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Interactions between the estrogen receptor (ER)
and the epidermal growth factor receptor (EGFR)
contribute to the biological effects of these binding
protein families. EGFR stimulates DNA synthesis
and gene transcription in the uterus, related in part
to estrogen-independent activation of the nuclear
ER. This results from signal transduction enacted
by the plasma membrane tyrosine kinase growth
factor receptor, leading to 1) phosphorylation and
activation of the nuclear ER, and 2) phosphoryla-
tion of coregulator proteins. More recently, it has
been shown that a pool of ER� resides in or asso-
ciates with the plasma membrane as a cytoplasmic

protein. These ERs utilize the membrane EGFR to
rapidly signal through various kinase cascades
that influence both transcriptional and nontran-
scriptional actions of estrogen in breast cancer
cells. This is congruent with a general theme of
receptor signaling, where membrane G protein-
coupled receptors activate tyrosine kinase growth
factor receptors (EGFR, IGF-I receptor) that sub-
sequently signal to MAPKs and other pathways.
Overall, the bidirectional cross-talk between EGFR
and cellular pools of ER contributes to reproduc-
tive organ physiology and pathophysiology.
(Molecular Endocrinology 17: 309–317, 2003)

MOST GROWTH FACTORS activate cell prolifer-
ation, differentiation, or survival programs

through binding their attendant tyrosine kinase recep-
tors, expressed in the plasma membrane (1–4). As a
result, the receptors undergo dimerization and confor-
mational changes that result in transphosphorylation
at discrete tyrosine residues. This provides binding
sites for signaling or linker/adapter molecules that
contain Src-homology 2 domains, and the recruitment
of additional signal molecules (5, 6). Such proteins
include nonreceptor tyrosine kinases such as Src fam-
ily members, or Grb and Sos family proteins. Signal
cascades are then triggered, dependant upon the
translocation, membrane association, and activation
of tyrosine, serine/threonine, and lipid kinases, includ-
ing ras, raf, protein kinase C, and phosphatidylinositol
3-kinase (PI3K). These kinases phosphorylate sub-
strate proteins in the cytoplasm, altering target protein
function. As an example, stimulation of PI3K results in
AKT activation, which then phosphorylates a variety of
proapoptotic proteins, including BAD, glycogen syn-

tase kinase-3�, or Forkhead transcription factors (7,
8). This posttranslational modification sequesters/
inactivates these proteins in cytoplasm, leading to cell
survival.

Kinases also translocate to the nucleus, where they
phosphorylate/activate and transcribe transcription
factors that induce a variety of immediate early and
late-arising genes. This important event underlies
many of the biological effects of growth factor signal-
ing. In fact, when nuclear localization of the ERK mem-
ber of the MAPK family is prevented, cell proliferation
often ceases (9). Important nuclear targets of ERK that
are relevant to cell division include the transactivation
of the cyclin D1 gene and the protooncogenes c-fos
and c-myc (10–13). Therefore, the ability to signal from
the membrane to both cytoplasmic and nuclear events
is an essential feature of growth factor receptor
function.

Steroid hormones have traditionally been conceived
to act through the ligation of nuclear receptors (14).
For estrogen, binding to estrogen receptor (ER)� or
ER� results in an active complex in the nucleus that
binds DNA directly at estrogen response elements
within the promoters of target genes. Alternatively,
estradiol (E2)/ER promotes transcription factor binding
to DNA (15). Liganded ER forms complexes with co-
regulator proteins (16), and constituents of the basal
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receptor; KO, knockout; MMP, matrix metalloproteinase;
PI3K, phosphatidylinositol 3-kinase; STAT, signal transducer
and activator of transcription.
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transcription machinery complex, leading to the
modulation of RNA polymerase II activity, histone-
induced chromatin unwinding, and transcription.
However, it has become increasingly clear that es-
trogen (and other steroid hormones) also rapidly
activates signaling in seconds to minutes, and this
cannot be explained by any known function of nu-
clear receptors (17). Furthermore, ERs that lack a
nuclear localization sequence (18) or truncated ERs
that are targeted to the plasma membrane are fully
capable of activating kinases and subsequent cell
proliferation or survival (19, 20). A small pool of
endogenous ERs that localize to the plasma mem-
brane in various target cells can act similarly to
classic growth factor receptors imbedded in the
membrane. These ERs have been localized to
caveolae raft domains isolated from the plasma
membrane of target cells such as endothelial cells
(19, 21). It is still unclear, however, whether these
sex steroid receptors are integral membrane pro-
teins and/or tether as cytoplasmic proteins to the
cytoplasmic face of caveolae through binding to
caveolin-1.

