear as is shown in what follows.

position is labeled and@indicates that it is not labeled. For ~ Another important difference between positional and iso-

example,C#0101 denotes the isotopomer @&, which is  topomer balances occurs when there is a bimolecularity on

labeled at the second and fourth position. the product side. When an educt metabolite is split into
The state variables usually used for the description of th@arts, the product isotopomers (unlike carbon atoms) can be

system’s isotopomer labeling state are the isotopomer fragbtained from more than one educt isotopomer. This is

tions of all input and intracellular metabolites (see Fig. 1).shown by the example:

For the input metabolité this yields Z = 4 variables, and o

for the intracellular metaboliteB, C, D, E this yields # +  B#10:bigvy" +v5" +vg') =

2% + 2% + 22 = 32 variables. The isotopomer fractionshdf (C1000% C1001F C1010* Cr012) V3 +B30V1 + €0V (5)

are denoted using an index notation corresponding to thﬁere all educt isotopomei§#1000, C#1001, C#1010
sotopomer name a8, . For example, the isotopomer C#1011 yield the same produd@#10 in reaction step3.

Lractl?nshoflfj ﬁre \_/vr|tter? a.SjOOO’ doo d(])clo" d_100' Aioy :110' q A reaction step that is bimolecular on the educt and on the
111 In the following, the isotopomer fractions are denote product side like, for example:

using a more compact notation hysing indicesi, |, k, | O
{0, 1} as:

Isotopomer Fractions

w.M+N>P+Q
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can be reduced easily to the two cases just discussed by def 1
introducing an intermediate metabolite and splitting the re- Oesx = E Oy =1 (7)
action into two steps: h:k=0

Wl M+ N > MN W2: MN > P + Q Here, index_x has the obvjous meaning “0 or 1.” U;ing the
same notational convention, the 1-cumomer fractionb of

Finally, the balances for unimolecular reaction steps aré'e obtained as:
obtained by the same principles as for positional labeling

1 1 1
systems. All balance equations are finally summarized by, ger def def
using indicesq, j, k, | O {0, 1} in the compact notation: O = 2 Ay ax = 2 o Goa = E di»  (8)

k=0 k=0 ij=0
B by (V' +Vs +V5) = (oot Gjou * Cyao* Cyaa) V3 8 Vi + & V3 Thus, the 1-cumomer fractions are the percentages of all
CHijKI: ¢ (V5 +Vg) = b 84 Vs . ’ . .
Dfik: v = Can* O Ve isotopomers that are labeled at least at the single position
- 1) ] 1) . . .
E#i 16 (Vi +V5 +Vy) = (Cog + Coy + Cagy +Cugy) Vi +(dhyo + Oyo) Vi +y v indicated by the index 1. Of course, these are exactly the

) familiar positional labeling fractiond; = d,, d, = di
d; = d, introduced in part I.
These 32 equations must be combined with Eq. (3) so that Continuing the idea of cumulative isotopomer fractions
there are finally more equations than fractional variablesthe 2-cumomer fractions are formed from all isotopomers
This is exp|ained by a redundancy in the combined equatioMVith at least two Specified labeled carbon atoms as indicated
set (6) that is obtained by adding up all balance equationBY the index 1:
corresponding to one metabolite. For instance, all balances

for the poolB add up to: def - def L def -
Oy = E i Opa = 2 dljlv Oygq = 2 dizq )
k=0 i=0 i=0

—=

1 Finally, there is the single 3-cumomer fractidp,,, which
<2_0 bij) (Vo' +vs +vs') = is identical to the corresponding isotopomer fraction. It is

o shown in the sectiohe General Modethat the linear

1 1 1 transformation:
<“ Cooj * Coxj T Cigj +C1]jj> vz + <E aij> v+ <2 Qj) Vs
O 1 /) . v (dooo door do10 o112 d100 Gro1 G110 dia1) <

\:/1 =1 =1 (dxxxv dxxlv dx1><1 dx117 dlxx1 d1x11 dllxv dlll)

This is exactly the metabolite flux balance for p@from IS @lways a one-to-one correspondence; that is, the cumomer
Eq. (1). fractions can be calculated from the isotopomer fractions

and vice versa.
From now one, the ternscumomeris used to denote a

CUMOMER LABELING BALANCES “virtual molecule,” to which a cumomer fraction is as-

signed. For example, the notatid@@#1xx1 is used for a
At first glance there is no way to solve the isotopomercumomer and;,,, for the corresponding cumomer fraction.
balance equations analytically due to their nonlinear struc€learly, a cumomer is not a real particle but rather a set of
ture and high dimensionality. This has given rise to thedifferent isotopomers. However, this terminology makes it
different iterative numerical solution approaches mentionednore convenient to examine the cumomer balance equa-
in the Introduction. Surprisingly, after a suitable variable tions introduced in the next subsection. In particulacua
transformation, the equations can always be solved explichomer networlcan be constructed that is in the same rela-
itly. After transforming the equations they have a muchtion to the cumomer balances as the isotopomer network is
simpler, but still familiar, structure. to the isotopomer balances.

Cumomer Fractions Balance Equations

The transformed variables are calledmomer fractions. The cumomer balances are computed by transformation of
The artificial word “cumomer fraction” is an abbreviation the isotopomer balances. This is achieved by summing up
for “cunulated isotopmer fraction,” and means a certain the equations of all isotopomers belonging to a certain cu-
sum of isotopomer fractions of a metabolite. Cumomer fracinomer. As an example, to obtain the cumomer balance
tions are introduced by the running example for metaboliteequation for the cumomeZ#1XX1 the equations for the

D. The so-called 0-cumomer fraction Bfis simply the sum  isotopomersC#1001, C#1011, C#1101, and C#1111

of all its isotopomer fractions; that is: must be summed up. The result is:
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1 1 the 2-cumomer fractio€#1XX1 from Eq. (10), if the ad-
CHLXX1: E Cyjz | (V5 +Vg) = 2 by €, Vs = ditional convention is made that the weight of a quadratic
ij=0 ij=0 term is the sum of its factor weights. Thus, the quadratic
- termb,, e, and the linear terng,,,, both have weight 2 in
“Caoa Eg. (10).
1 1 Weight preservation does not hold for the isotopomer
Z by 2 8 | vs (10)  balances. For example, the isotopomer fract@gg, Co01
i=0 j=0 Ci010 Ci011 Of Weights 1, 2, and 3 are all involved in the
— balance forB#10 from Eg. (5). So, the general procedure
D ! for converting isotopomer into cumomer balances is as fol-

