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Abs t r ac t .  In many applications one needs a concise description of the 
Bidirectional Reflection Distribution Function (BRDF) of real materials. 

Because the BRDF depends on two independent directions (thus has 
four degrees of freedom) one typically has only a relatively sparse set 
of observations. In order to be able to interpolate these sparse data in a 
convenient and principled manner a series development in terms of an or- 

thonormal basis is required. The elements of the basis should be ordered 
with respect to angular resolution. Moreover, the basis should automat- 
ically respect the inherent symmetries of the physics, i.e., Helmholtz's 
reciprocity and (most often) surface isotropy. We indicate how to con- 
struct a set of orthonormal polynomials on the Cartesian product of the 
hemisphere with itself with the required symmetry and invariance prop- 

erties. These "surface scattering modes" form a convenient basis for the 
description of BRDF's. 

1 I n t r o d u c t i o n  

Surface reflection (or rather: scattering) by natural  materials[8] is conveniently 

described[13, 6, 7, 11] by the Bidirectional Reflection Distribution Function (or 

BRDF for short). The B R D F  is the ratio of the radiance in the direction of 

the exit beam to the irradiance caused by the entrance beam. The BRDF de- 

pends on two directions, tha t  is on four independent angles, two of them in the 

interval (00,90 ~ ) and the other pair in the periodic range (0~176 The for- 

mer two describe the deviation from the surface normal direction, the  latter two 

the azimuth with respect to a fiducial direction on the surface. For an angular 

resolution of 6 < <  1 one thus has to specify 47r2/~ 4 independent samples; for 

an angular resolution of 10 ~ tha t  already amounts to more than  fortythousand 

samples. 

In view of these numbers it is perhaps not surprising tha t  in practice few 

materials have been fully characterized in this way. For many  important  ap- 

plications much lower resolutions suffice and then the B R D F  description is a 

practical one. An example is graphics rendering, al though hardly any a t t empt  

seems to exist where one uses empirical data. In practice one usually substi tutes 

model approximations. In case empirical data  are used the problem of interpo- 

lation or representation of the data comes up. One would prefer methods of rep- 

resentation tha t  guarantee physically consistent results, i.e., the BRDF should 
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satisfy certain symmetries tha t  reflect elementary physical constraints such as 

invariance under permutat ion of entrance and exit beams (so called Helmholtz's 

reciprocity[5]). Thus the problem arises of how to represent empirical data  in a 

numerically advantageous and physically acceptable, principled manner. 

Some type of series development in terms of an orhonormal set of basis func- 

tions that  are ordered with respect to angular resolution appears the obvious 

choice. Then the desired angular resolution can be simply set by truncating the 

series, whereas the structure guarantees tha t  the approximation is always opti- 

mal in the least squares sense. Thus one has to construct the desired orthonormal 

basis. We proceed to show how to do this. 

2 A se t  of o r t h o n o r m a l  p o l y n o m i a l s  on  t h e  h e m i s p h e r e  

The hemisphere (here denoted as H 2) has the topology of the unit disk D 2. Thus 

it makes sense to t ry  to adapt known systems on the unit disk to our present 

problem. The unique set of polynomials tha t  are complete and orthogonal on 

the unit disk and have the desired invariance properties with respect to rota- 

tions about the symmetry center of the unit disk are the well known Zernike 

polynomials[2]. This basis was introduced by Zernike in order to construct a 

principled method of describing wavefront aberrations for circular pupils (so 

called Zernike-Nijboer theory of aberrations). 

We consider the upper hemisphere H 2 of the unit sphere S 2 with the usual 

coordinate systems. In Cartesian coordinates {x,y,  z} of l:t 3 the upper hemi- 

sphere is given by x 2 + y2 4- z 2 ----- 1, z > 0. In polar coordinates {0, ~} of R 2 (0 

the polar distance, 7~ the azimuth), it is ~ ~ ~. The polar coordinates {~, 7~} of 

the unit disk D 2 will also be used. 

The invariance we require is "invariant form" with respect to rotations about  
the origin of R 2, or the z-axis of R 3, tha t  is, changes of azimuth. Thus if 

x'  = x cos 7~ + y sin 

y~ = - x  sin 7~ + y cos qo, 

then the polynomial V(x, y) should be taken to V(x', yt) such that  

v(x ,  y) = G(v)v(x' ,  y'), 

where G(7~) is a continuous function with period 27r such that  G(0) = 1. 

