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Abstract: This paper proposes a new bi-directional way of understanding the 

convergence of biology and computing. It argues for a reciprocal interaction in which 

biology and computing have shaped and are currently reshaping each other. In so doing, 

we qualify both the view of a natural marriage and of a digital shaping of biology, 

which are common in the literature written by scientists, STS, and communication 

scholars. The DNA database is at the center of this interaction. We argue that DNA 

databases are spaces of convergence for computing and biology that change in form, 

meaning, and function from the 1960s to the 2000s. The first part of the paper shows 

how, in the 1980s, DNA sequencing shifted from passively incorporating computers to 

be increasingly modelled in digital coding and decoding. Information retrieval 

algorithms, reciprocally, were altered according to the peculiarities of DNA in the first 

sequence-storage databases. The second part of the paper investigates the impact of 

these reciprocal interactions and globalization on the organization of research centers, 

ways of conducting big science, and scientific values. Through convergence and new 

technologies such as data mining, biology and computing were transformed 

technologically, institutionally, and culturally into a new bio-data enterprise called 

genomics. 

 

Keywords: Genomics, DNA, databases, data mining, sequencers, convergence, 

globalization, Internet, biology, computing 
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Through the 1970s, a small group of individuals began to realize that computers 

and sequence information were a natural marriage. Bride and groom struggled to 

overcome vast cultural differences. Computer scientists and molecular biologists 

traced their lineage through different tribes, with vastly different norms, and 

only a few hardy souls could converse in both languages and command respect 

in both communities. The database that stored sequence data became their 

meeting ground. 

(Cook-Deegan 1994, 285) 

 

The fact that the development of computer technology, with its demands on 

information theory, has occurred contemporaneously with the growth of 

molecular biology has not merely provide the physical technology, in 

instrumentation and computing power, without which the dramatic advances of 

the decades since the 1960s would not have been possible. It has also given the 

organising metaphors within which the data was analysed and theories created. 

(Rose 1997, 120) 

 

Scholars in STS, the sociology of information, and communication have suggested that 

there has been a co-evolution of genomics and information technologies over the past 

30 years. Innovations in biomedicine between the 1970s and 1990s provided the 

technological foundation for the rise, in the subsequent decades, of genomics, the 

Human Genome Project (HGP) and other large-scale initiatives directed to the sequence 

of nucleotides in the DNA molecule of different organisms. At about the same time, 

developments in electronics that clustered around the personal computer resulted in a 

network of information and communication technologies that are epitomized by the 

Internet. Genomic and information technologies have become two of the most important 

instruments of the so-called information age (Burnett and Marshall 2003). Such are their 

interconnections that both genomic researchers and social sciences scholars claim that 

biology has become “an information science” (Hood 1992; Gilbert 1992; Castells 2000 

[1996]; Zweiger 2001; Capra 2002; Marturano 2003; MacKenzie 2003). 

 

This appreciation is shared by members of the International HapMap Project, a 

multi-nation collaboration that collected and sequenced genomes from individuals from 

four different global locations (Chow-White 2008).
2
 When asked about the impact of 

information technologies on their research, the first words used to describe them by 

HapMap scientists were “central” (Interviews 1001, 1002), “essential” (1005, 1009, 

1013, 1014, 1017), “paramount” (1010), “fundamental” (1016), and “foundational” 

(1005). “If it wasn’t for technology”, they claim, “it would be unfeasible to handle the 

large amount of data” required by genomic research (Interviews 1003 and 1005). The 

HapMap participants, however, are less unanimous when referring to the particular form 

and effects of the interactions between biology and computing. 

 

There are also inconsistencies and disagreements in the STS literature about the 

nature of these technological interactions. Scholars who wrote shortly before and after 

the conclusion of the HGP tend to refer to the convergence of genomic and information 

technologies as a “natural marriage.” This label implies a sense of inevitability, as if 

biology and computing were predestined to coalesce. By comparing the functioning of 

the DNA molecule with a computer program or a code, popular and some scholars 

portrayed it as particularly suitable to digital analysis, especially after the development 

of sequencing techniques and the personal computer in the late 1970s and 1980s  (see 
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opening quote from Cook-Deegan; Moody 2004).
3
 The natural marriage approach also 

suggests a purely instrumental association in which both biological and information 

technologies, once combined, have maintained their previous identity. 

 

There is, however, evidence of the interactions with computing being more 

complex for biology and, more generally, scientific research (Agar 2006). By raising 

different case studies, Kling (2000), Bowker and Star (1999) and Boczkowski and 

Lievrouw (2007) have argued that technological innovation is a socio-technical process 

and information and communication technologies (ICTs) are socio-technological 

networks. This means that their introduction into scientific institutions affects their 

functioning and practices in all their dimensions, such as the way of conducting 

investigations, organization and interactions between researchers, values arising from 

their activity, and reception of their work by society. 

 

As modern biology has increasingly relied on computer simulations, 

computational models and computational analyses of large data sets, scholars argue that 

this process has led to a theoretical convergence between genomics and information 

technologies (Gezelter 1999; Haraway 1997). Holdsworth suggests, ‘‘it is not just that 

computing tools are rather convenient for doing genomics. Rather, [genomic projects] 

have re-organised themselves around the bioinformatics paradigm’’ (Holdsworth 1999, 

89).  Marturano (2003), Burk (2002) and Lyon (2005) claim that genomic projects are 

not only biomedical enterprises they also bioinformatic ones, which makes genomic 

technologies currently inseparable from information technologies.
4
 

 

An STS problem arises from the view that genomics and information 

technologies have converged. If they are not just instrumentally associated, but 

theoretically interdependent, what is the concrete nature of such interdependence and its 

effects for biomedical research? Lenoir gives a tentative answer to this question by 

arguing that the computer and the database have decisively shaped biomedical theory. 

Biomedical researchers have progressively reduced laboratory experimentation and 

aimed to draw their conclusions from electronic datasets (Lenoir 1999). In a more recent 

work, Lenoir and other scholars engage with the literature on the post-human body 

(Haraway 1997; Hayles 1999) and claim that the boundaries between the biological and 

the computational have become increasingly blurred, given the increasing presence of 

flesh-and-wire cyborgs in current societies (Lenoir 2002a, 2002b). 

 

The image of biology as a digitally shaped and data-bounded science has 

inspired literature on the governance, expectations, public participation and emergence 

of bioinformatics and biomedical databases, written from the perspectives of bioethics, 

sociology, and philosophy of science (e.g. Bowker 2008; Fortun 2008; Tutton 2007; 

Gibbons et al. 2007; Holdsworth 1999). However, some scholars question the suitability 

of this perspective for capturing the development and current state of biomedicine. 

From an anthropological viewpoint, Fujimura and Fortun each show the propagandistic 

motivations in the labeling of genomics as an information science, as well as the 

opposition by some biomedical researchers. They argue that biomedical practices are 

still necessary to produce meaning from the stored data (Fujimura and Fortun 1996; 

Fujimura 1999). In a similar fashion, Hine claims that computing technologies alone are 

not sufficient to transform the biomedical sciences. They should, hence, be regarded in 

combination with other scientific and social factors involved in research (Hine 2006). 