This shows that, in the case of a bimolecular product, théows:
corresponding cumomer balances can be constructed simp!Ly

from the isotopomer balances by replacing each index 0 in First replace each index 0 byin all isotopomer

. : balance equations
N ¢
Eq._ (.4) by x. .Th'S is not so simple for the proo.luct of a 2. Then remove all sum terms that are not Welght( )
splitting reaction step, as can be observedB#ix: .
preserving
BHLX: i by | vy +vs +ve) = The correctness of these rules can be generally proven for
= arbitrary networks (Wurzel, 1997). The complete cumomer
— balances for the running example can thus be compactly

b written by using indices, j, k, | O {x, 1} as:

1 1 1
Ciioo T Crio1 T Cij10 T Cij vy + a; | vyt e; | vs T N = o — . N -
( ; 1i00 ™ “1io1 T L1ito 1|11> 3 ( ; 1i ) 1 ( Z; 1 ) 2 B#ll : bij (V2 + Vg + Vs ) = Cijxx V3 + aij Vi + €‘|j V5

N\ ~ J - - C#Ukl Cijkl (Vg + Vg) = b” Q(l Vg
=Coxxx =y =€ L . _ R
1) D#ijk : diye v, =Gk Ve
EH# & (vy +vg +Vi)=Cq V5 +dj vy + Dy vy
This is simply the carbon balance equation B#1 written (13)

in an unfamiliar notation. But, more important is the fact

that the original SUNt;goo+ C1001 + Ci010+ Ci011from Eq.  The reader should verify these equations by comparison
(5) is reduced to only one cumomer teny, that is, the — with Eq. (6).

index replacement rule “0> X’ does not hold in this situ-

ation. Solution of the Example System

The cumomer labeling balances from Eq. (13) turn out to be
slightly simpler than the isotopomer balances from Eq. (6),
To understand the general principle of cumomer balanc®ecause non-weight-preserving terms are omitted. This has
formulation, the key concept of theeightof each isoto- dramatic consequences for the solution of the equations,
pomer or cumomer is defined. The weight of an isotopomebecause the cumomer balance equation fon-@amomer
denotes the number of its labeled carbon atoms; for exean only contain cumomer fractions with a weight less then
ample: or equal ton. Consequently, the cumomer balances are less
weight(B#i) =i +j, weight(CHijkl) =i +j +k+1, strongly coupled_ than the isotopome_r ba_lances. _
weight(D#ijk) = i +] +k The second |mportant_ observatlon is f[hat, in @n
cumomer balance, a fraction variable of weight less than
Likewise, the weight of am-cumomer is defined to bag; can only occur as a factor of a bilinear term. In particular,
that is, the weight of the isotopomer that is created by rethe factors of this term have either both weights less than
placing the letterX in the cumomer notation wit. For  or one weight is1 and the other is 0. Because a 0-cumomer
example: fraction has value 1, by definition, the 0-cumomer fractions
weight(C#LXX1) = weight(C#1001) = 2 can be left out so that only thecgmomer fraction re;mains.
Consequently, the terms of weightalways occur linearly
The term “weight” is also used for the corresponding label-in ann-cumomer balance equation. This is the key for solv-
ing variablesby, Gy, G- ing them explicitly.

The general rule now becomes clear by observing that To demonstrate this by the running example a cascade of
cumomer balances are alwaygeight preserving.This linear equations is constructed from which the 1-, 2-, 3- . ..
means that, in balance Eq. (11) for the 1-cumom®&1X, cumomer fractions are computed successively. We start
all the involved labeling fractiona,,, by, Ci. € COrre-  with the 0-cumomers. The corresponding equations are,
spond to cumomers with weight 1. The same rule applies fofrom Eq. (13):

Weight Preservation
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B#XX b (V5 +V3 +V5) Coox Vi ~Goc Vi Sa, vy There are only a few 3-cumomer equations, because they

CHXXXX: Coux (V5 + Vg Dy B Vg’ =0 can only occur inC andD:
DAXXX & Goo V7' ~Cuooox Ve’ =0 C#111X: Cyag (V5 +V5) = by e vy
BAXX 5 8o (V3 + V5" + V) Thoox V3 ThoocVy vy =0 CHIIXL: Cypg (V5 +Vg) = by €q Vs
(14)
B o fract 1, th e o, s () " D
ecause all 0-cumomer fractions are 1, these are exactly the . _
- ’ C#X111: vy = =
metabolite flux balances from Eq. (1). Ga11 (Vs +V6') b €11 V5
It is now continued with the 1-cumomer fractions that are D#111 © d v CopVe =0 an
© Y111 V7 “Ux111Ve T

exactly the positional carbon labeling equations from part I.
Here, all 1-cumomer terms have been arranged on the leftinally, the only 4-cumomer fraction in the system is de-
side and the O-cumomer fractions have been eliminated. Thecribed by:

known input cumomer fractiors,,, a,, can be found on the

right side: CH1111:Cyq5,(Vs +Ve) =byy €5 V5 (19
B#XL © by (vy +Vi +Vo) ~Caxx V5 ~8a Vi = a,vy By successive substitution of the analytically computed
BHIX © by (V5 +V5 Vo) ~Coo Vi €1 Vi = ayvr 0, 1,...,n- 1-cumomer fractions, a representation of the

n-cumomer fractions is obtained in terms of the known in-

CHIXXX: Cpoex (V5 +Vg') by vy =0 put cumomer fractiong; and the free fluxes. From this, the
CHXIXX: Cage (V5 +Ve') - -0 isotopomer fractions are computed using the linear trans-

. X 3 6 X 3 . .

. _ formations from Eqgs. (7-9). Thus, as a main result, the
CHXXLX: Cuax (V5 +Vg) —€ Vg5 =0 . . .

. _ cumomer and isotopomer fractions are always rational func-
CHXRXL: Cooa (V5 +V6) & Vs =0 tions of the input fractions and the free fluxes. Moreover,

the cumomer balance equation system presents a unifying
DHIXX @ dix V7 —Caxx Ve =0 . . .

_ formalism for metabolite flux balancing (O-cumomer bal-
DAXIX: dax v “Ooax Ve =0 ances), positional carbon fraction balancing (1-cumomer
D#XXL & dea V7 “Coa Ve =0 balances), and isotopomer fraction balancing.