An important principle in the signaling field is that
growth factor receptors cross-talk to each other. This
includes heterodimerization between receptor family
members, exemplified by the four members of the
epidermal growth factor (EGF) receptor (EGFR) family
(22). Additionally, signaling from one receptor acti-
vates cytoplasmic nonreceptor kinases (e.g. -Src) that
positively or negatively modulate the activity of adja-
cent receptors (23). In this respect, EGFRs expressed
on a population of cells may spread signal transduc-
tion enacted by a variety of unrelated growth factor
receptors on adjacent cells (24).

Emerging data suggest cross-talk may exist be-
tween plasma membrane steroid receptors. Proges-
terone can stimulate ERK signaling via the utilization of
ER (25), and estrogen or androgen can promiscuously
stimulate signaling to ERK (and cell survival) through
either sex steroid receptor (20). Furthermore, both
membrane growth factor and steroid receptors inter-
weave their actions with those of nuclear steroid re-
ceptors, thereby impacting cell biology. An example is
that nuclear receptors transcribe genes, the protein
products of which are acutely altered in function by
phosphorylation, resulting from membrane receptor
signaling.

In this overview, I will describe the current state of
cross-talk between ERs and EGFRs. Work in this
area has established a requirement of nuclear ER for
some EGFR [and perhaps IGF-I receptor (IGF-IR)]
actions. Recent findings suggest the important role
of EGFR (or similar receptors) for estrogen signaling
from the membrane in breast cancer. Bidirectional
signaling between these essential cellular factors
augments the actions of the individual steroid and
growth protein.

SIGNALING FROM EGFRs TO NUCLEAR ERs

EGF binds to one or more members of the EGFR
family that enact signaling cascades to the nucleus
and cytoplasm, resulting in cell biological actions (22,
26). This pathway is indirectly used by E2. In repro-
ductive organs, E2 induces the EGFR and stimulates
growth and rapid proteolytic activity in the uterus (27).
Subsequent investigations established that this sex
steroid stimulates the synthesis of EGF in this repro-
ductive organ (28). Up-regulation of EGF probably ex-
plains the strong proliferative effect of E2 on uterine
epithelium, an action that is prevented by EGF anti-
body (29). Increased synthesis of EGF resulting from
E2 action extended the earlier observation that E2 in-
duces EGF secretion from breast cancer cells (30) and
implicates this interaction in the growth of hormonally
responsive cancer. In EFGR knockout (KO) mice, the
stromal compartment, but not the epithelial response
to E2, is severely limited in both the uterus and vagina
(31).

A novel model of ER and EGFR interaction is derived
from the observation that EGFR signaling depends
upon an ER-mediated function but in an estrogen-
independent fashion (32). Studies from Ignar-
Trowbridge et al. (33) showed that EGF induction of
DNA and lipid synthesis in the uterus could be pre-
vented by ICI 164,384, an ER antagonist. More recent
studies suggest that the effects of ER antagonists
could be mediated through recruiting corepressors,
thereby inhibiting growth factor-induced ER transcrip-
tional effects (34). Continued work from the laborato-
ries of DiAugustine and Korach (35) showed that EGF-
induced DNA synthesis and transcription were absent
in uteri from ER� KO (ERKO) mice. These results
clearly show dependency on ER for EGF action in
reproductive organs.

How does EGFR utilize ER for biological actions?
Insight resulted from the observations that several
peptide growth factor receptors signal to the phos-
phorylation and activation of the nuclear ER (36, 37).
This includes EGF and was originally attributed to the
ability of growth factor receptor-activated MAPK (ERK)
to phosphorylate serine 118 in the A/B domain of the
nuclear ER�. Serine 118 phosphorylation results in an
increased ER-related transactivation of genes that are
up-regulated by EGFR. Work by Ignar-Trowbridge et
al. (38) showed that EGFR ligation induces the tran-
scriptional up-regulation of an estrogen response el-
ement reporter construct, in ER-dependent fashion.
This group also demonstrated that EGFR-to-ER cross-
talk requires the A/B domain of ER� (39). Subsequent
studies implicated several kinases that phosphorylate
additional residues within ER�, resulting in the in-
creased transcriptional activity of the nuclear receptor
(40–44). Thus, impact of the growth factor receptor-ER
interaction depends upon the signaling milieu within a
particular cell that differentially phosphorylates numer-
ous residues in the nuclear ER.
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Another mechanism through which EGFR-induced
signaling modulates ER transcriptional activity is via
coregulator protein phosphorylation. As an example,
EGF-induced ERK phosphorylates serine 736 of glu-
cocorticoid receptor interacting protein 1. This in-
creases the activity of this nuclear receptor nonspe-
cific coactivator protein (45). EGF-triggered Src and
Jnk activation may have a similar function for the
cAMP response element-binding protein (46). Other
coactivator proteins that are important and specific to
ER function could be similarly activated or recruited
through signaling-induced posttranslational modifica-
tions. Interestingly, growth factor receptors signal to
cyclin D1 production, as part of promoting G1/S phase
cell cycling (47). Cyclin D1 activates ER transcriptional
function (48) and interacts with the coactivator pro-
teins, steroid receptor coactivator 1 and cAMP re-
sponse element-binding protein/p300, as an addi-
tional mechanism to amplify nuclear ER action (49, 50).