We require that  the transformation reflects the properties of the rotation 

group faithfully, thus G(~I + ~2) = G(~I)G(~2) .  This determines the function 

G fully, we have 

C(~o) = e "~,  

where l is any integer. Thus we have V(ocosqo, osin qo) = R(o)e il~. By hypoth- 

esis V(x,y) is a polynomial in x,y of degree n (say). It follows tha t  R(O) is a 

polynomial of degree n which contains no power of Q of degree lower than [l I. 

R(O) is even or odd as [/[ is even or odd. The Zernike polynomials are the unique 
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choice tha t  contains a member for each (n, l) and thus constitutes a complete 

basis. 

The Zernike polynomials are denoted 

Vnt(0 cos W, 0sin ~o) = R~(e)e ~l~~ 

It has been shown that  this is a complete basis for functions on the interior of 

the unit disk. This set contains �89 ( n +  1)(n+ 2) linearly independent polynomials 

of degree < n. In the conventional normalization we have 

iD l l l* ll|t 7~ 1 "n ",r dA = n ~51i,6n,r 

where 5pq is the Kronecker symbol (i.e., 5pp = 1 and 5 m = 0, p # q) and 

dA = dx dy. 
The radial functions R~(0) are closely related to Jacobi's polynomials, which 

are terminating hypergeometric series. A closed form formula is[2]: 

R m(e) = ( - 1 ) "  

s=0 

(n - s)! e , , _ 2 ,  , 
- - �9 

The radial functions take the value unity on the boundary of D 2 (due to the 

conventional normalization). 

We show how to map D 2 on H 2 in such a way that  Zernike's system can be 

mapped into a complete, orthonormal basis of functions on H 2. The required 

system clearly has the general form 

w (o ,  = 

for the very same reasons as discussed above. From elementary differential cal- 

culus we have 2sin ~ d(2sin ~) = sinOdO. Thus we also have 

/D2 V(x,y)dA = SH2 W(O,~)dY2 = /H21R(x/'2sin ~)G(~) dY2, 

where dY2 = sin OdOd~. We use essentially the area true mapping of S 2 on R 2 

due to Lambert. 

When we define 

Kin (0, W) = ~ - ~  Rln (x/2 sin 7)e'/~~ 

then we have 

i H  I * l' K~ K~,,d~2 = 5,~,r 
2 

i.e., the K~(0, ~) are a complete, orthonormai system on H 2 with the desired 

invariance properties. Please notice that  this system is different from that  of the 
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spherical harmonics Ylm(0, ~) which are an orthonormal basis for functions on 

the whole of S 2. 

This system should have many uses in radiometry and photometry (and 

t ransport  theory in general) since it allows you to expand arbitrary functions 

of direction at one side of a planar interface. It might seem unlikely that  such 

a system has not been proposed earlier, yet we have not been able to find an 

instance in the literature on radiometry and/or  photometry. 

3 An orthonormal basis for the description of BRDF's  

The bidirectional reflection properties of a surface are clearly specified by 

the Bidirectional Reflection Distribution Function (BRDF), originally due to 

Edwards[4] and effectively introduced by Nicodemus et a/f13]. One defines 

dN (Or, 
f(O~, ~i, Or, qor) -- dH~(Oi, ~ )  ' 

(the subscript i denotes the incident beam, the subscript r the reflected beam), 

thus the BRDF is the ratio of the scattered radiance to the incident irradiance. 

The BRDF may become singular, especially for the case of grazing incidence. 

This happens, for instance, for perfect specular reflection. In such cases it is 

advantageous to deal with the function 

g(Oi, ~ ,  Or, ~r) --- f (0 i ,  ~i, Or, ~r) COS 0i, 

which is the scattered radiance for irradiance by a collimated source of constant 

intensity, instead of the BRDF. We then develop g rather than f in terms of 

an orthonormal basis and thus avoid singular behavior. For the case of natural 

materials this will be seldom necessary though. 

The most general form of the BRDF in terms of the aforementioned orthonor- 

mal basis functions is: 

l 
f ( 0 , ,  v , ,  0r ,  v r )  = 

k l k q  I 

However, various symmetries severely constrain this general form. We consider 

these constraints below. Because of the orthonomality we find the coefficients 

aelk,~, by integration: 

fH w,)K',(O,-, ~,-) d ~ d ~ ' .  

