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ABSTRACT (250 words maximum) 
 

The energy balancing concept seeks to reduce actuation requirements for a morphing structure by 

strategically locating negative stiffness devices to tailor the required deployment forces and moments. 

One such device is the spiral pulley negative stiffness mechanism. This uses a cable connected with a pre-

tension spring to convert decreasing spring force into increasing balanced torque. The kinematics of the 

spiral pulley are first developed for bidirectional actuation developed and its geometry is then optimized 

by employing an energy conversion efficiency function. The performance of the optimized bidirectional 

spiral pulley is then evaluated through the net torque, the total required energy and energy conversion 

efficiency. Then, an additional test rig tests the bidirectional negative stiffness property and compares the 

characteristics with the corresponding analytical result. Exploiting the negative stiffness mechanism is of 

significant interest not only the field of morphing aircraft, but also in many other energy and power 

reduction applications. 
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1. Introduction 

The objective of this paper is to develop an energy balancing system for passive energy balancing. 

The key component of this objective is using an additional negative stiffness system to balance the 

positive stiffness of the morphing system, therefore reducing actuation effort. Although the concept of 

using negative stiffness systems has been generally used to achieve stiffness changes in a dynamic 

system [1,2], the alternative use of negative stiffness can be beneficial for statically balanced systems, 

especially for morphing aircraft. It can be assumed that if the required input, such as force or torque, 

can be completely eliminated by the negative stiffness system, then in principle no energy is required 

to move the system, other than to overcome dissipation. Therefore, the use of negative stiffness 

systems is likely to benefit energy constrained systems, such as those present in the aerospace and 

automotive industries. Many applications have been proposed that use a negative stiffness for passive 

energy balancing. An energy balancing adjustment system has been developed for gravity 

equilibrators, which uses the extended spring to supply or store the necessary energy and the rotation 

of a fixed geometry bar to produce a statically balanced system [3,4]. A statically balanced compliant 

mechanism has been proposed by coupling a compliant mechanism with a pre-compressed plate 

spring, to give a zero-stiffness behaviour [5]. Some other alternative uses of negative stiffness systems 

for passive energy balancing have also been investigated, such as for morphing aircraft. A negative 

stiffness nonlinear over-centre linkage is used on a tilt-rotor blade for active twist. This negative 

stiffness linkage mechanism uses the stored energy of a compressed spring to rotate the output shaft, 

resulting in an effectively softened blade that requires a 70% reduction in torque for morphing [10]. 

Moreover, spring-pulley systems have been developed, for instance, a cam based balancer with a 

varying radius pulley can preserve moment equilibrium between a constant load and a varying spring 

length [6,7]. Previous works have been undertaken by Woods, Friswell and Wereley, where a 

pneumatic actuator was used to provide kinematic tailoring [8]. The output load line of the actuator 

was modified to match an assumed torque for driving a compliant morphing aircraft. Then, an 

extension spring based system was set up to investigate this concept further [9].  The proposed device 

provides actuation to change the state of the system, such as deforming a structure or lifting a mass; 

hence the energy provided by the actuator transforms into an increased potential energy in the system. 

Once the system returns to its original state, all of the energy provided by the actuator will be 

recovered, if the system is conservative. It is important to note that the combination of a negative 

stiffness and a positive stiffness is likely to build a system that can recycle energy; for a conservative 

system this recycling will be perfectly efficient. Thus the negative stiffness device can help to 

compensate for the required force/torque and energy and therefore use a smaller (and lighter) actuator. 

This work extends [10] by considering the application to a specific design target taken from a relevant 

morphing structure application which is different to the previous work on the concept that looked only 

at balancing a fixed direction. Although the negative stiffness system can only help to produce a 



Zhang  4 JMR-18-1344 

passive energy balancing system, unidirectivity is the drawback in the pulley system, which will 

restrict further applications, such as bidirectional actuation requirements. Therefore, a bidirectional 

spiral pulley negative stiffness (BSPNS) concept is proposed, which is capable of generating the 

satisfactory bidirectional torque versus rotation profile. The energy used in an actuator is usually non-

recoverable, but the BSPNS device can provide energy to actuate and then be back-driveable by the 

elastic load in the system. Recently a mechanism has been proposed that implements a linkage with 

springs to produce the bidirectional negative stiffness [11]. While the same passive energy balancing 

effect can be produced, the spiral pulley negative stiffness device is constructed from simpler 

elements and is more suitable for large load requirements. 