It is conceivable that EGFR signaling also inhibits
the activity/function of corepressor proteins on tar-
geted promoters, and that other EGFR family mem-
bers could also cross-talk to the nuclear ER. In breast
cancer and other estrogen target cells, EGFR family
members often heterodimerize, and ligands [heparin

binding-EGF (HB-EGF), TGF�, or EGF] can be some-
what promiscuous in their binding. Such consider-
ations may be relevant to the interactions of the erb2/
Neu oncogene and ER in early breast cancer. In this
respect, breast tumor formation in mouse mammary
tumor virus-erb2/neu mice is delayed on an ERKO
background (51). A summary of mechanisms of EGFR
signaling through ER is seen in Fig. 1.

Finally, it has recently been reported that the EGFR
translocates to the nucleus, where it can bind to AT-
rich DNA sequences and modulate the transcription of
the cyclin D1 gene (52). Modulation of this controver-
sial event by EGF occurs 48 h after ligation (53), and
any interactions with the nuclear ER would be ex-
pected to impact the more chronic effects of the
growth factor receptor.

In parallel to the interaction between the EGF sys-
tem and ER, there is abundant evidence indicating
cross-talk between the IGF-I system and ER. IGF-I
binding activates its receptor, leading to PI3K/AKT
activation, increased ER� synthesis, and augmented
ER� transcriptional activity. This probably results from
the phosphorylation of several serine residues in the
AF-1 region (43) and EGFR accomplishes a similar
action. Similarly to EGF, IGF-I activates parameters of

Fig. 1. EGFR Activation of ER or Coregulator Proteins via Signaling through MAPK Cascades
GRIP-1, Glucocorticoid receptor-interacting protein; CBP, cAMP response element-binding protein.
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uterine cell proliferation in vivo, and this is dependent
on ER� (54). Interestingly, in both the uterus and in
breast cancer models, IGF-I signaling to ERK and
PI3K/AKT is unaffected by ER� loss or antagonism
(54, 55). When ER� is reexpressed in breast cancer
cells that have lost ER through repetitive culturing,
both E2 and IGF-I resume their growth-inducing func-
tion (56). E2 stimulates many proteins in the IGF-I
system, including IRS proteins, IGF-IR, and IGF-bind-
ing proteins (57, 58), and ER� binds and phosphory-
lates the IGF-1R and enhances signaling through the
growth factor receptor (59). In breast cancer, IGF-I and
E2 cooperate to promote G1/S cell cycle progression
(60, 61), and in the uterus of the IGF-I KO mouse,
E2-induced growth is absent (62). Thus, there appears
to be an important cooperation and cross-talk be-
tween these two systems as well.

SIGNALING FROM ER THROUGH EGFR

The realization that E2 has rapid effects in cells led to
the characterization of the many generated signals. E2

stimulates calcium channel opening and calcium influx
or mobilization within seconds of binding receptors
expressed in target tissues (63, 64). E2 rapidly gener-
ates cAMP (65), phospholipase C, and inositol phos-
phate (66, 67). This results from G protein activation,
and these early signals are transmitted to the rapid
stimulation of protein kinase C, protein kinase A,
MAPK, and PI3K (68). Functional and immunohisto-
logical identification of endogenous membrane ER
(69, 70) led to the characterization of these receptors
after expression of the cDNAs for classical ER� and
ER� in Chinese hamster ovary cells (71). These latter
studies indicated that membrane ER physically asso-
ciate with and activate various G protein �-subunits,
including G�s and G�q. G protein activation explains
how ER generates cAMP (G�s function) or inositol
1,4,5-triphosphate and calcium (G�q function), as ex-
amples. Subsequent work showed that endogenous
ER� activates G�i, leading to the generation of nitric
oxide in endothelial cells (72).