E#1X @ ey (V5 +V3 +V7) Coax V5 ~Op V5 —bp vy =
E#XL © 80 (V5 +V5 Vi) —Crea Vi ~Gax Vi —by vy = THE GENERAL MODEL
(15)

All procedures demonstrated by the example are now car-

From this linear equation system the 1-cumomer fractiondi€d Over to a more abstract matrix notation suitable for

can be computed as a function of the free fluxes with thee@MPUter implementation, numerical computations, and

help of a computer algebra system. The resulting |ength§ystems an_aly5|s. We restrl_ctourselves to n_etworks contain-

formulas are not reproduced here for the sake of brevity. N9 only unimolecular and bimolecular _reactlon steps. Apa_rt
Going over to the 2-cumomer fractions, all 1-cumomerfrom the fact that the central metabolism does not contain

fractions can be assumed to be known and are thus put Gy "éaction step with three or more labeled partners on the

the right side: educt s_lde, this situation can be handled easily by replacing

a reaction step:

B#11 : by (V3 +V3 +Vg) Cipx Vs —€11 Vs =a;; vy A+BACoD4E+F

CHIXX Cig(v5 +V6)  ~bua V3 =0 by the sequence:

CHIXLX: Cyax (V3 +Vg') =byen vy

CHIXXL: Cpoq (V5 +Vg) =byeq vy A+B+C>AB+C, AB+C>DE+F,

CHXL1X: G (V5 +Vg) = by ey vy DE+F>D+E+F

CHXIXL: Gy (V5 +Vg) =bg 45 The restriction to bimolecular steps will keep the formal
CHXX1L: Gy (V5 +Vg) —en vy =0 efforts low in the following.

DAL G vy “GanVe =0 Isotopomer and Cumomer State Vectors

D#1X1 : dpyy vy —Cxax1 Vg =0

DHX11 @ dyy vy ~Coan Vg -0 As has been done with the positional labeling fractions, all

input isotopomer fractions and all intermediate isotopomer
E#11 ey (V5 +v5 +V5) —CoarVy —tivy -b, vy =0 (16)  fractions are numbered consecutively and collected within

_ _ o _ . the vectorsk'™P andX. In the example, they are given by:
Again, the solution of this linear equation system is not

given here for shortness. X" = (g0, 8oy, aor A11)" (19
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and tribute to the balance of; through a bimolecular reaction

% = (boo, Bogs byoy b stepyi - . o
COO’ 0L F10 F1b c e To obtain a more compact notation, the matriQgs, j =
0000 €000z Coo10 Coo11 o100 Co102 Cor10 1, 2, ... are now combined to a three-dimensional matrix:
Co111 C1000 C1001 C1010 C1011 C1100 Ci101:

C1110 C1112 Qi1
dooo Joow do10 011 d100 G101, G110 d111s o = .
o=

€0 €o1: €100 ell)T

Here, the variables are first arranged by the metabolites they Qudimx
belong to. Second, within each metabolite they are arrange@ndQ;~ is formed analogously. Then, a vector-valued vec-
by their index that is interpreted as a binary number. Thigor—matrix—vector product is defined to be:
type or ordering is henceforth calledbénary orderingas T
opposed to aveight ordering,which will be used in the X Qi1X
Appendix. x'Q" x= :

Similar to the isotopomer fractions, the cumomer frac- xTQ X
tions are collected within the vectox§'® andx, which, by hdim x
convention, are always ordered in the same way as thand similarly forQ,~. The vector-valued term’ Q;” x can
isotopomer fractions (i.e., binary or by weight). In the fol- now be used together with the matrix—vector products for
lowing, the bar decoration always indicates that this vectounimolecular transitions from part | (i.e?;~ x, P~ x and
or matrix belongs to the isotopomers, whereas nondecorate™” x) to formulate the cumomer balances. In the same way,
vectors or matrices belong to the cumomers. the matricesP,”, P,, P\"P and the three-dimensional ma-
tricesQ;”, Q;~ will be used to express the isotopomer bal-
Three-Dimensional Matrices ance equations.

To formulate the isotopomer and cumomer balance equas . . .
tions with a formalism I:;imilar to that introduced for pogi_aGeneral Matrix Notation of the Balance Equations
tional labeling in part | it is necessary to introduce a matrixBefore the cumomer balance equations can be formally
notation that helps to express the newly arising quadratigvritten, the isotopomer balance equations have to be speci-
terms. Usually, quadratic terms in the state varialllese fied first. Using the notation for quadratic terms just intro-
written with a symmetric square matrix M & M x. For  duced, and keeping in mind that isotopomer-related terms
example, the cumomer balance from Eq. (10) can be forare written with a bar decoration, the general isotopomer

mulated as: labeling balances can be formulated in a compact manner as:

b € 1
ix ll ERT'<ZV7’67+VT'6T>'?

. <zv B v ~|3r> R+ <2v; -ﬁ:np) SR = 0

C#lxx1: 0= 1 X - _
2 o with the bimolecular isotopomer transition matric€s’,
1 Q,~, the unimolecular isotopomer transition matrides,
P;~, and the unimolecular input isotopomer transition ma-
trices PI"P. It should be noted that bilinear terms are not

S ~ / required for input metabolites, because the latter must enter
Q3 10a i|_1to the sy;tem by a unimol_ecular _st_e_p through t_he conven-
(o tion made in part |. The precise definition of the bimolecular
! transition matrices is given as follows:

1 if theith forward reaction step combines
where the dots indicate zero entries. The faétoensures - the isotopomers with indeixand| to the
that the quadratic terrh,, e, is not counted twice in the  (Q;j)x,=
matrix Qz',,q. The symmetry ofQz',,,, will be a useful
property, as shown later (see Appendix).