This paper is organised as two parts. In the first part, a bidirectional spiral pulley negative stiffness 

(BSPNS) mechanism is investigated by extending the proposed wrapping cam system. The kinematics 

are modified to adapt to the bidirectional drive line of the negative stiffness mechanism from the 

previous work [10]. Two extension springs are connected with a constant radius pulley to produce a 

bidirectional required torque and the geometry of the bidirectional spiral pulley was optimised for the 

design case. In the second part, an experimental demonstrator was built and tested, confirming the 

ability of the bidirectional spiral pulley negative stiffness concept to actuate a representative load. 

2. Bidirectional spiral pulley negative stiffness mechanism 

Although the previous negative stiffness devices can provide a satisfactory result for passive energy 

balancing, the motion of the mechanism is fixed to be opposite to the wrap direction and this 

unidirectivity will restrict further bidirectional applications [9,10]. Figure 1 shows a schematic of the 

integrated system force curve by coupling two kinds of negative stiffness system. Many energy 

required systems have a bidirectional elastic force response as shown in Fig. 1(a), where the required 

force increases with the larger stroke to overcome the elastic deformation in both directions. Such a 

system is a positive stiffness system from the initial condition for both actuation directions. Although 

previous works [9,10] have shown that negative stiffness can be used to produce static balancing for 

such a system to give a zero stiffness property, different negative stiffness systems have different 

characteristics, which can be seen in Fig. 1(b) and 1(c). Figure 1(b) shows a bidirectional negative 

stiffness, which is distinct from the unidirectional negative stiffness shown in Fig. 1(c), and a 

bidirectional negative stiffness system is more suited to passive energy balancing of a bidirectional 

positive stiffness system. In order to illustrate the concept visually, Fig. 1(d) and 1(e) show the 

positive system in Fig. 1(a) coupled with the negative stiffness systems shown in Figs. 1(b) and 1(c), 

respectively. Both negative stiffness system can produce an energy balancing system where the 

actuation is zero (i.e. a constant force), but the results are different from the viewpoint of energy. The 

integrated system by coupling a unidirectional negative stiffness system still requires energy for 

actuation no matter how the two curves shown in Fig. 1(e) are adjusted. Therefore, the bidirectional 
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negative stiffness reveals better performance and should be investigated for passive energy balancing 

of mechanical systems to reduce the actuation requirements and improve energy efficiency.  

 

Figure 1. Schematic of the integrated bidirectional system force curve. 𝑘𝑝 is the stiffness of the load system and 𝑘𝑛1, 𝑘𝑛2 are the negative stiffness systems. (a) Bidirectional increasing force system. (b) Bidirectional 

decreasing force system. (c) Unidirectional decreasing force system.  (d) Integrated system of (a) and a 

bidirectional negative stiffness system. (e) Integrated system of (a) and a unidirectional negative stiffness system. 

Therefore, an innovative concept for designing a Bidirectional Spiral Pulley Negative Stiffness 

(BSPNS) mechanism is proposed, which can be more beneficial than fixed directional negative 

stiffness devices. Figure 2 shows a full scheme of the bidirectional spiral pulley with a constant radius 

output pulley. The bidirectional spiral pulley is a combination of two spiral pulleys mounted onto a 

central shaft and supported by two bearings. It is worth mentioning that the BTNS unit can provide a 

bidirectional motion by rotating the shaft clockwise (B) or anticlockwise (A), as shown in Fig. 2. This 

bidirectional feature provides a better solution for many practical applications than single directional 

devices.  

 

Figure 2. Schematic diagram of the proposed bidirectional spiral pulley. 

3. Kinematics analysis 



Zhang  6 JMR-18-1344 

The complicated kinematics of one spiral pulley and spooling cable are first investigated, as shown in 

Fig. 3. Although any profile of the pulley can be used to produce the variation in radius, an 

exponential radius function was chosen as potentially the best match to the desired nonlinear force 

profile. The detailed geometry definition of the spiral pulley is shown in Fig. 3. The spiral pulley is 

firstly defined as an exponential radius profile in polar coordinates about the centre of rotation 𝑂  

 𝑟 = 𝑟0 + 𝑘1𝑒𝑘2(𝜃+𝛿+𝛿0) (1) 

where 𝛿 is spiral pulley rotation angle and 𝜃 is a parameter associated with it; 𝛿0  is initial pulley 

rotation angle; 𝑟0 , 𝑘1 and 𝑘2  are parameters of the spiral profile, respectively. A wide range of 

different radius profiles can be used for the spiral pulley, with different shape functions being better 

suited to different load profiles. The exponential function used here has been shown to be well suited 

to the linear stiffness we wish to balance in this case [9,10]. 