An important finding described by Ullrich and col-
leagues (73) indicates that several G protein-coupled
receptors (GPCRs) signal to ERK via the transactiva-
tion of the EGFR. Later studies from other laboratories
confirmed and extended these observations to many
GPCRs and provided additional details underlying this
cross-talk. Identification of the membrane ER as a
receptor capable of activating G proteins (71, 72) in-
voked the possibility that this receptor signaled
through cross-talk/activation of the membrane EGFR.
Filardo et al. (74, 75) showed that estrogen rapidly acts
in breast cancer cells to stimulate the transactivation
of EGFR, leading to cAMP and ERK up-regulation.
This occurs through a linked path, first described for
other GPCRs by Ullrich and colleagues (76). E2 in-
duces mainly unknown proximal signaling to cause the

activation of undefined matrix metalloproteinases
(MMPs). Increased MMP function leads to the libera-
tion of HB-EGF, which then binds and activates the
EGFR. However, Filardo et al. (74) reported that 17�-
E2, 17�-E2, or the ER antagonist, ICI 182780, were
equivalent in activating EGFR and ERK. EGFR trans-
activation was proposed to occur independently of
any ER and resulted from an undetermined effect of E2

to activate the orphan GPCR, GPR 30 (77). More re-
cent studies from Razandi et al. (78) demonstrated that
E2 requires an ER to signal to EGFR in breast cancer
and is consistent with most studies that show an ER is
necessary for rapid signaling by E2 at the membrane
(19, 42, 66, 79–81). Razandi et al. (78) also found that
E2/ER triggers a G�q, G�i, and G��-dependent acti-
vation of MMP-2 and -9, mediated through Src acti-
vation. By antisense studies, MMP-2 and MMP-9 were
shown to be necessary for E2-induced HB-EGF cleav-
age and liberation, the transactivation of EGFR, and
downstream signaling to ERK and PI3K in breast can-
cer cells, and p38 MAPK in endothelial cells. It is
possible that GPR30 may complex with and mediate
membrane ER cross-talk to EGFR. However, recent
studies from Ahola et al. (82) have called this idea into
question. These investigators found that antisense in-
hibition of endogenous GPR-30 had no effect on E2

signaling to cell proliferation in MCF-7 cells. Thus, this
definitive approach suggests that GPR30 is not re-
quired and supports previous studies that ER 1) di-
rectly associates with and activates G proteins, and 2)
this leads to downstream signaling (71, 72). The mol-
ecules involved in the ER-to-EGFR cross-talk are
shown in Fig. 2.

The full extent of membrane-initiated signaling by
E2/ER and its dependence on EGFR remains to be
defined, and the in vivo significance is incompletely
understood. However, it was demonstrated more than
10 yr ago, that EGF antibody prevents E2-induced
vaginal and uterine growth (29), implying that cross-
talk from ER to the EGFR at the membrane may be
physiologically important. Recent studies concerning
the role of E2/ER signaling at the membrane support
this idea. Simoncini et al. (83) showed that in endo-
thelial cells, ER� directly associates with the mem-
brane-tethered p85 subunit of PI3K. E2 rapidly acti-
vates this kinase, leading to the generation of nitric
oxide, and the rescue of rats from ischemia-reperfu-
sion injury of their muscle. It is known that EGFR and
PI3K associate (84), and so it is possible that a multi-
protein complex exists between ER/PI3K/EGFR and
endothelial nitric oxide synthase molecules, perhaps
scaffolded onto caveolin-1 at the membrane (19, 21,
85). Similarly, Migliaccio et al. (79) showed that ER and
Src form a complex. The interaction between ER and
Src may be mediated by a newly described adapter
protein, modulator of nongenomic activity of estrogen
receptor (86). Src activation by E2 leads to a kinase
cascade resulting in ERK activation and DNA synthe-
sis in cancer cells (79). Interestingly, EGFR and Src
associate, and both molecules also form complexes
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with caveolin-1 (87). Src or EGFR phosphorylates
caveolin-1 at the important tyrosine 14, and this leads
to the down-regulation of signaling (88). The ability of
E2/ER at the membrane to signal to ERK (via the dem-
onstrated EGFR transactivation) has additional impor-
tance for cell biology. Song et al. (89) recently dem-
onstrated that ER� lacking a nuclear localization signal
and targeted to the plasma membrane activates ERK
and cell proliferation in Chinese hamster ovary cells.
Also, the survival of breast cancer cells that are sub-
jected to radiation or taxol chemotherapy is enhanced
by E2, partially through ERK activation (90). In aggres-
sive breast cancer, a truncated MTA1 protein was
recently found to be highly expressed (91). This protein
sequesters ER away from the nucleus and strongly
reduces E2-activated transcription, yet promotes in-
creased ERK signaling and aggressive behavior of the
tumor. In neurons subjected to several inducers of
apoptosis, E2 protects these cells through ERK acti-
vation (92). The actions of E2 mediated by this MAPK
occur through both protein phosphorylation (90) and
gene transcription (93, 94). Most recently, bone loss in
vivo was prevented by a compound (4-estren-3�, 17�-
diol) that has no direct transcriptional activities but
activates ERK signaling (95). Therefore, it is probable
that the cross-talk from membrane ER through EGFR