These arguments link with historical narratives in which the connections between 
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biology, data and computation are traced back to the 1940s and the practices of 

biomedical research have decisively shaped the development and design of associated 

computing technologies (de Chadarevian 2002, ch. 4; November, 2004, 2006; Leonelli 

2010; Suárez-Díaz. 2010; Suárez-Díaz and Anaya-Muñoz, 2008; Kay, 2000; Sarkar, 

1996; García-Sancho 2007a; Lenoir 1999)..
5
 

 

Our paper will build on these critical perspectives on the interactions between 

biology and computing. By drawing on a historical analysis of the first DNA 

sequencing technologies and on a series of interviews with participants in the 

International HapMap Project (see Appendix A) we will show that the effects of the 

convergence between genomics and information technologies cannot be limited to 

biomedical theory. Other factors such as the organization of genomic centers and values 

arising from this sort of research are also shaped by the progressive incorporation of 

computing. We will also argue that the interactions between biology and computing 

began as bi-directional, where the state of knowledge and progress in the life sciences 

also decisively impacted the development of information technologies. At the center of 

this interaction was and still is the DNA database. We argue that DNA databases are 

spaces of convergence for computing and biology that change in form, meaning, and 

function from the 1960s to the 2000s. Biology and computing converged over time and 

the lines between them are blurred into a new type of venture called genomics, in which 

the biological and the computational are currently indivisible. 

 

STS scholars Kleinman and Vallas  (2001, 2006) define convergence as the 

trading of institutional norms, practices, knowledge, and technologies between the 

boundaries of academia and industry. Kleinman (2003) explores the effect of 

convergence on academic culture and, in particular, the effects of commercial cultural 

norms of competition and entrepreneurship. While Kleinman’s theory and ethnography 

in an industry funded university lab shed light on the ways in which asymmetrical 

convergence influences science in the academy, his research does not say much about 

convergence between disciplines within the academy.  

 

In the field of communication and media studies, scholars locate the origins of 

the concept of convergence with Pool’s (1983) foundational text on changes in the 

media industries (Jenkins 2006). Pool explained that the lines between different 

communication industries such as news, television, film, and telephony were blurring 

and innovations and developments in information technology played a central role. Pool 

saw this as a prolonged transition marked by competition and collaboration between 

different media systems, rather than through a lens of inevitable technological progress 

marked by an information revolution. Jenkins argues that convergence is not simply the 

result of the implementation of a specific organization practice or technology from one 

institutional context into another, it “represents a paradigm shift” (Jenkins 2006, 15). 

With paradigm, he refers to the alteration of social relationships, relationships between 

institutional actors, related enterprises, and cultural logics. Most importantly, 

convergence is not an end product or the marriage or fixed relationship between two 

organizational parties: ”It operates as a constant force for unification but always in 

dynamic tension with change” (Pool 1983, 53-54). Convergence is, thus, a process that 

unfolds over space and time. 

 

We borrow the term spaces from Castells concept the space of flows, which he 

defines as the “material organization of time-sharing social practices that work through 



 7 

flows, [which are] purposeful, repetitive, programmable sequences of exchange and 

interaction between physically disjointed positions held by social actors” (Castells 2000, 

442).  Castells argues that the dominant logic of spatial, cultural, and material 

organization in the information age is the network. Geographical locations do not 

become irrelevant, “but their logic and meaning become absorbed in the network” (Ibid, 

443). For our purposes in this paper, there are two layers to our use of the term spaces. 

Spaces refer to the materiality of emerging spatially configured global hubs of expertise, 

public research institutes, biotechnology firms, and financiers. These hubs or strategic 

places (Sassen 1998) change over time. The developers of the early sequencing 

technologies and databases in the 1970s and 1980s were based mainly in the US and 

Europe. In the 21
st
 century, other players have positioned themselves to be major nodes 

in the global genomics network. Spaces also refer to the digital communication 

networks and databases that provide a second type of material support for the global 

flow of genome information, stakeholders, and capital.  

 

Jenkins and Pool are interested in the convergence of media and Castells is 

interested in the spaces of flows for reconfiguring of social, political, and cultural 

organization. We are interested in how these two concepts can help us view the 

development of a new research field in the late 20
th

 and early 21
st
 century around DNA 

databases. Spaces of convergence are technologically mediated processes of 

communication. They are the space of flows of people, disciplinary expertise, finance, 

cultural values, institutional ethics, technology, information, data, and code. At the core 

of the convergence of biology and computing are genome databases. They are currently 

connected in a global network between university labs, global genome projects, 

biotechnology companies, state sponsored research institutions, and public interest 

organizations. Through an interdisciplinary approach, combining history of science and 

communication, we undertake a historical and contemporary analysis of the techno-

social shaping of genomics to fully understand the nature of the investigated 

interactions. 

 

In the first part of the paper, we address the historical genesis of the interactions 

between biology and computing in the 1970s and 1980s during what we call the 

formative phase of DNA sequencing and databases. Like many other enterprises in 

society during those decades, biologists increasingly used computers for different tasks 

and created new computer-mediated techniques through routinization, experimentation, 

and automation (Zuboff 1988). Automation is not an entirely new phenomenon and 

largely characterized machine-assisted work in the industrial age. Similarly, business 

owners and managers deployed information technologies to speed up and routinize tasks 

as well as expand communication networks. However, the key shift Zuboff identifies is 

how computer mediated tasks, 

 

…simultaneously generate information about the underlying productive and 

administrative processes through which an organization accomplishes its 

work… when the technology also informates the processes to which it is 

applied, it increases the explicit information content of tasks and sets in motion a 

series of dynamics that will ultimately reconfigure the nature of work and the 

social relationships that organize productive activity. (Zuboff 1988, 10-11) 

 

In the 1980s, Zuboff argued that computers were able to automate human activities as 

well as informate.  The intersection between computing and biology, between computer 
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codes and genomic codes, is more than technical (Thacker 2004). The convergence of 

the two breaks down ontological distinctions and cultural distinctions. In short, the 

process of informatization brought these two fields together in the DNA database where 

“the biological “informs” the digital, just as the digital “corporealizes” the biological” 

(Thacker 2004, 7).   During this formative phase, we show how DNA sequencing 

instruments and databases shifted from passively introducing the available computing 

technologies for automating sequencing to informating and modeling their operations 

on digital coding and decoding. Database algorithms were also adapted to the biological 

functioning of DNA sequences and laboratories incorporated the organization and 

managerial models of the recently consolidated information technology industry.  

 

In the second part of the paper, we explore the consolidation and expansion 

phase of biology and computing from the 1990s to the early 2000s where DNA 

databases expanded and proliferated due to developments in communication networks 

and, especially, the innovation of data mining. The Internet, as an emerging space, 

becomes a key element in the convergence of genomic and information technologies 

triggered by the increasingly sophisticated databases. Databases built by scientists in the 

first phase tended to be locally based and limited in scope and content. Similar to other 

enterprises in business and science, the database as a space of convergence flourished in 

the virtual space of the Internet. 

 

During the 1990s, scholars investigated worldwide social, political, and 

economic changes under the rubric of globalization (Held 2000; Waters 2001). The 

convergence of biology and computing was no exception to the speeding up and 

intensifying of international social relations and the way in which genomics developed 

during the 1990s and early 2000s prompted the suggestion that “genomics is 

globalization” (Thacker 2006, 47). The spaces of technological, political, and economic 

flows enabled scientists, data, DNA, and the human genome to become globalized. We 

investigate the effects of this globalization in the emergence of increasingly large, 

international and virtual spaces of collaboration organized around biomedical databases. 

The databases prompted the generalization of values and concepts such as discovery 

science and open access. Within them, biology and computing were transformed 

technologically, institutionally, globally, and culturally into a new bio-data enterprise 

called genomics. 

  

Computing enters biology: from passive incorporation to active modeling. 

The first researchers involved in sequencing biological molecules (proteins, 

RNA and DNA, between the 1950s and 1970s) simply introduced already existing 

computer applications into their techniques. Early sequencing methods and databases 

incorporated programming strategies previously used for the management of data 

produced by large administrative and corporate offices, the main clients of the then 

emergent computing and software industries. With the development and automation of 

these biological instruments in the 1980s, the operations for sequencing DNA were 

altered to be adaptable to the computer. Likewise, special software was designed to 

deduce features from the sequences after their database storage. 