Figure. 3 shows that the cable is wrapped around the spiral pulley and point 𝐵 is the initial point of 

contact. The Cartesian coordinates can then be defined with the origin point at 𝐴 and the coordinates 

of any point 𝐵 can then be defined as   

 𝑥𝐵 = 𝑥𝑜𝑓𝑓 − 𝑟 𝑠𝑖𝑛 𝜃 (2) 

 𝑦𝐵 = 𝑦𝑜𝑓𝑓 − 𝑟 cos 𝜃 (3) 

 

Figure 3. Spiral pulley geometry analysis with moment arm details. 

Therefore, the length of the vector 𝐴𝑂̅̅ ̅̅  is equal to  
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 𝑙𝑜𝑓𝑓 = √𝑥𝑜𝑓𝑓2 + 𝑦𝑜𝑓𝑓2  (4) 

In addition, length of the cable 𝑎 between the origin point 𝐴 and point 𝐵 is equal to  

 𝑎 = √𝑥𝐵2 + 𝑦𝐵2 (5) 

As mentioned above the cable is wrapped around the spiral pulley from point 𝐵 to the cable anchor 

point 𝐸. The arc length of the wrapped cable is then obtained as  

 

𝑆 = ∫ √𝑟2 + (𝑑𝑟𝑑𝜃)2𝜃(𝐸)
𝜃(𝐵) 𝑑𝜃

= ∫ √(𝑟0 + 𝑘1𝑒𝑘2(𝜃+𝛿))2 + (𝑘2𝑘1𝑒𝑘2(𝜃+𝛿))2𝜃(𝐸)
𝜃(𝐵) 𝑑𝜃 

(6) 

Therefore, the total length of the cable from point 𝐴 to point 𝐸 is equal to 

 𝐿 = 𝑏 + 𝑆 (7) 

Since the length of the cable between spiral pulley and extension spring is essentially constant, the 

rotation of the spiral pulley leads to the release of a portion of the cable. The change in the spring 

length can be calculated by subtracting the total cable length evaluated at each spiral pulley rotation 

angle 𝛿, from the total cable length at the initial pulley rotation angle 𝛿0. 

 ∆𝐿 = 𝐿𝛿 − 𝐿𝛿0 (8) 

Then, the moment produced by the force in the cable varies due to the change of the moment arm 𝑂𝐷̅̅ ̅̅ , 

which is defined as 𝑙𝑚, the length of the vector perpendicular to the straight cable 𝐴𝐵̅̅ ̅̅ . In order to 

calculate the length 𝑙𝑚, it is necessary to add an additional guide 𝐵𝐶̅̅ ̅̅  with an arbitrary fixed length of 𝐵𝐶̅̅ ̅̅ = 𝑏 and parallel to the horizontal axis. The coordinates of point 𝐶 can then be determined as  

 𝑥𝐶 = 𝑥𝐵 − 𝑏 (9) 

 𝑦𝐶 = 𝑦𝐵 (10) 𝑏 is taken to be 50 mm (can be arbitrary value) for analysis here. The length 𝑐 of vector 𝐴𝐶̅̅ ̅̅  is equal to  

 𝑐 = √𝑥𝐶 2 + 𝑦𝐶 2 (11) 

The angle 𝛽 can be obtained by using the law of cosines with the known 𝑎, 𝑏 and 𝑐, which is 



Zhang  8 JMR-18-1344 

 𝛽 = 𝑐𝑜𝑠−1 [𝑎2 + 𝑏2 − 𝑐22𝑎𝑏 ] (12) 

The angle of the pulley rotation point relative to the origin 𝜃𝑜𝑓𝑓 is  

 𝜃𝑜𝑓𝑓 = tan−1 (𝑦𝑜𝑓𝑓𝑥𝑜𝑓𝑓) (13) 

The moment arm angle 𝛾 in Fig. 3 can therefore be derived by given 𝛽 and 𝜃𝑜𝑓𝑓 

 𝛾 = 𝜋 − 𝛽 − 𝜃𝑜𝑓𝑓 (14) 

The length 𝑙𝑚 of the moment arm 𝑂𝐷̅̅ ̅̅  can finally be solved by Eq. (4) and Eq. (14) 

 𝑙𝑚 = 𝑙𝑜𝑓𝑓 𝑠𝑖𝑛 𝛾 = √𝑥𝑜𝑓𝑓2 + 𝑦𝑜𝑓𝑓2 𝑠𝑖𝑛 𝛾 (15) 

It is obvious that the above analysis is derived for any point 𝐵 on the profile of the spiral pulley. 