3.1 H e l m h o l t z ' s  r e c i p r o c i t y  

"Helmholtz's reciprocity" simply expresses the fact that  in the approximation 

of geometrical optics 

f(Oi, qoi, Or, 9o,-) = f (Or, ~or, 0~, qol), 
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the idea being simply that  one counts rays irrespective of their direction[10]. The 
extreme generality of the idea ensures that  it applies under the most various 

conditions. 
HeImholtz's reciprocity enables us to write 

f (#,, ~o,, O,., tOr) = ~ aj:uvt,( g~(oi, ~o,)g~',(Or, s + K~,(01, s ~r)).  
k l k q  t 

The symmetrical functions 

H~Z',, (0i, ~,, O,., ~o,-) = K~ (0,, s K~', (0~, ta~ ) + g~: (0,, ta, )g~  (Or, to, ), 

may be called "Helmholtz surface scattering modes". Their azimuthal depen- 

dence is 
e i ( l + l ' ) ~ ,  

which for photometric purposes may be written in terms of (real rather than 
complex) trigonometric functions. In the case of isotropic surfaces (see below) 

we need only keep the cosine (or even) components, the sine (or odd) components 

describe the surface anisotropy. 

3.2 S u r f a c e  i s o t r o p y  

A more special type of symmetry is surface isotropy. Although not completely 

general, this condition applies often to a good approximation. It yields a very 

strong constraint on the general form of the BRDF.  Indeed, the BRDF may 
depend only on lto~ - tpjl. This implies that  the azimuthal dependence is in 

terms of c o s / ( ~  - toj), l = 0, 1 , . . . .  We have 

a,...(O,,(e~)O.,,(O~) cos l(~,~ = + e , , , ( o , ) e , , ( o . ) )  - ~,), f ( ~ , ~ ,  ~ ,  ~ )  ~ L L l 

n r n l  

where 
n > 0  

O<_m<_n 
0 < / < m  

(n - l), (m - l) even. 

This brings down the number of basis functions that  have to be taken into 

account enormously. 
We calculate the coefficients anmt simply as 

a n m  l -~ fH2xH 2 
f (vQi, s l l o,., , p , . ) ( e .  (o~)e,. , , (o, .)  + e ~ ( o , ) e ~ ( o ~ ) )  cos l(,p, - ~,.) 

d[2 d#'. 

We will denote this system as 

S ~ ( 0 ~ ,  0~, zl~o~) t l l 0 ' = ( e , , ( o , ) e , . , ( o , . )  + e , , , ( , ) e , , ( o . ) )  cos t z ~ , .  

where we have set zSipr = I~o~ - ion[. 
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3.3 R e s u l t i n g  basis  p o l y n o m i a l s  

Due to the symmetries the number of components in the orthonormal basis 

of functions on H 2 x H 2 is much reduced. There are only five for order two, 

fourteen for order four, fiftyfive for order eight. Yet the number increases fast 

when one raises the maximum order: One has already to take 285 basis functions 

into account for order sixteen, even in the case of the isotropic surface. Order 

eight might be a limit for most practical work. The angular resolution will then 

be about  360~ �9 8 -- 22�88 ~ which is amply sufficient for purposes of graphics 

rendering of diffusely reflecting materials. For work in which sharply articulated 

functions (such as true specular components) have to be represented accurately 

one needs to draw much higher orders into account of course. 

All surface scattering modes up to order 4 have been depicted in figure 1. 

Explicit expressions for the basis functions up to order two are 

S000(Ol, ~q2, Z~qO12) ~-- 1 

S~1 (~gx, ~92, Aqo,2) = ~- sin -~ sin -~ cos A~,2 

S~ t92, A~12) = ~(cosa?a  + cos~l  - 1) 

S~ ~92, A~12) = g'(1 + cos ~91)(1 + cos v~2) 

$222(1-91, ~92, aq012) = ~(1 - cos z91)(1 - cos~92)cos 2z~qo12. 

Although the basis functions become complicated for the higher orders it is easy 

enough to construct them automatically and the system is convenient enough 

for routine use. 

4 L a m b e r t i a n  a n d  s p e c u l a r  c o m p o n e n t s  

The BRDF of a perfect Lambertian[9] surface has a BRDF that  is constant, 

namely f(~91, ~92, A~12) = 1/Tr. The Lambertian BRDF is just  the initial term 

of the series development, tha t  is to say S~ a92, A~12 ). 

For a perfect mirror we have 

g ( ~ ,  qo~, ~gr, ~r)  = 5(zgr - ~9~)5(qo~ - qor + 7r)/sin zg~. 

The scattered radiance for a constant collimated source is easily expanded in 

terms of the basis, the coefficients are simply proportional with (--1)lSnrn for we 

have: 

= / g(zg~, qo~, zg,., r ,9,., A(p~,.)d~d~,., anml  
J H  2• 

where we can immediately carry out one integration (because of the Dirac delta 

functions) and are left with the integral 

a,~mt = (-1)'47rS~m f . ,  O~(v~) 2 sin z9 d~9, 

which again is immediate because of the properties of the Oln(0). Thus we obtain 

a constant angular spectrum, much like the Fourier development of a Dirac 

impulse. 
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Pig.  1. Plots of all surface scattering modes St~m(Tr/4, ~ ,  A~oi~ ) up to order 4. 