  

The Development of the Automatic Sequencer 

Shortly after Fred Sanger and Walter Gilbert independently invented methods to 

deduce the sequence of nucleotides in the DNA molecule (1975-77), researchers began 

seeking ways to incorporate the computer into this process. The early DNA sequencing 
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software, developed between the late 1970s and mid 1980s in the US and Europe, 

allowed scientists to edit and store the sequences in files.
6
 The first sequencing program 

used at Sanger’s group was designed with the help of a professional computer 

programmer, who was the brother-in-law of a member of the laboratory (McCallum 

and Smith 1977; Sanger and Dowding 1996, 344-45). IBM, Bell Laboratories and other 

computer manufacturers were at that time producing word processing software to assist 

in the writing and revision of texts in government offices, banks, travel agencies, and 

other large private companies (Haigh 2006b). The designers of sequencing software 

acknowledged in later versions of their programs that they were conceiving the 

sequences as “words” and using the algorithms – programming orders – applied in 

searches within texts by the word processors (Staden 1982, 4743; Dumas and Ninio 

1982, 197). 

 

This early sequencing software required manual operation in all its steps. The 

user needed to input the sequence, edit it, and save the results on tape or early magnetic 

disks. Later program versions attempted to automate the introduction of the sequence 

through interfaces such as a digital stylus or a proto-scanner (Staden 1984; Sulston et al 

1988). However, they faced a pervasive problem: the outcome the sequencing methods 

produced was difficult to process by the computer. 

 

Both Gilbert and Sanger’s methods – respectively developed at Harvard 

University and the Laboratory of Molecular Biology of Cambridge, UK (LMB) – 

yielded at the end of the sequencing process a picture called autoradiograph. On it, the 

DNA sequence was represented as a two-dimensional pattern of black spots. Each spot 

corresponded with a nucleotide in the DNA molecule and, from their position in the 

picture, the researcher could deduce the sequence (Sanger 1975, 1988; Sanger et al, 

1977; Maxam and Gilbert 1977; Gilbert 1980). The pattern was easy to interpret with 

the eye, which could distinguish between the spots and slightly correct their position 

(García-Sancho, 2010). A computer, on the contrary, faced constant difficulties, since 

all the spots possessed the same shape and color, and their location was sometimes 

ambiguous within the two-dimensional pattern. 

 

A group led by Leroy Hood at the California Institute of Technology (Caltech) 

was seeking ways to automate the sequencing process since the late 1970s. Their first 

attempt was to eliminate human intervention in the processing of the autoradiographs, 

but given the problems the computer faced with the spot pattern, researchers found no 

success (Caltech 1980, 52). After this disappointment, Hood’s team decided to 

“abandon the autoradiograph world” and to create “a new approach to sequencing” that 

differed in important ways from Sanger and Gilbert’s methods (Interview with Smith; 

Interview with Hunkapiller). 

 

In Sanger and Gilbert’s techniques, the black spots on the film were a 

consequence of labeling the DNA molecule with a monochrome radioactive substance. 

Hood’s team, instead, used fluorescent dyes of various colors and applied a different 

color depending on the DNA nucleotide to which each spot corresponded. This way, 

since the nucleotides were distinguishable, they could be aligned one-dimensionally on 

the film and be presented as a row in which, for instance, adenine was marked red, 

cytosine blue, etc. A computer could easily process these colored patterns (Smith et al 

1986). 
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Figure 1 goes about here 

 

The differences between the manual and automatic approaches to sequencing 

were largely motivated by the distinct strategies operating in the laboratories where the 

inventors were based. Gilbert and Sanger’s groups, respectively at Harvard and the 

LMB, were pursuing basic biomedical research. The LMB had traditionally been 

funded through a block grant scheme by the Medical Research Council (MRC), a body 

of the British Government which predicted the financial necessities of the laboratory 

over long periods of time. This system, which resisted attempts of liberalization due to 

the support of scientists and MRC officers, allowed Sanger and other LMB members to 

work without the pressure of finding applications to their research (de Chadarevian 

2002, Part III). Conversely, Hood's team belonged to Caltech, a technical school that 

depended on research contracts. These contracts could be signed with either the US 

Administration or private institutions, but were always oriented to particular research 

outcomes (Kay 1993). 

 

These contrasting settings resulted in different attitudes towards sequencing and 

the pursuit of research more generally. Whereas for the LMB research always implied 

human involvement, at Hood’s group some of the research activities could be perfectly 

automated. This led Sanger and his assistants to apply the manual sequencing 

techniques to various microorganisms since the late 1970s without devoting further 

efforts to their automation (e.g. Sanger et al 1977, 1982). The Caltech team, in contrast, 

started at the same time a program to automate sequencing, which was considered a 

repetitive and monotonous practice (Caltech 1980-1985). Since the early 1980s, Hood 

created a spin-off company, Applied Biosystems, to commercialize the resulting 

automatic sequencers. Neither Sanger nor Harvard had been especially proactive 

towards the then emergent biotechnology market (Kenney 1986; Bud 1993). When in 

the early 1980s, Gilbert attempted to create the biotechnology company Biogen, he 

faced firm opposition by Harvard academic authorities, who argued that this was not an 

appropriate activity for a University (Mendelsohn 1992, 17-19). 

 

The different priorities at Sanger’s and Hood’s groups also fostered divergent 

attitudes towards computing. Sanger and his group only applied computers to 

sequencing in the late 1970s, once the DNA methods had been developed by 

exclusively biochemical means. This was done despite software applications for protein 

and RNA sequencing being available since the 1960s (e.g. Dayhoff and Ledley 1962; 

Needleman and Wunsch 1970; see note 7), and Sanger having been hitherto involved in 

both fields (García-Sancho 2010). Furthermore, instead of adapting this previous 

software, Sanger’s group incorporated a researcher with computing expertise – Rodger 

Staden – who designed DNA sequencing programs always involving, to a certain 

degree, human intervention. This intervention was maintained in further versions of the 

software used at the LMB throughout the 1980s and presented as a necessary human 

check over the computer (Sulston et al 1988, 126). 

 

Conversely, the Caltech team modeled the entire sequencing process on the 

computer. In the early 1980s, the members of Hood’s group considered Sanger and 

Gilbert’s techniques unsuitable for automation (Interview with Hunkapiller; Interview 

with Smith). They decided to modify the manual approach to sequencing and all the 

modifications they introduced sought to make the sequencing outcome easy to process 

for the computer. 
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First, the horizontal alignment of the nucleotides and their labeling with four 

different colors sought to transform the DNA sequence into a string. Lloyd Smith and 

Tim Hunkapiller, the main proponents of this strategy, had been developing software in 

their previous research and aiming to introduce computers into Hood’s laboratory 

(Smith, 2008; Interview with Hunkapiller). During the early and mid 1980s, the 

processing of strings as one-dimensional linear arrangements of discrete data was 

becoming a main problem of computing. The text processing software then expanding 

at public and private offices incorporated algorithms directed to strings and these 

algorithms had been exported by biologists to early DNA sequencing programs (Staden 

1982; Dumas and Ninio 1982).
7
 

 

Second, the Caltech team used a laser to scan the color string in order to 

transform this information into sequence data and transfer it to the computer. Since the 

1960s, the laser, a technology with a marked Cold War military origin, transitioned into 

civilian uses, including detecting tumors and other tissues or molecules of biomedical 

interest (Bromberg 1991, 208-219). Smith, who became the main responsible for the 

development of the sequencer, had been using laser technology for measuring lateral 

diffusion of lipids and proteins in cell membranes prior to his arrival at Hood’s group 

(Smith et al, 1981). 