to downstream kinase activation is biologically
important.

The precise structural aspects of the membrane ER
that are required for G protein activation are unclear at
present but appear to mainly reside in the E domain.
This conclusion is based upon the observations that
targeting the E domain alone to the plasma membrane
allows E2 activation of ERK (19) and rescues bone cells
from an apoptotic cell death (20). Similarly, sending
the E domain to the plasma membrane of ER-negative,
breast cancer cells results in E2-induced, Src-depen-
dent matrix metalloproteinase activation, HB-EGF lib-
eration, and EGFR transactivation (78). Thus, the
membrane E domain alone can recapitulate the key
elements of the pathway from ER to EGFR. These
findings are supported by the earlier observation that
Src complexes with (and is activated by) E2/ER, and
that tyrosine 537 within the E domain is an essential
structural component (96). This may be important for
specific signaling pathways, however. Bjornstrom and
Sjoberg (97) have recently examined the E2 rapid ac-
tivation of signal transducer and activator of transcrip-
tion (STAT) transcription factor-induced �-casein pro-
moter activation. STAT activation requires both ERK
and PI3K, induced by E2/ER. These authors report that
mutating tyrosine 541 of the mouse ER� (equivalent of

Fig. 2. Membrane ER Cross-Talk to EGFR Leads to Downstream Signaling and Changes in Cell Biology of Breast Cancer
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human ER� tyrosine 537) has no effect on E2 induction
of the STAT-�-casein pathway. Also, Song et al. (89)
recently showed that the Src homology 2-domain con-
taining adapter protein, Shc, complexes with ER�
through the AF-1 domain, and suggested that this
interaction may underlie E2-induced ERK. However,
we recently found that expression of only the mem-
brane-targeted E domain (19), or A/B domain-deleted
ER� (unpublished observations) 1) fully binds steroid
at the membrane, and 2) comparably activates ERK,
compared with expressed wild-type ER�. Thus, cur-
rent data support a unique and complete role for the E
domain in effecting signal transduction initiated at the
membrane.

PERSPECTIVE

The bidirectional cross-talk between ER and the
growth factor receptors EGFR and IGF-IR indicates a
potent method of augmenting E2 or growth factor ac-
tion. In a particular cell type and situation, there may
be a predominant contribution from one of these path-
ways, essential to the cell biology of breast cancer, for
instance. Tamoxifen is effective in preventing the
reoccurrence of ER-positive breast cancer, in part
because it inhibits aspects of E2 and EGFR signaling.
In ER-negative breast cancer, there is possibly less
restraint on EGFR signaling to cell proliferation or
survival in the absence of ER antagonism, thereby
contributing to a more aggressive phenotype. Interest-
ingly, in human breast cancer, ER and EGFR concen-
trations are inversely correlated (98, 99), and ER
appears to repress the EGFR gene through a first
intron sequence (98). Increased EGFRs in ER-negative
breast cancer may also contribute to the more active
growth and invasive behavior of these tumors.

The interactions of ER and EGFR impact both the
transcriptional and nontranscriptional effects of ste-
roid hormones and protein growth factors, but these
are not mutually exclusive actions. Membrane E2/ER
activates PI3K signaling via EGFR (78). As shown by
DNA microarray, PI3K activation by E2 leads to the
up-regulation of 250 genes after just 40 min of expo-
sure of endothelial cells to sex steroid (100). Thus,
ER-EGFR cross-talk at the membrane enacts multiple
signaling pathways that likely have a profound impact
on the transcriptional effects of E2. It is certainly pos-
sible that manipulating the specific pathways that re-
sult from the bidirectional signaling will yield therapeu-
tic interventions for human disorders that result from
excessive growth factor and steroid hormone action.
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