One such square matr@;; or Q;j has to be constructed
for each bimolecular fluxy~ or v~ and for each target It follows immediately tha(_gi] is a symmetric matrix. The
cumomer fractiorx;. Herein, a nonzero entryQ(;),, cor-  unimolecular transition matrices are defined in the same
responds to two cumomers with indexesind| that con-  way as for positional carbon fractions:

isotopomer with index

0 else
(21
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rr 1 iftheith forward reaction step carries Oy 1111111 dooo
an isotopomer with indek over to the Oysn - 1-1-1-1 Joo1
isotopomer with index dypye - - 1111 do1o
(Ei*)j’k:< -1 if j=kand theith forward reaction step Aot | ] - - -1 - -1 ‘ do11
carries isotopomers away from the pool (o I -+ -|1111 d100
with index;j dyya SRR R R dio1
_ 0 else d; 1 S N | di10
(22 dyis N diyy
o \
The other matrice®;;, P, P{™ are defined completely Y
analogously. Ts

The same procedure can now be carried out for the Cuconsequently, there is an overall block diagonal transfor-
momer labeling balances. To this end, the weight of anyation:

index i within the vectorx is defined as the weight of the
corresponding isotopomer or cumomer. Now, bearing in Tny
mind that the cumomer balances are weight preserving, the 0
procedure (12) can be immediately translated into the for-

mal definition:

o -
T ...

X = n2

I
Q
g
o

T-X (25)

wheren,, n,, .. .are thenumbers of carbon atoms of all

Q) = (Qij ), ifweight (k) +weight(l) =weight(j) intracellular metabolites in the system. Similarly, there is a
RGN o) else block diagonal transformation:
Xinp — -I—inp . yinp (26)
) ()., ifweight (k) = weight(l)
Pa=10  else (23) It can be easily proven that the inverse qf i§ given re-
cursively by:
and the general balance equation then has the same structure o . Tr-T !
as Eq. (20) with the bars removed: To =), Toa={ , 11 (27)
n
1 For example, it holds:
— . .0 +v- -0\ -
2" <.E Qe ) x dooo 1-1-1 1/-1 1 1-1 d
+ Vi PtV P ) x vim - P™) - x"™ =0 oot o
(Z > (Z > doso o011 101 dyax
24) dona | | . Oy
dioo | oo 1111 1
d101 . . . . . 1 — dlxl
Transforming Isotopomer into di1o 1-1 A1y
Cumomer Fractions diiq e e | dyyy
_
Based on Eg. (24) the cumomer fractionsan be computed 4
T3

by using matrix calculus, as explained in the Appendix.
Finally, it must be explained how the isotopomer fractionsysing these relations, the inverse matriges, (T™")~* can
X (if required) can be obtained from the cumomer fractionsphe computed easily from Eq. (25), so that the switching

To this end, transformation Egs. (7)—(9) are brought into &etween the coordinate systems poses no problem.
general matrix notation. It can be shown that, for a single

metabolite withn carbon atoms, the transformation from its
2" isotopomer fractions into the correspondifigc@momer ~ Central Theorem for Cumomer Systems

fractions is given by the recursively defined square matri-the main theorem for the structural analysis of isotopomer

ces: labeling systems is the formal statement that the procedure
(12) is correct:

Tn Ty
To =(1), Tha = ( o T > Theorem: X is a solution of the isotopomer balances from Eqg.
n (20) with input vectoix™ if and only ifx = T X is a solution of
the cumomer balances from Eq. (24) with input veotf =
where 0 denotes the zero matrix. For example, it holds: TP XIP,
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The rather technical general proof is given by WurzelCN1: Replace all isotopomers in the isotopomer network
(1997). Based on this theorem the cumomer fractions can be by their corresponding cumomers (i.e., replace each
computed explicitly by successively solving the linear equa- indexO0 by X). The result for the backward step\3

tion systems for the 0-, 1-, 2-. .cumomer fractions as has in the running example is:

been demonstrated for the exam_ple from Figure 2. _As a V3: CHijkl > B#ij + E#Kl, ijk|=X.1
consequence, the cumomer fractions are always uniquely

given as a rational functiol’ of the flux vectorsv—, v-. CN2: Remove all 0-cumomers from the network, because
The same holds for the isotopomer fractions, as shown by the corresponding cumomer labeling fractions are 1
using the transformation from Eq. (25). This finally gener- and thus do not contribute to the balance equations.
alizes the complete theory developed for positional labeling Because the reactiong3: C#XXXX > B#XX +
systems in part |. Several computational examples will be E#XX is completely eliminated by this rule, the 16
presented in part IV. backward reactions of3 in the example reduce to
the following 15 reactions:

CUMOMER NETWORKS v3: CHijkl > B#ij + E#kl ,ij=X1,1X, 11, kl=X1,1X, 11

v3: C#XXkl > E#kl kl=X1, 1X, 11
Theisotopomer networkorresponding to a certametabo- v3: CHiXX > BH#i L= X1, 1X, 11,

lite networkconsists of all isotopomers in the system and
the reaction steps between them. For example, the backwa
direction of the bimolecular stey8: B + E > C in Figure 2
gives rise to the 2- 22 = 16 isotopomer reactions:

(f\3: Remove all reactions with two products that both
have positive weight and replace them with a system
efflux. Of 15 backward isotopomer reactions \8
only 6 reactions are thus kept in the cumomer net-

v3: C#ijkl > B#ij + E#kl, i,j,k,1=0,1 work:

Becauser3 is bidirectional all corresponding isotopomer v3: C#1XXX > B#1X v3: CH#XIXX > B#X1
reactions are also bidirectional. The isotopomer balances3: C#XX1X > E#1X v3: CH#XXX1 > E#X1
equations can be constructed directly from the isotopomey,3- cx#11xX > B#11 v3: CHEXX11 > E#11
network as has been explained previously. On the other
hand, the isotopomer network can be interpreted as a graphi- ~ While the others are replaced by an efflux:

cal representation of the isotopomer balance equationgs. c#1x1X > v3: CHX1X1 > v3: CHIX11 >
Such a graphical representation can be extremely helpful fo\;3_ CHIXXL > v3 CHI1IX > v3: CHX11l >

understanding the structural properties of the system and to_’ _ _
perform simplification operations (Reddy et al., 1993). ForVs: C#X11X > v3: C#11X1 > v3: C#1111 >

this purpose, @umomer networks now constructed in @ The last rule is the most important because it enforces
completely analogous way as a graphical representation @feight conservation in the cumomer network. No cumomer
the cumomer balances. This completes the diagram: pool can have an influx from another pool with higher
weight. Consequently, if a cumomer is split into two prod-

isotopomer - cumomer . .
P K - network ucts then one of the products must have weight 0 and is thus
network transformation Netwo omitted by rule CN2.
formulation ! ! formulation
rules rules
isotopomer N cumomer The Cascade of Cumomer Subnetworks
balances transformation balances The resulting cumomer network has considerably fewer bi-

molecular reaction steps than the isotopomer network be-
cause only those bimolecular steps “survive” that combine
two cumomers with a product of higher weight. This im-
The cumomer network is constructed according to the folmediately induces a cascaded structure of the cumomer net-
lowing rules starting with the given isotopomer network. work that is illustrated in Figure 3:

These rules are simply a graphical representation of th
procedure (12). Note that, for bimolecular steps, the forwar
reaction must be treated differently from the backward re-

Constructing the Cumomer Network

. The nodes and edges of theumomer network are all
the n-cumomers and the cumomer reaction steps that
take place betweemcumomers. These steps are always

actions: . LT
unimolecular by construction. it is helpful to arrange the
CNO: Replace each bi-hi reaction stepM + N > P + Q cumomer nets in a three-dimensional graphical represen-
by a sequence/l: M+ N > MN, w2: MN > P + Q tation where then + 1-cumomer net lies “above” the

of two reactions, which are bimolecular on only one  n-cumomer net (Fig. 3).

side. It should be mentioned that this step is not ac2. The differentn-cumomer networks are “vertically”
tually necessary but simplifies the following expla-  linked by all the bimolecular reaction steps. Each of
nations. these steps, by construction, combines two cumomers of
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labeled positions of a molecule are given by their positional
number. For example:

C = C#XXXX C#24 = C#X1X1
C#2 = CH#XIXX  C#234 = C#X111

C#1234 = C#1111

In the same way, the cumomer fractions are denotet] by
C,, C», and so on. Note that = 1 and that, in the case of a
1-cumomer, this yields exactly the former notation of car-
bon atoms and positional labeling fractions. So, the posi-
tional notation is compatible with that introduced in part I.

\—V\\‘: },‘\—V On the other hand, it should not be confused with the po-
W sitional isotopomer notation used in earlier publications
(Chance et al., 1983). Using positional notation, the ex-
/ // ample ofn-cumomer networks is visualized by a cascade of
= - subnets in Figure 4.
.*Q—pa -« =P
«*—Ppa -« —p o
a—pa - ry\ - The Paradox of Vanishing Cumomers
-
There is one paradoxical feature of cumomer networks re-
lated to those bimolecular reaction steps with two products.
This is the apparent vanishing of cumomers from the system
Nt s as induced by rule CN3. For instance, the bimolecular iso-
S P, _“’ e topomer reaction step3 in the example network induces
- Y the reaction step:
<

v3: B#2 + E#12 > C#234

in the cumomer network. This step is a transition step from

Figure 3. Cascaded structure of the cumomer network. fiteamomer
networks are arranged vertically and linked by the bimolecular reaction
steps. The O-cumomer network is identical to the underlying metabolic
network and is usually completely eliminated because all its cumomer

the 1- and 2-cumomer networks to the 3-cumomer network.

values are 1 by definition. However, it has been included for illustrative Level O A Level 1
purposes. 1
A Ao B —"
~~pg— \182’\/,'
weightsk andl to a cumomer of weight + I; that is, the /' C1
E, 2
; ; « " E 17 T>»C
bimolecular steps are always directed “upwards” in the / C //EzHC 3
graphical representation (Fig. 3). N ( ‘/
By construction, the sum terms in the cumomer balance D 81
equations are in a one-to-one correspondence with the re- Dg
action arrows in the cumomer network. In the same way, the
cascaded network structure corresponds directly with the Leveflz Level 3 ™\
cascaded linear equation systems presented in Egs. (14-18) 12~ B KN IR »012123
for the example. ,\} an 14 N\ “Cyaa
x> Cyp \\ Coan NN
o E12<\:'g Ca3
An Alternative Notation *, 434 D123
. . . . Xp¥ Level 4
To obtain an easily readable visual representation of the \D13 |
n-cumomer networks an alternative notation for cumomers D23 ‘“'%'@_C
and cumomer fractions is now introduced. Thissitional 12 1234

notation is much shorter than the binary notation used be-
fore. On the other hand, it is not well suited for the formu-

Figure 4. All n-cumomer networksn( = 0, 1, 2, 3, 4) for the example

lation of genera_l .balance equations "l_(e that in Egs (6) anGom Figure 2. The shaded bimolecular steps are only drawn within their
(13). In the positional cumomer notation, only the always-target subnetwork, but without their educts, which belong to a lower level.
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If the reverse reaction step is considered, there remains only These redundancies imply that the cumomer fractions of
an efflux: C andD contain no additional flux information as compared
with their predecesso® and E. In particular, this redun-
dancy holds independently of the current flux values. Thus,

from the system, because no reaction step can proceé’&ith respect to flux identification, redundant variables can
“downwards” in the cascaded reaction system by rule cN3P€ eliminated from the balance equations.
Thus, C#234 seems to vanish from the system instead of An even better idea is to remove the redundant nodes

splitting into B#2 andE#12. The explanation for this effect dire_ctly from.the cumomer network. To this (.end,_t.he ,f0|'
is that the cumomeE#234—considered as a set of isoto- 'OWing graphical rules for cumomer network simplification

pomers—is actuallgontainedin both cumomer<#2 and ~ PY removing redundant nodes are generally valid (see
C#34. But the latter have already been taken into accounf9: 9):
on levels 1 and 2, which explains the paradox: S1: If a metaboliteM has only one influxv: N > M andv
V3 CH#2 > B#2 is urllidire(;:tiq?ﬁl, th”e_rim (can be reToveqdfron:_ thelr)1etf-
_ work, and within all its (necessarily unidirectional) ef-
v3: Ci#34 = E#l2 fluxeswl: M > P1, w2: M > P2, ... the nodeM can
be replaced bw.

v3: C#234 >

SOLVING STRUCTURAL FLUX S2: If a metaboliteM has only one influx: N > M andv
IDENTIFIABILITY PROBLEMS is bidirectional, then this flux can be assumed to be

) o ) ] o ) unidirectional. Its value must be assigned to the net flux
This section is concerned with flux identifiability by isoto- of the original step.

pomer labeling experiments. The question is whether there
is enough information contained in the cumomer labeling BY iteratively applying these rules the 3- and 4-nets from
fractions to identify all the three fluxes in the system. If this Figure 4 vanish completely. Figure 6 shows what results for
is not the case, it is desirable to know which subset of fluxeghe 1- and 2-cumomer network. From these networks, two
can be identified. In particular, it is of great interest if more simplified sets of balance equations for the remaining two
flux information can be obtained with isotopomer measure-ntracellular metabolite® andE can be read off directly:
ments compared with only positional enrichment measure-
ments. As will be shown, a graphical analysis of the cu-
momer network helps to elucidate these problems. B#L : by (vo +v3*'+vg)