 

Also, between the early and mid 1980s, the laser began to be used in processing 

digital information in computer discs (Guenther et al 1991). The disc manufacturers 

organized the data in one-dimensional and linear arrangements of spots, mirroring the 

strings in which the Caltech group was transforming the DNA sequences. Other 

domestic devices emerging at that time – such as the CD or the supermarket barcodes – 

incorporated the same technology (Campbell-Kelly and Aspray 1996, ch. 7). 

Surrounded by these developments, Smith referred to the laser as a “detector” of 

sequence “information” in a 1986 report written after he developed the first prototype 

automatic sequencer (Caltech 1986, 73-74). 

 

Figure 2 goes about here 

 

STS literature has generally considered the personal computer and first DNA 

sequencing software as the technologies, which broke the “barrier” between biology 

and informatics in the late 1970s (Moody 2004). With these technological 

achievements, biologists began using the computer to sequence DNA and the natural 

marriage between both fields started (Cook-Deegan 1994). This scholarship overlooks 

the necessity of adapting the biological processes to the computer for the technologies 

to converge. In the case of sequencing, the process was not fully automated until the 

DNA outcome was transformed into a color string to be processed by a laser, at that 

time beginning to be used as a digital decoding device. 

 

Keating, Limoges and Cambrosio have used Caltech’s effort as a case study to 

argue that successful automation does not imply the mimicking of the previous manual 

procedures. According them, Hood’s team succeeded unlike rival automation attempts 

for substituting manual sequencing by another process which “redistributed” human 

and technological resources (Keating, Limoges and Cambrosio 1999, 127-32). This 

new process, we claim, derived from the modeling power of the computer and its 

penetration into pre-existing biological technologies, such as sequencing. 
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The modeling impact of the computer did not only affect the organization of the 

sequencing process. Applied Biosystems (ABI), the company that manufactured and 

commercialized the automatic sequencer from Smith’s prototype, gradually adopted the 

structure and management models of the information technology industry. When 

creating the firm in 1981, Hood sought financial support in a series of venture 

capitalists based in San Francisco’s Bay Area. The first chairmen selected by these 

investors were André Marion and Sam Eletr, former managers of Hewlett Packard 

(HP), located in nearby Silicon Valley. Marion and Eletr aimed from the beginning to 

implement “the same strategies” which had made HP a leading company in the 

computing industry. ABI, after all, would commercialize “biological instrumentation,” 

not that far from the “electronic instrumentation” HP marketed since the 1940s 

(Interview with Marion). 

 

Marion and Eletr's claim is far from rhetorical. ABI, in its first reports, 

presented itself as a pioneer firm in the manufacturing of instruments to deal with basic 

biological “information” (ABI 1983, 4; 1986, central triptych; 1987, 4). Its teams 

combined research and marketing staff in order to adapt the manufactured sequencer to 

the necessities and likes of the final users, i.e. the biologists. This strategy involved a 

rupture with previous traditions of “highly compartimentalized” firms which had 

proliferated within the chemical and pharmaceutical industries since the early 20
th

 

century (Interview with Marion; Chandler Jr. 2005). In the mid and long term, it was 

crucial for biologists used to the manual techniques accepting ABI’s device, which was 

substantially redesigned according to their feedback during the second half of the 1980s 

(García-Sancho 2008, pp. 188 and ff.). 

 

Lécuyer, a business historian, has shown that the electronic instrumentation 

companies of Silicon Valley –Fairchild Semiconductor, Intel and National 

Semiconductor – implemented this strategy of coupling “product development with 

market demands” between the 1950s and 1970s. He has also documented frequent 

transfers of expertise and capital between the information technology and emerging 

biotechnology industries of the Bay Area during the late 1970s and 1980s (Lécuyer 

2006, 165 and 292-94). In the case of ABI, these transfers were materialized in the 

organization and managerial models of the electronic instrument company HP, whose 

incorporation was essential for the successful commercialization of the automatic DNA 

sequencer. 

 

The automatic sequencer, therefore, was modeled on the computer from its 

conception to its manufacturing and final marketing to the users. The shaping power of 

information technologies did not only affect the operation of the sequencer, but also the 

structure of its production and commercialization. This shaping power was not, yet, 

one-directional. The development of another technology, the database to store the DNA 

sequences, shows that biological processes also informed the computer instruments 

which were incorporated to them. 

 

The DNA Sequence Database 

The spread and automation of sequencing triggered the development of a related 

technology, the database, to store the growing DNA sequences. The first DNA 

sequence databases emerged in the early 1980s, before the automation of the techniques 

and through large-scale national and international initiatives in Europe, the United 
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States, and Japan (Smith 1990; Strasser 2008; Cook-Deegan 1994, ch. 15). These DNA 

banks, though, were not the first incorporation of database technology into biology, for 

there had been computer-based repositories in the life sciences since the 1960s 

(Strasser, in press). Nevertheless, the DNA banks were the first in fully adapting the 

available database applications to the peculiarities of the stored sequences. 

 

The database as a computer-based technology originated in World War II, when 

it was used in military operations. During the 1950s and 1960s, its use spread to public 

administration and the private corporate office. These databases were designed by large 

computer manufacturers such as IBM and an incipient software industry. Their main 

property was to allow users to gather information from multiple sources and to draw 

“vital intelligence” through its comparative analysis (Haigh 2001, 16, 2006a; Kline 

2006; Campbell-Kelly 2003). An anti-aircraft fire system, for instance, could predict 

the position of enemy planes by combining data about their speed, trajectory and 

weather conditions. Equally, an insurance company or library could know the 

employees close to retirement or the overdue loans. 

 

Biologists began using computerized databases in the mid 1960s within the 

fields of biophysics, biochemistry and human genetics. Olga Kennard, Margaret 

Dayhoff and Victor McKusick published, between 1965 and 1966, compilations of X-

ray analyses of molecules, protein sequences and hereditary diseases respectively. All 

of them used computers in the form of punched card machines which permitted to store 

the gathered data in entries, retrieve such entries, and derive new knowledge through 

their comparison. Dayhoff attempted to reconstruct the evolutionary pathways between 

species from their protein sequences, while Kennard deduced the three-dimensional 

structure of molecules from their X-ray coordinates (Strasser 2006, in press; Kennard 

1997). 

 

A key difference between these early 1960s databases and the ones devoted to 

store DNA sequences was that the latter were run by computing and information 

management experts with little biological expertise. With the progressive reduction of 

size and price of computers since the 1960s, the large and external mainframes were 

substituted by microcomputers, workstations, and personal computers that would 

become permanent fixtures in laboratories (Ceruzzi 1998). This resulted in experts in 

the new technologies entering biological and other scientific institutions (November 

2004; 2006). In the early 1980s, at the time of the international DNA sequence database 

projects, the computer and specialized staff moved into the laboratory and no longer 

received the punched cards prepared by biologists in remote offices. 

 

The first information technology staff to develop a DNA sequence database was 

incorporated to the European Molecular Biology Laboratory (EMBL) in 1980. This 

institution issued a job vacancy announcement in which the key requirements for the 

position were having a background in “mathematics, physics or computer science”, 

together with “numerical and statistical analysis” and the “development of computer 

programs”. Since the position was at the level of “research assistant” or “manager”, 

holding a PhD was considered a merit, but not a compulsory requirement for the job. 

The same applied to biological expertise. 