35 

By combination of the Lambertian and the specular expressions we can con- 

s truct  the BRDF for an ideal glossy paint layer. This is the classical description 

of glossy surfaces in terms of a purely diffuse and a purely specular component[3]. 

We assume that  the pigment particles yield a Lambertian component,  whereas 

the specular component is due to Fresnel reflection at the interface with air. 

For the illustrations (figure 2) we took the specular reflection coefficient equal 

to 2% (thus we didn't  take Fresnel's formulas into account). We show the scat- 

tering indicatrix for a collimated beam incident at v~i = 45 ~ in various approx- 

imations, orders 2 to 8. (Notice that  order two preserves only the Lambert ian 

component.) Even the low order approximations preserve the qualitative na- 

ture of the specularity quite well, the main degeneration being a loss of angular 

resolution. Adding higher order terms concentrates the forward scattering lobe 

more and more inside a small solid angle centered on the direction of the mirror 

reflection. For order 8 we have 55 degrees of freedom, thus the solid angle of 

a "pixel" is roughly 2~/55, and we can estimate the diameter of the forward 

scattering lobe as (180/~r)V/(4/~)(21r/55) ~ 22 ~ that  is the resolution of the 

order 8 approximation, etc. 

\ 

16 

_ ( . ) _  4 

- 0 - -  2 

Fig.  2. Various approximations (truncated series of Helmholtz surface scattering 

modes) of a model containing pure Lambertian and a pure mirror reflection 

term. The entrance beam enters at Oi = 45 ~ In the lefthand column we have 

meridional cross sections and in the righthand column azimuthal cross sections. 



36 

5 D e v e l o p m e n t  o f  c o n v e n t i o n a l  e x p r e s s i o n s  i n  t e r m s  o f  

s u r f a c e  s c a t t e r i n g  m o d e s  

Many expressions have been proposed as tnodels of the BRDF of generic 

materials[l, 12, 15, 16, 17]. Some of these fail to comply with Helmholtz's reci- 

procity, practically all are descriptions of isotropic surfaces. Such expressions 

can be roughly divided into two categories: First we have expressions derived on 
(phenomenological) physical principles for certain model surfaces such as ran- 

domly distributed micromirrors, etc. Secondly we have the category of formulas 

based on ease of numerical evaluation for datastructures readily available in 

graphics rendering pipelines. Although such expressions are designed not to be 

totally irrealistic, modelling any reasonable model surface on physical principles 

is a secondary objective. 

One of the earliest and certainly simplest models is certainly the Lambertian 

diffusely scattering surface. We have seen that it can be described perfectly with 

only the initial term of a development into surface scattering modes. One may 

well ask how such a development for some of the other expressions turns out. 

Many of the models proposed in the literature in fact are represented exactly 

(that is: the series expansion in terms of the Helmholtz surface reflection modes 

terminates and contains only contributions from a finite number of modes) by 

the development proposed by us. Examples are the reflection model proposed by 

Blinn[1] (popular in computer graphics) and the model proposed by Minnaert[10] 

(itself a generalization of a model proposed by ()pik[14]). 

As an example we consider Minnaert's proposal, which was especially con- 

structed to respect Helmholtz's reciprocity: 

f(o. ~,, ~ r , ~ )  = k2-~ (cosO, cos~r) (k-l) (0 < k < 1). 

Clearly this can be written as a polynomial in sin(Oi/2) and sin(Or/2) of max- 

imum degree 2(k - 1) in either variable. Thus we can indeed write Minnaert's 

expression as a linear combination of a finite number of surface scattering modes. 

6 E m p i r i c a l  B R D F ' s  

In expressing the BRDF of materials that have to be measured in the labora- 

tory we meet with at least two problems. First there is the practical problem of 

measuring the BRDF. Apart from the standard photometric problems we run 

here in the problem that the number of degrees of freedom is very large indeed. 

In principle we ought to sample a four-parameter space. Although Helmholtz's 

reciprocity (which may be expected to hold and can even be used as a check on 

the data) and surface isotropy (which need not pertain and has to be checked 

empirically) can be used to ameliorate this problem one still needs a great num- 

ber of independent measurements. Then we have the problem of how to compute 

the development in terms of the basis. 