The kind of identifiability analysis presented here relies pgyo - by (v; +\A%+vo) =
on the assumption that all cumomer fractions are potentially
measurable and measurement errors are negligible. BecauseB#12 :
this is a rather optimistic assumption all results will be (29)
b . e i ; : E : v+t = Vo + et

est-case results: that is, in the practical experiment, even 2 TV3 4 2 3
fewer fluxes might be identified. However, the results will  E#1 : e (v5 +V3*'+v;) = by vy + bvg®
r_10t be_that far from the real situation, because for metgbo- E#2 e (v +vget+V;) =b, vy +e Set
lites with at most three carbon atoms all cumomer fractions _ ~ ot " o
can be determined currently by a combination of the differ- E#12 1 e (v; +V57+Vy) = bia vy + byeps
ent measurement techniques (Wiechert and de Graaf, 199@13 can be seen, only the net flux of<t influences the

More results on the achievable flux information that alsosystems labeling state. Consequently,andv; cannot be

take the available measurements and the statistical aSpe‘E}%tinguished from flux or labeling measurements. Thas
into account will be presented in part IV. ’

- et , .  _ . _
Vi VT = vy tv;

g vt eV,
8 Vit eV,

- et -\ — . _
bio (v +V5T+vs) =@ vi t e

Simplifying Cumomer Networks Original Network Simplified Network
As a first step in this analysis the cumomer network is /v P /v P
reduced to a simpler one by removing certain nodes. ConS1: N—» M>— Q N— Q

sider, for instance, the cumomers@fndD in the example

network from Figure 2. Becausé andv7 are assumed to R R

be unidirectional (an extracellular metabolite splits off) it

follows immediately from the cumomer balance Egs. (13) P P

and Eq. (2) that (using binary notation): S2: Ne& M{: Q N#M{: Q
i = Cyijio 11 J, K=X, L andcyy = by €, 1, j, k, I1=x,1 (29 \ R fTS:: \ R

[see also ECIS- (14-18)]. Such relations are called labelingigyre 5. schematic representation of the network simplification rules
redundancies. for eliminating redundant nodes.
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Level 1 Level 2 ]vahich is not carried out here for the sgke of 'bre)/itly
] inally turns out that four of the six labeling variables are
A \AB 1 — A12\ _» redundant with the others and thus carry no additional flux
2\1523\/: B, information.
/ k In summary, all cumomer labeling fractions in the system
E1~/ f can computed directly from the knowledge of only two
/ +E5;—> ’ cumomer fractions as, for example,, e,, irrespective of
e the current flux values. Even if one extracellular flux were
directly measured this would not help to determine all the

fluxes from whatever cumomer fractions are given. How-
Figure 6. Reduced 1- and 2-cumomer networks of the example networlgever partial information can be obtained. If. for example
from Figure 4. Bidirectional fluxes that have been replaced by net fluxes _ .’ d. them- be det . d f, E60 ’
(see Fig. 5) are indicated by a feathered arrow. V1 _'S measured, e‘?b Cfan ¢ e_ ermln_e rom (ﬁ )
while v, and v3 remain hidden. Finally, if two fluxes, for
example,v;"andvg, are measured, all other fluxes can be
can be assumed to be unidirectional without loss of infor-computed from Eqs(30) and(31) by using only fractional

mation. enrichment data.

Solving the Flux Identifiability Problem Another Interesting Example

;I'akw;g Vs f|: 0, tt‘e aLm |shnovl/ to rep;esent thefrerrlnalmng The example just discussed is somewhat disappointing, be-
our free fuxetfsvlsk; VE’ \tl)Z V3 as a lfrr;]Ct'on_ 0 the SX* cause in this case isotopomer measurements are not superior
CUMOMET ITaction®,, by, D2, €, &, €, INEre 1S a chance ., ,qsitional measurements. However, this is generally not

to find such fu_nctlons because the simplified n_etyvork fror_nthe case as the example from Figure 7 shows, which was
Figure 6 contains no more nodes that can be eliminated with

the simplification rules. But, unfortunately, it will be shown

now that the reduced net can still be used to derive another
type of redundancy relation. Level O Level 2
To this end, it should be noticed that all remaining nodes A A12
in the reduced network have only two influxes. In this situ- *ll ¢
ation, the ratio of these influxes can always be computed -B
directly from labeling fractions. For example, looking at Vl// =BV v, // 51N
nodesB#1, B#2, andB#12, and using the flux balance for / n3 v v
B in Eq. (29), it immediately follows that: Yy pdy
C D E Ei2
vi e -b  e-b, e,-by, \ s
—=- =- =- (30 = W,
v; &b a-b, a,-by Wl\\A v ‘:/“’2 F
which are three different formulas for the same flux ratio. F *12
This is an immediate consequence of the fact that the net- *
work has the same structure at all three cumomer nodes. Level 1
Similarly, another flux ratio can be computed threefold
from the E balances: A1 A2
v, e b -6 €,—€ b ¢ ¢
vy e-by  e-b e~ by, (3 ///B" P -~ ..BZ
As an immediate consequence there are four algebraic re- / s~ S
lations from Eq.(30) and (31) between the labeling vari- » ¥ 4P TS
ables that hold independently from the actual flux situation. 1 CZ .Dj E1 E2
These relations can be used to eliminate some variables ‘\ \ S /
from the system. For example, it follows from E80) that \ \.:' )
o Pl 4
_ e —b M F S F
ez—bz"'ﬁ'(az_bz) 1 2

e b
€= b12+a b (CIPl OPY)
1~ 0
Figure 7. Example network proving the principal superiority of isoto-
always holds. Substituting these equations into 1) pomer experiments over positional enrichment experiments.
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derived from an example in Schmift998. It is now rig- L A, fin
orously analyzed with the methods just presented. The cor- Vg =U
responding reaction equations are given by (see Fig. 7):

@37

a1, — (8 +a,)°/4

Combining this result with Egs. (32) and (36), all free fluxes

u- A >B vi: B >C wl o C >F are determined from labeling measurements. Thus, an ex-
By yhy hy Sy ample has been found in which the isotopomer measure-
r F >G v2. B >E w2: E >F ) . . . .
Hxy>HXy HXy>HyX #xy  Stxy ments contaimoreinformation than the positional labeling
v3: B >D +D w3: D +D >F measurements.
HXY>HX HY #X HEy S#HxXy