 

Figure 3 goes about here 
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None of the professionals hired by the EMBL fulfilled those additional 

biological merits. Greg Hamm, the first database staff member, studied a combined 

degree in biology and engineering, but after graduation acquired a considerable work 

experience in the US computer industry designing military software. Graham Cameron, 

appointed in 1982, had abandoned an undergraduate degree in psychology and worked 

in the development of a university database with household information. Both of them 

acknowledge that biological expertise was not essential during their early work. The 

crucial skill was “understanding information”, i.e. the workings of the data they stored. 

Hamm and Cameron did not consider themselves biologists, but “information 

engineers” (Interview with Cameron; Interview with Hamm). This term, together with 

“systems men”, arose between the 1950s and 1960s, in the context of the use of 

databases in wartime operations, public administration and offices. It had, 

consequently, developed away from biology and the academic world (Haigh 2001; 

Mindell 2002). 

 

One of the first conclusions of the new information engineers at the EMBL was 

that the available database technology was not appropriate for their task. The database 

structures that had been developed by the early 1980s represented a “table view of the 

world” with which DNA sequences did not square (Interview with Hamm). IBM and 

other producers had designed, between the 1960s and 1970s, a number of database 

models adapted to the necessities of their costumers. Their structures and ways of 

managing entries were, therefore, prepared to deal with independent data about prices, 

products, citizens, ages and properties, the main variables with which government 

departments or travel agencies operated (Date 1981 [1975]). The DNA molecule, 

however, worked as a string of interconnected units. Its constituent nucleotides were 

assembled by chemical bonds and could not be processed as discrete or independent 

data. 

 

Hamm and Cameron, consequently, started a systematic review of the 

professional literature on computing in search for instruments to transform the database 

models. One of the main concerns of computer scientists in the early 1980s was the 

development of tools to handle the emerging word processing software (Haigh 2006b). 

This had led to the proliferation of algorithms – programming commands – such as 

‘check’, ‘find’ or ‘format’, which allowed detection of patterns in a written text. 

 

The first entries of the EMBL database were edited in an early text processor. 

This allowed Hamm and Cameron to realize the potential of this technology for 

managing the DNA sequence data. By adapting text processing algorithms designed to 

check the spelling or search for words, they could automatically detect errors and 

deduce properties from the stored sequences. However, Hamm and Cameron previously 

needed to transform the algorithms and use, as a reference to search and check the 

sequences, the rules governing the functioning of the DNA molecule rather than those 

of English orthography and grammar. For instance, biologists knew that genes were 

always surrounded by two specific sequences – initiation and termination codons – and, 

using this knowledge, Hamm and Cameron could program the database to automatically 

find genes within the stored sequences (García-Sancho in press). 

 

The first two releases of the European database (1982 and 86) stored the position 

of the genes and other deduced sequence features in a specific section of the entries 

called Feature Table (Hamm and Stübert 1982; Hamm and Cameron 1986). This and 
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the nature of the stored information made the EMBL database different from the ones 

designed the decades before by the computer and software industries. Hamm and 

Cameron’s entries were no longer regular tables with qualitative and quantitative tags 

attached to each category (e.g. name “John Smith”; age “23”; years in the company 

“13”; holidays “10
th

-23
rd

 August”). They were dominated by a long string of 

interconnected characters – the DNA nucleotide sequence – from which other details 

were extracted. 

 

Figure 4 goes about here 

 

 Hamm and Cameron combined biology and computing in a different way from 

other researchers developing sequencing technologies. They did not import information 

technologies from outside biology, as previous biological databases and the developers 

of the first sequencing software had done. They also did not adapt biological processes 

to available computing technologies, as in the case of the automatic sequencer. Given 

their condition of insiders in information management and computer science, Hamm 

and Cameron inverted the logic of adaptation and transformed the available computer 

algorithms according to the specifics of the DNA sequences. 

 

 This ability for reciprocal adaptation was crucial in the success of both the 

automatic sequencer and the database. The emergence of genomics as the “new 

discipline” of DNA mapping and sequencing in the late 1980s (McKusick and Ruddle 

1987; Powell et al 2007) led both technologies to increase their funding dramatically 

and to have a prominent role in the further Human Genome Project. The practices of 

data gathering and analysis, considered as repetitive and marginal to biology at 

Kennard and Dayhoff’s time (Strasser 2006; in press), were only 20 years later raised to 

the category of priority by both biological funding agencies and working biologists 

(García-Sancho, 2009; 2007b; 2007a, pp.27 and ff.).
8
 

 

 The human and other large-scale sequencing initiatives accentuated the 

interactions between biological and information technologies. Genomics as a field was 

and still is the result of the convergence of those two technologies. In the next section, 

we utilize interviews with members of a genomics initiative – the International 

HapMap Project – to explore the role of the database as a space of convergence and its 

connection with other spaces triggered by the increasing globalization of genomics, 

such as the spaces of collaboration and the virtual space of the Internet. We also 

analyze the impact of these converging spaces on concepts and values characteristic of 

genomics, such as discovery science or the proposal of open access to the DNA 

sequence data. 

 

 

The Consolidation and Expansion of Biology and Computing and the Globalizing 

of Genomics 

 

The next phase of interactions between biology and computing we call the 

consolidation and expansion phase. In the 1990s and 2000s, the nature of convergence 

between biology and computing changed and the interaction between the two 

disciplines cannot be characterized solely by the notion of bi-directionality. We argue 

that biology and computing are intimately intertwined in genomics, producing new data 

practices and a new scientific approach to understanding code and the body. 
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Globalization became a critical part of the shaping of the science of genomics as new 

constituencies entered the field and genomics expanded internationally. Scholars argue 

that biology became an information science, as much about if not more about 

computation than the wet biology of the 20
th

 century (Castells 2001; Capra 2002; Lenoir 

1999; Moody 2004; Zweiger 2001). We do not argue that this perspective is entirely 

wrong, as it has been a productive avenue of inquiry about institutional shifts in biology 

in the information age. However, this perspective misses any bi-directional influences 

between the two disciplines and the transformation of a globalizing science. More 

importantly, the informational turn approach fails to account for how genomics can be 

understood as a space of convergence between the two fields.  

 

In the second part of the paper, we draw on the example of the International 

HapMap Project to explore how biology and computing consolidated in genomics and 

the field expanded into a global enterprise in the 1990s and 2000s. We explore the 

consolidation and expansion of genomics by focusing on technological innovations, the 

politics of stakeholders, and the politics of genomic information. Technologically, 

scientists and entrepreneurs increasingly turned to the new types of online databases 

that could be accessed due to the proliferation and increased capacity of the Internet, 

linking labs, researchers, and companies. The networking of labs and databases also 

enabled the sharing of scientific knowledge globally. The number of databases in 

existence either in the academy, publically funded institutes, or private biotechnology 

companies grew enormously. The trickle of digital genetic data from the human genome 

projects became a flood during the first decade of the 21
st
 century within databases 

based in the West and new ones across an unevenly distributed international network.  

 

Politically, the central players in genomics expanded from the US and UK, who 

largely defined the formative phase. For example, the HapMap Project Consortium was 

composed of a transnational set of stakeholders from public institutes, university labs, 

and biotechnology companies from Africa, Europe, Asia, and North America. Further, 

new types of private biotechnology ventures started up in the 1990s, such as Celera 

Genomics, and in the 2000s, such as direct to consumer genomics companies 23andMe, 

which is a partnership between the largest global biotechnology company Genentech 

(recently purchased by Roche) and the largest information company Google. While the 

stakeholders became more diverse and the technological capacity expanded, a new 

politics of the database also emerged as scientists and entrepreneurs struggled over the 

meaning of genomic information and who would have access to it. Many scientists 

argued genome information should be a public good while entrepreneurs operated from 

proprietary business models.  