Therefore, in order to match the practical situation, it is important to confirm the unique position of 

point 𝐵 for each rotation angle 𝛿. In other words, extra conditions should be considered to find the 

point of tangency between the straight portion of the cable 𝐴𝐵̅̅ ̅̅   and the spiral pulley surface. From the 

viewpoint of the geometry shown in Fig. 3, the point of tangency occurs when point 𝐵  has the 

minimum corresponding angle 𝛽. Meanwhile, the value of angle 𝛾 could be considered as a function 

of variable 𝜃, and the minimum corresponding angle 𝛾 can therefore be solved by differentiating Eq. 

(12) with respect to 𝜃 and setting the result equal to 0. Thus 

 
𝑑𝛽𝑑𝜃|min 𝛽 = 0 (16) 

The spring is designed as an energy storage device with an initial length 𝐿0 as mentioned above. The 

force 𝐹𝑠 in the spring at the current position can therefore be obtained as  

 𝐹𝑠 = 𝐾(𝐿0 − ∆𝐿) (17) 

where 𝐾 is the spring constant, and the initial tension that exists in practical tension springs will be 

further discussed.. Finally, the torque produced by the spiral pulley can then obtained from Eq. (8) 

and Eq. (15) for each rotation angle 𝛿, as   

 𝑇𝑠 = 𝐹𝑠𝑙𝑚 (18) 

Therefore, as the spiral pulley rotates, its effective diameter changes, and the moment arm produced 

by the profile of the spiral pulley varies. This effect can be tailored to give negative stiffness, and 

optimised for a given actuation role. Then, the kinematics are modified to adapt to the bidirectional 
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drive line of the negative stiffness mechanism. Figure 4 shows that the cable is wrapped around the 

spiral pulley and the radius of the spiral pulley the centre of rotation is 𝑟. Since the motion of the 

mechanism should be opposite to the wrap direction, the radius of the spiral pulley should become 

infinitesimal that is impossible in practical application. Therefore, a small constant radius pulley is 

attached to the spiral pulley and the radius should be calculated based on the spiral pulley geometry to 

avoid a snap and is given by 

 𝑟𝑚 = 𝑟0 + 𝑘1𝑒𝑘2(𝜃+𝛿+𝛿0) = 𝑟0 + 𝑘1𝑒𝑘2(𝜃+𝛿0) (19) 

where 𝛿 = 0. This implies that the wrapped cable is tangent to both the spiral pulley and the attached 

constant radius pulley, which means the torque will be changed smoothly, as shown in Fig.4.  

 

Figure 4. Updated spiral pulley geometry details. 

Therefore, the rotation of the bidirectional spiral pulley through 0⁰  leads to the release of the cable 

from one spiral pulley, and wraps the cable of the other spiral pulley. For example, if the rotation is 

clockwise, the clockwise spiral pulley will release of a portion of the cable and the anticlockwise 

spiral pulley will wrap a portion of the cable (vice versa). The torque produced by the clockwise 

rotation bidirectional spiral pulley can then obtained from Eq. (18) and Eq. (19) for each rotation 

angle 𝛿, as   

 𝑇𝑏 = 𝐹𝑠1𝑙𝑚1 − 𝐹𝑠2𝑙𝑚2 = 𝐹𝑠1𝑙𝑚1 − 𝐹𝑠2𝑟𝑚 (20) 

The forces 𝐹𝑠1 and 𝐹𝑠2 in the springs relate to the clockwise spiral pulley and the anticlockwise spiral 

pulley, respectively. 𝑙𝑚1 is the moment arm of clockwise spiral pulley, which can be obtained by Eq. 