The example is constructed such that the reactidnsi1
andv2, w2 keep the two carbon atoms of the input metabo-
lite A together (but with opposite orientation), where@  The aforementioned results have been derived in a rather
Sp"tS moleculeD and w3 reunites the carbon atoms. All intuitive way. However, there is a Systematic way to pro-
fluxes are assumed to be unidirectional and the free fluxeguce redundancy relations for labeling fractions like those
arevy; V,, V3: The substrate uptake: in Egs. (30), (31), and (35) and identifiability relations for
fluxes like those in Egs. (36) and (37) by using the computer
algebraic algorithms developed by Wiechert (1995). How-
is assumed to be measured as usual. The remaining flux@yer, for ease of understanding, these algorithmic details
are then given by~ =v;",i=1,2,3,andd~ =u". have been omitted in this text.

From Figure 7 it becomes immediately clear that all The mostimportant concept for the analysis of cumomer
nodes are redundant except #1, F#1, F#2, andF#12. networks with respect to flux identifiability is the redun-
The reduced 1- and 2-cumomer networks are shown in Figdancy of cumomer fractions. A (generagdundancyis a
ure 8. From these nets, the reduced balance equations diRossibly nonlinear) equatiofi(x) = 0, which holds what-

The General Concepts

u’ =vy +vy, +vyg (32)

given as: ever the flux values in the metabolic system are. In this
situation, one variables;, can be expressed by the others
D#1 : d; 2v3 =a; V3 ta, vy and thus contains no additional information on the fluxes.

' L . R R So, the presence of redundancies reduces the available in-
F#L @ f (v +vy +vg) =ag v + 8, vy +divg formation for flux identification. Once all the redundancies
(33) have been determined the flux identifiability problem can be
. S+, Vs ) = oo+ 5+ 5
Fi2 o T (v #vs) S v+ vy + v decided based on the dimensional relation:

F#12: 1o (i V5 +V5) =aguy +avy +divy Number of identifiable free fluxes

The most important structural property of this example is = Number of independently measured fluxes
thatD-nodes occur only on levels 0 and 1. On leveD#1 + Number of isotopomer measurements
has two separate influxes and it follows: — Number of redundant isotopomer fractions
(38)
1 . .
d, = > (a, +ay) (34  However, it must be pointed out that the number of redun-

dant fractions may not equal the number of redundancy

Thus, d, is a redundant node. Substituting the valuedpr relations found. The reason is that there may be complex
into the balances foF#1, F#2, and summing up these two algebraic dependencies between the relations that are diffi-

balances, it turns out that: cult to find in general (Cox et al., 1992). Fortunately, the
y+a=f +f, (39
This means that, is redundant with, and, consequently, Level 1 Level 2
there is no chance to determine the three free fluxes from A12
positional labeling data, even if the influx is measured ya V
directly. Interestingly, by subtracting the balance Fstl /
from that forF#2 in Eq. (33) it can be seen that: ,l
f, -1, |
v, -V, =uT 36 \
e P—. (36) \

that is, at least the difference flux can be obtained from the
positional enrichment data.

The last hope for flux identification is thdj{, contains
some additional information on the free fluxes. Indeed, from
the corresponding balance and Eq. (34) it follows: Figure 8. Reduced 1- and 2-cumomer networks from Figure 7.
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algebraic independence of the few nonlinear equations de&. This algorithm will now be developed in complete gen-
rived in the examples just given can be proven by using therality to enable an automatic solution based on matrix cal-
computer algebraic methods of Cox et al. (1992). culus. A complete software implementation of the compu-

tational procedures has been supplied by the authors.
CONCLUSION

In this study it has been_ show_n_ that isotqpomer SyStemWeight Ordering of the State Vector
have much in common with positional labeling systems. In
fact, they are not as nonlinear as was previously assumedhe key feature of the cumomer fraction balances turned out
After a linear transformation from the isotopomer space tao be their weight preservation. In this section, another or-
the cumomer space the balances can be solved from a cagering of the vectorg™P, x is used that is more feasible for
cade of linear equations. In particular, the balances for methe exploitation of weight preservation than the binary or-
tabolite fluxes, positional carbon enrichments, and isotodering introduced in the main text. weight orderingof x
pomer fractions are just three facets of one unifying cu-first arranges all cumomer fractions by their weight and then
momer balance equation. orders the cumomers with equal weight binarily. For ex-
For this reason, cumomer systems now seem to be thample, a weight variable ordering for the example from
more adequate representation of the balances, because fRigure 2 is given by [cf. Eq. (19)]:
system can bg be_ttgr understood by using these .coordinate§.= Bars Covoo thors B (weight 0
The greater simplicity of the cumomer balances is reflectgd Bs, B, Coons Coes Cetoes Crons Gots s Gis € €s  (Weight D
by thg cascaded structure of the cumomer networks, Which e G Coos Coas Croe G Ous yaes €1ar (Weight 2
contain far fewer bimolecular steps. All numerlcal and St ¢ Cuan Ciua Cunes S (weight 3
tistical methods formerly derived for positional labeling )" (weight 4
systems can now be extended to isotopomer systems in a _
straightforward manner. This will be carried out in part IV. Using a weight orderings andx"” can be partitioned as:

A simple example shows that—compared with positional oinp o
labeling systems—isotopomer measurements, in principle, X_ X
enable additional fluxes to be determined. On the other = [ X ) anax= |

hand, the examples of cumomer systems given lead to the
conjecture that the achievable information increase is not as
large as might be expected from the sheer number of avail- inp K , ,
able measurements. In particular, the structures of thi/nere the_vextor§i , "x comprise all cumomer fractions
higher cumomer networks become progressively simpler).(i with v_velght 0= ,k' It should be noted that there is a
For example, all 5-, 6-, and 7-cumomer nodes and almost afi'@nge in the meaning of the state vectdiS, x compared

4-cumomer nodes in the pentose phosphate pathway a8 their definition in part I. Trle former positional labeling

inp . H
isolated nodes; that is, their labeling state is determined&t® VECtors are exactiy™, 'x; that is a segment of the

completely by the labeling state of the lower cumomer netsN€W Staté vectors. Clearly, the defining Egs. (21-23) pro-