 

The Database as a Space of Convergence: Data Mining and the Shift from Single to 

Multiple Sequence Analysis. 

 

The major challenges for biologists and computer scientists shifted from 

sequence storage and single sequences in the formative phase to cross-indexing of 

multiple sequences using data mining technologies in the consolidation and expansion 

phase. This shift in focus, in part, characterizes the development of genomics, in which 

scientific achievements have been increasingly measured in terms of making sense of 

the sequences through the comparison of data rather than accumulating them in 

databases. Two technological developments in particular were commonly highlighted 

among HapMap participants: databases/data mining and the Internet. Biologists, 



 17 

computer scientists, bioinformaticians, and engineers designed new databases to store, 

analyze, and distribute the data and findings. The hypertext model of the Internet is used 

to create methods for annotating genomes.  

 

In 1982, the NIH launched the Genbank database that, similarly to the EMBL 

one, aimed to collect and annotate all publicly available DNA sequences (Strasser 

2008). This particular database has become important in biomedical research not only as 

a resource but also as a way of encouraging scientists to make their data public. Many 

journals require submission to a database before authors can submit articles. Sequencing 

of DNA was slow in the early days. After four years, Genbank had less than 700,000 

base pairs (Moody 2004, 26). Developments in sequencing technologies and 

communication technologies have rapidly sped up the collection of DNA data over the 

past two decades. DNA collection has globalized as international collaborations have 

increased through projects such as HapMap and the 1000 Genomes Project, and 

networked databases such as Genbank, which increased to over eighty-five billion base 

pairs in 2008 (Genbank 2009). Globally, genome databases exist in Iceland, the UK, 

Switzerland, Japan, and both Latvia and Estonia have their own genome projects 

(Kaiser 2002; Fortun 2008). To manage, sort, classify, and analyze digital DNA 

information, computer scientists, biologists and geneticists worked with computer 

scientists and bioinformaticians to innovate and develop data mining technologies in 

genomics. Data mining is a technique for searching and creating knowledge out of 

digital databases. Derived from the computer sciences, data mining multiplies the 

possibilities of discovering knowledge in data. Compared to early search programs in 

the 1980s, data mining software searches databases with more speed, capacity, and 

complexity. Data mining techniques are made up of more refined algorithms, neural 

networks, and artificial intelligence models. Information analysts can program data 

mining software to work from pre-determined sets of categorical variables or they can 

go beyond what a user knows to request and “discover” unseen patterns, facts, 

relationships between the data (Chow-White 2008; Danna and Gandy 2002).  

 

During the 1990’s, the most important event that consolidated the interactions 

between biology and computing was the public and private human genome projects 

through the combining of biological approaches such as the shotgun method for 

sequencing and computing science innovations such as data mining of databases and the 

Internet. Data mining techniques and “large, easily-accessible databases that would 

allow the extraction and comparison of data were absolutely essential for being able to 

put together any kind of sequence database” (Interview 1014).  Data mining has become 

a central technology in genomics, where computer science theory meets biological 

theory and practice. Lenoir (1999) describes computational biology and bioinformatics 

as the theoretical and instrumental/experimental components of genomics. The database 

is where they converge to construct scientific knowledge through the core technique of 

data mining. The development of this relationship was key to the success of the private 

Human Genome Project. Craig Venter’s team at Celera developed the biological and 

informational Shotgun sequencing method that combines Polymerase Chain Reaction 

(PCR) and data mining. The Shotgun method reduces a strand of DNA into random 

cloned sections and puts them back together again as a genome. A computer takes a 

number of these partial sections, rearranges them and stitches them together to form a 

complete sequence. Since the biologist works at an abstract level, much like software 

developers, the time-consuming work of mapping is eliminated. Venter’s contribution 

to the sequencing of the human genome sped up the actual process of completing a 
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working sequence, and compelled Celera’s public counterpart in the HGP, led by 

Francis Collins, to accelerate their approach. The two HGPs also sped up the 

methodological, theoretical, and technical convergence between the fields of genomics 

and information technologies. 

 

The genome posed enormous biological challenges in sequencing and mapping, 

as well as bioinformatic challenges for data generation, storage, and analysis. According 

to Leroy Hood, “a completely new approach” to biology was needed, which he called 

“discovery science” (Hood 2001, online). Much like the basic assumptions of data 

mining described above, discovery science is “the idea that you take an object and you 

define all its elements and you create a database of information quite independent of the 

more conventional hypothesis-driven view” (Ibid.). In the traditional scientific method, 

scientists start with a theoretically sound hypothesis and then collect and analyze data. 

With discovery science, scientists tend to collect first and ask questions later. It has also 

been largely credited with the success of the HGP. This new scientific approach and the 

techniques of data mining are affecting the organizational structures of genomic 

research teams. 

 

The politics of stakeholders in genomics: Interdisciplinary Teams and Discovery 

Science 

A second major part of the consolidation and expansion of genomics was a 

cultural shift in science from the individual, disciplinary oriented scientist and lab group 

to interdisciplinary, team-based approaches. Traditionally, biology was not a 

quantitative discipline and researchers were generally unaccustomed to working with 

such large data sets. The “cultural differences” between life sciences researchers and 

computational staff at biological centers stated by Cook-Deegan that shaped the early 

development of the EMBL database (Cook-Deegan 1994, 285; see note 9) continued 

and the different type of personnel and expertise expanded. A HapMap biologist 

described a slow but increasing migration of computationally sophisticated people into 

the field of biology during the 1990s and into the 2000s. While the numbers of such 

people have swelled, the integration of the two cultures was slow. A biologist observed 

that this convergence required “not just an intellectual shift, but also a real cultural shift 

because biologists are used to… the limiting step being their ability to collect data with 

their hands” (Interview 1001). In the age of Google and massive, flexible data sets, 

informational thinking has clearly taken biologists and computer scientists out of their 

‘comfort zone’ in order to tackle the deluge of data generated in genome research over 

the last decade. In these spaces of scientific innovation and convergence, biologists, 

computer scientists, and engineers work side by side, borrowing methodologically, 

theoretically, and culturally. In the process, biology becomes bound up in data. On 

another part of the university campus, computing science departments regularly offer 

courses on genomics, bioinformatics, and computing theory based on molecular 

biological systems.  

 

This shift from observation to a “data-bound science” (Lenoir 1999, 35) is at the 

core of the transformation of biology. The days of the individual scientists working in 

isolation in her lab, scribing notes and models in a notebook, have transformed into 

multi-disciplinary teams of researchers. For example, the International HapMap Project 

is made up of biologists, geneticists, statistical geneticists, doctors, legal scholars, 

bioethicists, bioinformaticians, anthropologists, and sociologists. A broad range of 

knowledge is needed to conduct large-scale genome research. As the inclusion of social 
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scientists in the list of personnel shows, a significant part of the research team belongs 

to the Ethical, Legal, and Social Implications (ELSI) committees. Team-based projects 

are sometimes focused on a particular problem and located in a particular lab or located 

across a number of different centers, often in different countries, sharing information in 

a common, digital database.
9
 The database itself may be maintained in a university lab, 

accessible only to the project group, or in a centralized location, such as the National 

Institutes of Health or European Bioinformatics Institute – the new institutional setting 

of the database division of the EMBL – open to the public, and accessible to various 

research teams around the world. A biologist suggested that there may be a new 

generation of scientists who will have the breadth of biological and computational skills 

and knowledge to master all the aspects of genomic research, but for now that does not 

exist. He also suggested “it may be that no one ever does know all these things, because 

there are too many things to know” (Interview 1001). For now, big science requires 

interdisciplinary teams. 