(15). 𝑙𝑚2  is the moment arm of anticlockwise spiral pulley, which is equal to 𝑟𝑚  in the case of 

clockwise rotation. Notably, it can be seen that 𝑟𝑚  is the smallest radius in Eq. (19), so that an 

increasing total torque could be produced. 
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Finally, in order to optimise the performance of the energy balancing system, an objective energy 

conversion efficiency function is proposed to make the torque provided by the spiral pulley system 

match the required torque as closely as possible. To accomplished this, an energy conversion 

efficiency metric is defined as 

 𝜂𝑒𝑓 = 𝐸0𝐸𝑟  (21) 

where 𝐸0  is the output energy provided from the bidirectional spiral pulley negative stiffness 

mechanism, 

 𝐸0 = ∫ |𝑇𝑏|𝛿𝑓
0 𝑑𝛿 (22) 

and 𝐸𝑟 is the required energy to actuate the positive stiffness of the morphing system, 

 𝐸𝑟 = ∫ |𝑇𝑓|𝛿𝑓
0 𝑑𝛿 (23) 

𝑇𝑓  is the required torque for each rotation angle 𝛿 . Then, an energy conversion efficiency based 

objective function is proposed and the nonlinear programming solver fmincon is used to optimise the 

objective function.  

4. Design case 

In order to show the efficacy of the bidirectional spiral pulley negative stiffness mechanism for energy 

balancing, a particular design scenario is considered. Two linear extension springs are used as the 

bidirectional load for the positive stiffness of the morphing system, which represents the energy 

required to be balanced by the bidirectional negative stiffness mechanism. The output rotation range 

was prescribed as −150° ≤ 𝛿 ≤ 150°  to show the ability of this bidirectional passive energy 

balancing concept. A target load torsional stiffness of 0.0074 Nm/º was chosen and a commercially 

available spring was found with a measured spring constant of 𝐾𝑙 = 88 N/m (Ashfield Spring Ltd; 

part number S.30) by connecting four springs in series. Since the spring is always extended and the 

spring will be still extended after actuation, the initial tension in the commercial tension springs can 

be neglected. The geometric parameters of the spiral pulley were optimised using the nonlinear 

programming solver fmincon in the MATLAB Global Optimization Toolbox. The objective function 

is the energy conversion efficiency function proposed in Eq. (21) and the optimised parameters are 

shown in Table 1. The bidirectional spiral pulley shape is shown in Fig. 5 along with the constant 

13mm radius load pulley. Meanwhile, the schematic of the design case for energy balancing by using 

the bidirectional spiral pulley negative stiffness mechanism is also shown in Fig. 5. 
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Table 1. Optimised parameters for bidirectional spiral pulley. 

Parameter Lower bound Upper bound Optimized value Units 

Initial radius, 𝑟0 -30/1000 10/1000 -0.0083 m 

Pre-exponent term, 𝑘1 -0.001 0.020 0.0051 - 

Exponent term, 𝑘2 0 1 0.3701 - 

Initial pulley rotation angle 𝛿0 -50*pi/180 50*pi\180 0.5054 rad 

Drive spring extension, 𝐿0 -0.05 0.4 0.2 m 

Drive spring rate, 𝐾 100 1400 69/4 N/m 𝑥𝑜𝑓𝑓  -0.1 0.1 0.0140 m 𝑦𝑜𝑓𝑓 -0.05 0.10 0.0417 m 

 

 

Figure 5. Schematic of the bidirectional spiral pulley negative stiffness mechanism for energy balancing. 

With the optimised parameters obtained above, the performance predicted for this bidirectional spiral 

pulley geometry shows a good match to the bidirectional torque requirements. Figure 6 shows that the 

evolution of torque with rotation for the BSPNS mechanism and the load springs and the net torque of 

the whole system. The torque provided by the two spiral pulleys of the BSPNS mechanism matches 

the torque required closely, including overcoming the opposite required torque 𝐹𝑠2𝑟𝑚.  
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Figure 6. Predicted torque with the optimised bidirectional spiral pulley. 

Integrating the torque versus rotation curves provides the mechanical energy required to drive the load, 

as shown in Fig. 7. Comparing the energy required with and without the negative stiffness mechanism, 

shows that the BSPNS mechanism has a strong ability to passively balance the required torque. Figure 

7 shows that the predicted energy reduction is almost 96%, with the energy required reduced from 

0.025 J to 0.001 J. The BSPNS mechanism is therefore predicted to be able to store and passively 

transfer 0.024 J of energy. 

  

Figure 7. Comparison of predicted energy required with and without BSPNS mechanism. 

The energy conversion efficiency objective curve plotted in Fig. 8 shows that the optimised 

configuration of the bidirectional torque shaft provides significant benefits in terms of energy 

efficiency. Moreover, it also shows that the bigger the angle of rotation, the less initial energy is lost. 
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Figure 8. Evolution of efficiency with bidirectional rotation. 