From these considerations, it can be conjectured that thguce different transition matrices for different orderings of

carbon atom network is generally the most informative parlthe st_ate vector. However, Eqg. (24) remains correct for_ any
of the network, and the higher networks contain progresprderlng because vectors and matrices are permuted in the

sively less flux information due to redundancy. same way. , _
A clear statement can be made concerning labeling ex- This does not hold for the transformation from isoto-

periments with fully labeled substrates (Szyperski, 1995)pqmer intg'cumomerfractions, as given in Eq. (26).’ because
For such experiments, it is clear that all positionl enrich-tNiS definition depends on a binary index ordering. If a

ments in the system will always become equal to the fracVéight ordering is chosen fof"™, x, then, before applying

tion of fully labeled molecules in the input. Thus, the carbont!€ transformation matrix from Eq. (25), all entries of the
atom network contains absolutely no information for suchState Vectors must be first reordered into a binary ordering.
experiments and all fluxes must be computed from higherl IS IS achieved by using permutation matri¢es”, I1. The
cumomer measurements. Clearly, this approach will be sutfi€neral transformation rule then is:

opt.imal (which has also been fOUI"ld py Sc.hmidt [1998])), XIMP = [P T TinP [P . %IP andx =TIT T 11 - X

which will be demonstrated quantitatively in part IV. A . o

better approach might be to apply a mixture of a completelyand the inverse trans_fi)rmatlc;n is also easy to compute by
labeled and a positionally labeled isotopomer as input. Thigising Eq. (27) andT™ = II', which always holds for
matter will also be examined in part IV. permutation matrices.

APPENDIX: GENERAL SOLUTION OF THE Partitioni fthe S Matri
CUMOMER BALANCE EQUATIONS artitioning of the System Matrices

The solution algorithm for general cumomer balance equaCorresponding to the partitioning of the state vectors into
tions has been introduced by using the example from Figursegments of equal weight just given the unimolecular tran-
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sition matrices?;” can be partitioned into a block diagonal that all terms become linear with respect'xo Rearranging

structure as: Eqg. (40) by exposingx now produces:
OPiH 0 t 0 E v -1+ ("0Qi +°"Qy) +vim - 1+ (M0Q +2MQ ) +viT x P v P X
P = 0 o 0 ) M ’

known matrix"A(v)
1

+3 E |:kXT_ (ZV.' Qe +v - HQr ) _|X] +2 (V‘, .np:np> i _ g

k+l=n i i
kl#0

with dim ’x x dim 'x matrices'Q;”. The reason for the . v /
diagonal shape is that, due to weight preservation, a cu- known vector'b(v, ’x, . . ., %)

momer fraction can only contribute to the balance of a CUt
momer with identical weight. Consequently:

rom this the solutionx is computed as:

" ="AYV) - "b(v, ', ..., "X
op- .0 (v) - "b( )
1p- . 1y It can be proven that the matri}a is invertible in all prac-
P . x= o s tically relevant situations (Wurzel, 1997).
i X= Pf <X (39) . . inp
i In summary, the vectoris computed as a function &f’

andv by solving a cascade of linear equations:

4 . 1= O
Similar formulas hold foP;~ - x and P{"P - x'"P,

-1 1 1
In the same way, the three-dimensional bimolecular tran- 0= 2A(v) 2X N 2b(v) 1

sition matricesQ, partition into dimix x dim ¥x x dim 'x 0="A(v) - Xx+"b(v, )
submatrices, but only those submatrices Vjith k + | are 0="A(v) - * +%b(v, ', ?x)
nonzero. These nonzero submatrices are denotédQy, :
which contains all bimolecular transitions whereka
comomer fraction combined with alnRcumomer fraction,
thus contributing to the balance oka I-cumomer fraction.
This yields the formula:

(41)

Here the 1-cumomer equation is exactly the well-known
positional carbon-labeling balance equation from part I.

0T .00y~ .0 Derivative of the Balance Equations
X2 X

0T 0IQ - x+ T 1Q - Numerical optimization algorithms and the statistical evalu-
XToQr ox= | T 0 A XTI - I+ X T 02 - ation methods that will be developed in part IV require the
. knowledge of the derivativax/ov (i.e., the sensitivity of the
labeling state with respect to the fluxes). The straightfor-
ward way to calculate these sensitivities is given by an
and a similar one fox" - Q;” - x. implicit differentiation of the balance Eq. (24). Although
this is quite easy to implement it is computationally rather
expensive because a matrix of dimension dirhas to be
inverted, which require©(dim x3) computational opera-
With these matrix partitions, the general algorithm for solv-tions.
ing the cumomer balance equations can now be given_ It A much more efficient way is to differentiate the whole
starts with® = 1 (the vector composed of all 1s) and cascade [Eq. (41)]. At leveh, an implicit differentiation

General Solution of the Balance Equations

continues recursively with the solution féx, 2, .... To  Yields:
this end, it is now assumed that all cumomer fractidgsx, N N N
...," X have already been computed. Then, from Egs. (24) 0= ICA) (V) - "X + "AV) - (%) + 3(b) . v
and (39), the balances for tmecumomer fractions can be v~ v, v gy
written as o) a('x
L3 a0 42

1 =1 O'X oV

kT Lkl okl )L = i
Ekﬂzzn[ X '(Izvi QT Qi > X]

_ _ The only unknown quantity at this stagedi§x)/av;~, which
* (Z Vi TR 'npf> X (Z Vit .nP:np) “%™=0 (40 means that the matrix factorization fo&(v) that was nec-
essary to solve Eq. (41) can be reused for solving Eq. (42).
Now, from the symmetry 0Q;” , Q" , with respect tox, it~ Because matrix factorization is the most time-consuming
follows: operation in the solution algorithm this shows that the sen-
sitivities can be computed with negligible effort. However,
the proper implementation of the implicit differentiation
Here,1-°"Q, and 1- "°Q, are just ordinary matrices so procedure is rather difficult and must be tested carefully.

%T.0NQ, - ™ =1-°9"Q,-"x andalso "x-™Q,%=1-"%Q; - "x
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This has been done by computing numerical derivatives irfMoliney M, Wiechert W, Kownatzki D, de Graaf AA. 1999. Bidirectional
paraIIeI. reaction steps in metabolic networks: 1V. Optimal experimental design
of isotopomer labeling experiments. Biotechnol Bioeng 66:86—-103.
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