 

The interdisciplinarity and large size of the teams combining computing and 

biology in genomics has led this field to be considered “big science” (Galison and 

Hevly 1992). Since its inception in 1990, scientists and scholars defined the HGP as the 

“Manhattan Project” of biology, given the amount of people involved, their diverse 

background, the strong technological component of the enterprise, and its 

unprecedented funding by both public and private institutions (Lenoir and Hays 2000). 

There is currently evidence of the whole field of biology becoming big science, such as 

the standardization and routinization of particular practices (Jordan and Lynch 1998; 

Lynch et al 2008). Some biologists view the farming out of “cookbook techniques,” that 

become repetitive practices and procedures, as a sign of a successful science (Gilbert 

1992, 93). As mentioned above, biotechnology companies specialize in practices such 

as sequencing and provide outsourcing for techniques that used to be performed by 

skilled researchers. For example, Illumina, Sequenom, and ParAllele served as the 

genotyping and sequencing centers for the HapMap Project.  

 

The Politics of the Database for “Democratizing the Data” on a Global Scale: The 

Internet, Distributed Networks, and Open Access 

 

Many of the interviewees stated that the Internet transformed scientific research 

through the networking of scientists and information. They cited information sharing, 

online communication, and online collaboration as the main areas where the Internet has 

impacted their work and made possible massive genome projects such as HapMap. The 

Internet enables genome projects to move data between global locations and labs in the 

same building as well as provide open access from anyone interested in using the 

information (Hwang 2008). The genetic information collected from Nigeria, China, 

Japan, and Utah is sent to the participating labs located in six different countries. When 

the sequencing has been performed, that data is uploaded to the central HapMap 

database in Bethesda, Maryland, where it is maintained, checked for quality control, and 

stored. Since the project follows an open access model, the data can be downloaded 

freely by anyone who has broadband Internet. Scientists can feed their own annotations 

for publication back into the data in the HapMap database. As a HapMap geneticist and 

medical doctor commented, “I think it is fair to say that the entire concept of genomics, 

which is really one of data rich studies in biology where you have archival quality data 

that is comprehensive and is shared freely, is as much about, if not more about, 

computers and the Internet as it is about DNA technology” (Interview 1001). 
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The Internet and digital media are not only necessary for moving the 

information around, but also for structuring the data itself (Bowker and Star 2000; 

Bowker 2008). Where the databases developed by Hamm and Cameron in the 1980s 

aimed at storing and analyzing stretches of DNA, the genome database technology of 

the 1990s and 2000s would build on these innovations by becoming not only spaces of 

convergence, but also of collaboration and customization. Digital technologies allow for 

constant updating, cleaning, and translation and enable a “networked multilogue” (Loro 

1995, 55) between scientists through the process of sorting and storing data, networking 

information, and constructing knowledge. Normalizing the data in digital code helps 

overcome the limitations of “whatever media you’re stuck putting the content 

on…[as]… every time you’d have to move data from one media to another there’s an 

opportunity for error” (Interview 1016). 

 

The Internet and digital media allows for the embedding and hyperlinking of 

numerous supporting sorts of information. A biostatistician working on the HapMap 

described how the linking of different type of detailed and annotated sequence 

information in “a very easily queryable set of databases is an incredible advantage over 

linear, analog forms of data” (Interview 1002).
10

 One of the more powerful features of 

an electronic database is the cross referencing of information, which resides in different 

repositories, simultaneously enabling very complex searches to be done on huge 

amounts of information and complex analysis algorithms to be run easily (Interview 

1009). Further, “the data is changing on a daily basis. It is being added to, it is being 

refined, it's being developed, the interpretations, the mistakes are being corrected and so 

on” (Interview 1007). Genome databases have an inherent anti-narrative logic to them 

as the customization and feedback loop features can tell different stories depending on 

the needs of the individual scientists. In turn, the outcome of a scientist’s work on a 

particular chapter of the ‘book of life’ can be uploaded back into the database, thus 

changing the detail and scope of the original in real time.  As a result, the same 

underlying data can have many different representations, based on a hypertext 

architecture.  

 

While the development of digital technologies has played an important role in the 

articulation of genomics and information technologies, genome databases and the 

Internet have also been a space of convergence for political, social, and ethical values of 

biologists and computer scientists. For example, the value of freely circulating data, 

which possesses a long tradition in 20
th

 century biomedical sciences, has been enhanced 

by the Internet and has reciprocally offered new contents to the virtual space. One of the 

key mandates of the project is that the information contained in the HapMap SNP 

database will be “freely available in the public domain, at no cost to users”.
11

 The open 

access model, a key development in computing science and the “hacker ethic” 

(Himanen 2001; See also Marturano 2003), represents a movement in the academic and 

public sector scientific community, particularly in genomics and biomedicine (Kaye et 

al 2009; Heeney et al in press).  

 

A number of HapMap interviewees referred to opening access as “democratizing 

the data” and genome data as a public good. Some members see the data coming out of 

HapMap as being able to overcome global disparities in science and technology: “I 

think it’s an opportunity for the West and the industrialized economies to efficiently 

transfer the intellectual benefits of wealth and investment and this technology to the 
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developing world.” (Interview 1016). The Internet plays a critical role in providing the 

communication infrastructure to carry out the mandate of open access. Like other battles 

over intellectual property and copyright, such as the downloading of music and the 

Napster case, DNA sequences, particularly the one resulting from the HGP, have been 

the object of intense debates over open access and data sharing (Sulston and Ferry 2002; 

Cook-Deegan 1994; See also Goven 2006; Lassen and Jamison 2006; Salter and Salter 

2007; Tutton 2007; Zanestoki et al 2006). HapMap members are particularly 

enthusiastic and principled about this practice (Interview 1016): “…in terms of making 

science really international and making science open in the humanistic, old sense of 

science, open as in belonging to the public, I think it’s been absolutely tremendous” 

(Interview 1008). 

 

In the early 1990s, Gilbert warned that the proliferation of databases would 

create a digital divide: “The next tenfold increase in the amount of information in the 

databases will divide the world into haves and have-nots, unless each of us connects to 

that information and learns how to sift through it for the parts we need” (Gilbert, quoted 

in Lenoir 1999, 18). Gilbert’s warnings have partially come true. The HGP and 

HapMap are selectively global as the two projects included “only developed nations 

with the technological and economic infrastructure to support bioscience research” 

(Thacker 2006, 18). Thacker argues “genomics is a selectively global industry, creating 

a specific map determined by Western science, technology, and government and 

economic interest” (2006, 18). Even though the Internet provides the flow of data to the 

public, the digital divide remains a global issue in terms of access to the Internet as well 

as the quality and capacity of the digital pipes. Globalization scholars argue that 

everyone does not share technological advancements uniformly. Doreen Massey 

suggests that we need to pay attention to the “power geometry” of uneven distribution 

of resources and social inequality that is not ameliorated by globalization, but 

exacerbated. As the dominant organizing principle in the information age is the network 

(Castells 2000 [1996]; Newman, Barbási and Watts 2006), power operates through the 

space of flows. Only certain countries with the technological, scientific, and economic 

capabilities could become members of HapMap. While HapMap aims to map the 

molecular level, it is also a map of geo-political relations. For example, Japan and China 

represent Asia rather than Thailand or Vietnam. 

 

 One interview respondent felt that, in the long run, this approach would have a 

“great and profound impact on the way biomedical science is being done because it’s a 

very infectious idea and it’s not an idea that existed in biomedicine before” (Interview 

1001). Democratizing the data depends on the network capacity of databases and the 

Internet as well as a social movement from within the biomedical sciences. It appears to 

directly confront private models of the biotechnology industry where the keeping of 

trade secrets in closed labs is considered crucial to competing in the marketplace. 