A test rig was built to allow for the experiment testing and validation of the BSPNS concept. The test 

rig was built on aluminium rails and labelled top and internal views of the completed test rig are 

shown in Fig. 9. The bidirectional pulley and box frame were three-dimensional (3D) printed. The 

pulley was mounted onto a central shaft which was supported by bearings set into the box mounted to 

the frame, as can be seen clearly in Fig. 9. Two shafts with bearings were used as redirection pulleys 

and the offsets between the pulley rotation point and the redirection pulleys for the drive spring 𝑥𝑜𝑓𝑓 

and 𝑦𝑜𝑓𝑓 are shown in Table 1, and provide sufficient clearance for the pulley. The fixed ends of the 

springs were mounted to tight brackets on the frame and high-strength spectra cordage was wrapped 

around the corresponding pulley and connected to each spring. The assembled test rig was then 

measured using a Zwick load test machine to provide output force. One high-strength spectra cordage 

is connected to the regular pulley and the test machine to substitute the corresponding spring and 

other springs are retained, as shown in Fig. 9. The initial angle of the spiral pulley is -157 degrees. 

The experimentally measured force is compared with the prediction the required torque 𝑇𝑓 from the 

analysis shown in Fig. 6.  
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Figure 9. BSPNS mechanism test rig. 

Figure 10 shows the experimentally measured and analytically predicted evolution of the force for the 

device. The torque is minimum (-0.008 Nm) in the initial state and the torque increases with 

increasing displacement until the maximum (0.008 Nm) is obtained. The discrepancy between the 

experimental result and the analytical result is because of friction. The friction of the device is 

neglected in the predictions and the angle is measured by dividing the measured displacement by the 

known radius of the regular pulley. The trend of the torque requirement system is satisfied between 

the experimental and the analytical results and the results show that the spiral pulley negative stiffness 

device allows for a drastic reduction in the actuation requirement. 
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Figure 10. Comparison of experimental and analytical required torque 𝑇𝑓 for BSPNS mechanism. 

Once assembled, the test rig was tested for passive energy balancing in each rotation configuration. 

Because the net torque of the integrated system is nearly zero and hard to test, the different rotation 

configurations are shown here to imply the neutral stability of the system. The red label in Fig. 11 

corresponds to the black mark shown in Fig. 9, which shows the configuration of the load pulley. 

Figure 11(a) shows selected configurations in the anticlockwise rotation, while Fig. 11(b) shows 

selected configurations in the clockwise rotation. It is worth noting that this test rig can stay in any 

configuration in both rotation directions as it is a passive energy balancing system and only selected 

configurations are shown here.   

 

Figure 11. Selected configurations of the BSPNS mechanism for passive energy balancing. 

Based on this investigation, the bidirectional spiral pulley negative stiffness can provide a significant 

contribution to balance a positive stiffness system. In some practical applications, the external 

disturbance, such as the aerodynamic load or hysteresis behaviour of the structure, will influence the 

negative stiffness mechanism to eliminate the required force or moment completely. But high energy 

conversion efficiency can be optimised, which allows most of the required energy to be balanced by 

using the bidirectional spiral pulley negative stiffness mechanism, and a small actuator could be used 
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to compensate for the difference between these two systems. The work presented here is intended to 

show the energy balancing concept and the tailorability to different positive stiffness systems. 

Although the improvement provided by the spiral pulley negative stiffness mechanism is shown for a 

specific load case, there are potentially a wide range of applications, including different actuators and 

many different load profiles to be driven. 

5. Conclusion 

A new concept for using a bidirectional spiral pulley negative stiffness mechanism for passive energy 

balancing has been presented. A spiral pulley negative stiffness mechanism was first proposed as the 

negative stiffness system by using a pre-tensioned spring. The kinematics of the spiral pulley was 

introduced and then extended to bidirectionality to satisfy a bidirectional actuation requirement. An 

energy conversion efficiency function was introduced to provide a basis for evaluation and also act as 

the objective function to optimise the geometry of the spiral pulley simultaneously. The optimised 

spiral pulleys were shown to be able to generate torque that matches the required torque of the 

bidirectional required torque closely. Thus a significant contribution can be provided by the negative 

stiffness mechanism to balance the positive stiffness system. Experimental results proved the ability 

of the bidirectional spiral pulley negative stiffness device to reduce the actuation load by applying the 

pre-stored energy. While the example used in this paper is relatively simple, it provides insight into 

the low energy actuation design problem, both in the field of morphing aircraft and in other fields.  
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