The development in terms of the basis is primarily a problem of numerical 

integration. The coefficients of the development are defined as integrals over 
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H 2 x H 2. We approximate the integrals by Riemann sums and therefore have 

to define a tesselation of the hemisphere, preferably one in which the tesserm 

subtend identical solid angles. Since the hemisphere has to be evenly covered, a 

good method is to start  with the tesselation defined by the faces of the regular 

icosahedron. We then can produce refinements by barycentric subdivision. Of 

course we only keep faces on the northern hemisphere. If we perform a single 

barycentric subdivision we obtain a triangulation of the hemisphere into 40 faces 

of identical area and of roughly equilateral shape. 

34 i Brick  
2 . . .  < . . . .  / 

1 g 1 ~ l l [  "++ fo  0.syo 
0 1 2 3 4 

Observations 

Fig.  3. Scatterplot of the results from the 8 th order approximation of the brick 

data against the observations. 

The full specification of a BRDF measurement on this tesselation would be a 

40 x 40 data matrix, involving 1600 independent measurements. Thus the effort 

involved in actually measuring a BRDF is quite appreciable. This is perhaps the 

reason why full BRDF measurements are rarely reported in the literature. Most 

measurements are confined to the plane of incidence. Helmholtz's reciprocity 

brings down the number of degrees of freedom to 820, surface isotropy to 66, 

which is a number that  might be considered practical. With 66 independent 

measurements we are able to construct an approximation of the 8 th order (there 

are 55 independent functions in the 8 th order basis). 

Since the data slightly overspecify the 8 th order approximation we use a 

pseudoinverse method to find the best fitting coefficients of the t runcated series. 

This representation of the BRDF by a 40 • 40 matrix (or larger by progressive 
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barycentric subdivision) is of interest by itself and may prove useful in many 

computer vision contexts. Very high angular resolutions will in fact seldom be 

required in applications and the matrix can be used as a lookup table. 

In collecting the data one should take care to use entrance and exit beams 

that  axe roughly centered on the barycentra of the faces of the triangulation and 

have an aperture of the order of the solid angle of the faces (about 20 ~ in diam- 

eter). The latter condition is necessary to prevent aliassing problems. Likewise, 

the data should be fitted by truncated series where the highest frequency terms 

can still be sampled by the tesselation. 

Here we present data on the surface of a brick. The brick surface scatters 

roughly Lambertian for normal directions of incidence, whereas both  forward and 

backscatter lobes develop for near grazing incidence. We find tha t  the measure- 

ments are represented within the experimental tolerances by a series expansion 

truncated at order eight (in fact order four would do about equally well). 

Tha t  this analytical expression really represents the measurements very well 

is borne out by the scatterdiagram presented in figure 3. The correlation is very 

high, the residuals can be ascribed to experimental error. In this case a lower 

order approximation might do as well and would lead to a somewhat simpler 

expression. 

7 C o n c l u s i o n  

We have constructed a complete, orthonormal basis with desirable invariance 

properties for the representation of BRDF's  taking Helmholtz's reciprocity and 

(if applicable) surface isotropy into account. The orthonormal basis of functions 

on the hemisphere ("surface scattering modes") is of wider interest though, since 

it, applies to any situation where one encounters functions of direction at one 

side of a planar interface (transport  phenomena, radiometry, photometry) .  The 

orthonormal basis for the BRDF's  is defined on the direct product  of the hemi- 

sphere with itself. 

We have shown how the basis can be applied to express empirical BRDF data. 

This has a number of advantages. First of all, the use of a t runcated expansion in 

orthonormal functions ensures tha t  we find the best approximation in the least 

squares sense among all linear combinations of elements in this basis. When the 

high order elements are practically of less importance than the low order ones (as 

is the case here), we obtain automatically desirable approximations. Secondly, 

the approximations are guaranteed to satisfy Helmholtz's reciprocity and thus 

are physically realistic. This is an advantage over ad hoc approximations which 

o[ten turn out to violate Helmholtz's reciprocity and are thus not even physically 

possible. Thirdly, the approximations are guaranteed to express surface isotropy 

when so desired. 

The method of subdivision of the hemisphere in equal solid area facets used 

in the data  sampling, which leads to a matrix representation of surface scat- 

tering, might be of considerable utility by itself in computer graphics as it can 

conveniently be implemented as a lookup table. 
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We have outlined how the method can be applied to empirical da ta  and have 

presented results for the BRDF of a real material  sample (a piece of brick). 

A c k n o w l e d g e m e n t :  This work was done in the E S P R I T  program REALISE 

of the European Commission. 
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