Marturano (2003) suggests that scientists should adopt the open source philosophy 

followed by many computer hackers where the source codes are shared, modified, and 

redistributed. This could strengthen the scientific community and refocus the emerging 

patent-and-perish culture to a gift economy where status among peers comes from the 

sharing of knowledge, which is already part of the practice of scientists. Ultimately, an 

open source philosophy seeks to protect genomic data as a public good, rather than 

something that can be owned by a corporation or individual scientist. The immediate 

release into the public domain approach could have far reaching effects in terms of the 

divide between information haves and have nots.  
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Conclusion 

This paper has shown that the past and current interactions between biology and 

information technologies are better understood from the perspective of a mutual 

interdependence. In so doing, we attempted to engage with the claims of a natural 

marriage and of biology having become an information science present in some STS 

literature and accounts by genomic researchers and suggest novel theoretical and 

empirical directions for STS and communication. Automatic sequencers and especially 

computer-assisted databases to store DNA sequences have acted as spaces of 

convergence in which biology and information technologies interact and shape each 

other. Genomic research is the indivisible result of these interactions, which have 

operated bi-directionally: sequencing and other biological processes have been modeled 

on the computer and, at the same time, altered traditional programming algorithms such 

as those used in text processing. 

 

The interactions between information technologies and the life sciences not only 

affect biological processes or computing instruments. Values and models such as 

discovery science, open access or large-interdisciplinary research groups are the results 

and materializations of this mutual interdependence. Genomics may, thus, be defined as 

the result of the consolidation and expansion of these bi-directional interactions and a 

field in which biology and computing are currently indistinguishable. The Internet, as a 

technology of data sharing and exchange, has also contributed towards this definition 

and been essential for the development of initiatives such as the Human Genome Project 

and the HapMap Project. This model of reciprocal interactions between information 

technologies and biomedical enterprises constitutes a suitable framework for the 

growing STS scholarship on organization and governance of genomic centers (Balmer 

1996; Hilgartner 2004; Gibbons et al 2007; Ramillon 2007). Genomics may, therefore, 

be considered an information science not just because it incorporates information 

technologies. In this incorporation, the biomedical areas under research, the research 

activity itself, and the incorporated technologies are deeply transformed. Because of 

these transformations genomics is different from other biological uses of computers and 

databases, thus deserving an independent framework for STS analysis. 

 

This independent framework should take into account all the dimensions of the 

interactions between biology and computing, and not merely label them as a natural 

marriage. It requires an interdisciplinary approach, and the historical and socio-cultural 

reappraisal presented in this paper constitutes an initial step towards this end. Our 

perspective also has implications for more general STS scholarship on technoscience 

and society. The bi-directional model of interaction we have described challenges, at the 

same time, the arguments for a “social shaping” of technology and for a “digital 

shaping” of biology. Both arguments have a strong implementation in STS literature 

(e.g. MacKenzie and Wajcman 1999; Moody 2004; Zweiger 2001) and show different 

forms of determinism in the understanding of the connections between science, 

technology and society. Our interdisciplinary analysis and proposed model of 

convergence links with the “co-production of knowledge” that Jasanoff has proposed as 

a general STS framework (Jasanoff 2004). Biology, computing and social orders 

interact and are reciprocally shaped around spaces of convergence, but none of them 

fully determines the sequencer, the database, or other genomic technologies. 
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Appendix A 

List of Interviews* 

Graham Cameron Member of the EMBL database team during the 1980s 

Greg Hamm Leader of the EMBL database team during the 1980s 

Tim Hunkapiller Member of Leroy Hood’s group at the California Institute of 

Technology during the 1980s 

Lloyd M. Smith  Member of Leroy Hood’s group at the California Institute of 

Technology during the 1980s 

André Marion Co-founder of Applied Biosystems and manager of the company 

during the 1980s 

Interview 1001 Population Geneticist 

Interview 1002 Biostatistician 

Interview 1003 Project Manager 

Interview 1005 Bioethicist 

Interview 1007 Director of NGO 

Interview 1008 Lawyer 

Interview 1009 Bioinformatician 

Interview 1010 Population Geneticist 

Interview 1011 Bioethicist 

Interview 1013 Geneticist 

Interview 1014 Human Geneticist 

Interview 1016 Population Geneticist 

Interview 1017 Bioethicist 

Interview 2001 Biologist/Senior Scientist, leading global biotechnology company 

* Miguel Garcia-Sancho conducted the named interviews between 2006 and 2007. Peter 

Chow-White conducted the numbered interviews with members of the International 

HapMap Project (except Interview 2001) in 2005 and 2006. 
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1
 The authorship is shared equally by Peter Chow-White and Miguel Garcia-Sancho and 

their names are listed in alphabetical order. Any correspondence regarding this paper 

can be addressed to both authors. 
2
 http://hapmap.ncbi.nlm.nih.gov 

3
 However, literature in the history and the philosophy of biology has shown that this 

association of the genetic material with the concepts of code and program has been 

more problematic and started in the late 1940s, much before the emergence of DNA 

sequencing and the personal computer (Kay 2000; Sarkar 1996; Fox Keller 1995; Moss 

2004). Our paper will build on this problematization and extend it to the 1970s and 

1980s. 
4
 In his scholarship on information society, Manuel Castells considers genomics and the 

recombinant DNA techniques as symptomatic of this new social configuration, but does 

not draw further on the nature and implications of this socio-technical correspondence 

(Castells 2000 [1996], 54-59; Castells 2001). 
5
 By analyzing different case studies, Soraya de Chadarevian, Joseph November and 

Sabina Leonelli have shown that different biological disciplines such as X-ray 

crystallography, biochemistry, molecular biology, physiology or plant genetics 

decisively shaped the design of biocomputing software and hardware, as well as 

databases (de Chadarevian 2002, ch. 4; November, 2004, 2006; Leonelli 2010). De 

Chadarevian, together with Lenoir, has placed the origins of the interactions between 

biology and computing in the late 1940s. This links with the claim of an “early 

information society” by historians of computing, who argue that the social concern with 

data processing much preceded the emergence of the personal computer and of the 

computer itself (Agar 2003; Black et al. 2007). 
6
 Sequencing software and databases existed from the early 1960s, in the field of 

proteins and before the emergence of commercial text processors. This paper will 

exclusively deal with DNA sequencing applications, since previous devices are well 

investigated in the literature (see Strasser, 2009; Suárez-Díaz, 2010; Suárez-Díaz and 

Anaya-Muñoz, 2008). 
7
 The generalization of string processing was a consequence of the gradual shift in the 

use of the computer from a mathematical calculator to an information processing device 

(Campbell-Kelly and Aspray 1996, 105 and ff.). This process was largely fostered by 

the emergence of the personal computer and word processing software between the late 

1970s and 1980s (Ceruzzi 1998, chs. 7-9; Haigh 2006b). 
8
 The reservations towards computer-minded staff which characterised the 1960s and 

70s in biological institutions did not disappear automatically. Hamm and Cameron 

recall being regarded as “secretariat” during their early years at the EMBL and not 

being treated as equals until the success of the database (Interview with Hamm; 

Interview with Cameron). 
9
 Diffuse team structures, as Jamie Lewis has shown, create a “virtual space of 

cooperation” that sometimes prevents interactions between researchers based in closer 

locations (Lewis 2010). 
10

 Soraya de Chadarevian has suggested that genomic databases, in which you first 

access the genetic map of chromosomes, click a particular section and enter the physical 

map of DNA fragments and then the nucleotide sequence of a concrete fragment 

resembles the hypertext structure of the World Wide Web (de Chadarevian 2004, 95). 
11

 http://hapmapncbi.nlm.nih.gov/cgi-perl/registration 


