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ABSTRACT Visual object tracking in unconstrained environments is a challenging task in computer vision.

How to design an efficient discriminative feature representation is one challenging issue. To improve the

adaptability of the tracker to large object appearance changes, the observation model needs to be updated

online. However, a bad model update using inaccurate training samples can lead to model drift problem.

Therefore, how to design an efficient online observation model and a model update strategy are two other

challenging issues. This paper proposes the concatenation of histogram of oriented gradients variant (HOGv)

and color histogram as the feature representation to balance discriminative power and efficiency. The

single-hidden-layer feedforward neural network (SFNN) is used as an observation model, and the recursive

orthogonal least squares (ROLS) algorithm is used to update the model online. A bidirectional tracking

scheme is designed to alleviate the model drift problem during online tracking. The proposed bidirectional

tracking scheme consists of three modules: the forward tracking module, the backward tracking module

and the integration module. The forward tracking module first finds all the candidate regions, and then,

the backward tracking module calculates the respective confidence of each candidate region according to

historical information. Finally, the integration module integrates both of the first two modules’ results to

determine the final tracked object and the model update strategy for the current frame. Extensive evaluations

of the existing tracking benchmarks have shown that the proposed tracking framework results in significant

performance improvements compared with the base tracker, and it outperforms most of the state-of-the-art

trackers.

INDEX TERMS Visual object tracking, bidirectional tracking scheme, recursive orthogonal least squares,

model update mechanism.

I. INTRODUCTION

Visual object tracking, which is used to estimate the trajectory

of a target specified in the initial frame, is a fundamental

topic in computer vision [1], [2]. Visual object tracking has

numerous applications, such as intelligent video surveillance,

intelligent transportation, human-computer interactions and

so on. Despite significant progress in recent decades, visual

object tracking is still a challenging problem due to irregu-

lar changes in appearance that are caused by partial or full

occlusion, cluttered backgrounds, fast motion, deformation

and illumination changes.

Feature representation is one of the important factors

for visual object tracking. Numerous hand-crafted features
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have been utilized for visual object tracking, such as color

name [3], histograms of oriented gradient (HOG) [4], local

binary pattern (LBP) [5] and so on. These hand-crafted

features have relatively high computational efficiency but

have been demonstrated to be less effective on the com-

plex scene. Recently, convolutional neural networks (CNNs),

with strong capabilities to learn feature representations, have

demonstrated state-of-the-art performance in various com-

puter vision tasks [6]–[8]. However, in visual object track-

ing, it is difficult to straightforwardly adopt CNNs, since

they require a large number of training samples, and there

is only one labeled positive sample that is extracted from

the initial frames. One possible way is to utilize CNNs

that have been trained on other tasks with a large-scale

training dataset. Unfortunately, those transferring pre-trained

CNN based tracking methods cannot attain ideal results
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because features that are learned offline sometimes can-

not adapt well to a specific target. Although deep siamese

networks based trackers [9]–[13] have achieved extremely

compelling results in different benchmarks, these trackers

heavily rely on large numbers of external training videos. Fur-

thermore, the computational costs and storage requirements

of CNNs are also expensive, so CNN-based trackers face

difficulties to implement under some resource-constrained

environments. Both discriminative power and computational

speed should be addressed by real-time applications of visual

object tracking. Thus, how to improve computational effi-

ciency while retaining a high discriminative power and

robustness is a challenging issue for designing feature rep-

resentations for visual object tracking.

In visual object tracking, the observation model also

plays an important role. Currently, state-of-the-art trackers

are typically based on the tracking-by-detection framework.

A binary classifier is adopted as the observation model of

those trackers. This binary classifier aims to determine the

decision boundary for discriminately separating the tracked

target from the background and should have the capabil-

ity to update online to better handle appearance variations.

Zhang et al. [14] utilize probabilistic classifier to update the

observation model, but it has difficultly estimating the class

conditional probability due to the lack of a large number of

training samples in the visual object tracking task. An online

support vector machine (SVM) is also utilized for visual

object tracking [15]. However, the expensive computational

costs due to the quadratic programming problem limit real-

time applications of this method. The iterative stochastic

gradient descent method (SGD) is often employed to con-

duct online optimization of the parameters in the CNN-based

models [16], but it is also time-consuming and often makes

the model tends to overfitting. Thus, how to design an obser-

vation model (i.e., a binary classifier) that can obtain effective

and efficient online update solutions for visual object tracking

is the second challenging issue.

Currently, model updaters that control the updating strat-

egy for the observation model have attracted increasing

attention [17]–[24]. The observation model should be online

updated in order to adapt to variations in appearance. How-

ever, the process of online updating the appearance model

using potentially inaccurate training examples often results

in the model drift problem. It is a common phenomenon

that the tracker’s observation model often leads to ambigu-

ous inferences owing to occlusion and similar object dis-

turbance in the current frame. These two issues are shown

in Fig. 1, where the true target can be detected by the classifier

(red rectangle). However, here, the highest confidence score

is given to the wrong region (green rectangle). Model drift

will occur if the wrong region is chosen as the final tracked

object in the current frame, and then, the model is updated

using inaccurate training samples. However, if the tracker can

recognize both issues and does not update the observation

model, the tracker will avoid drift and subsequently re-detect

the target in a short period. Thus, how to design a model

FIGURE 1. Two issues cause the current tracker’s observation model to
give ambiguous inferences. the red bounding box is the true target. the
green bounding box is the wrong target where the highest confidence
score is given by classifier. (a) Occusion. (b) Similar object disturbance.

update strategy to maintain a good balance between model

adaptation and drift is the third challenging issue for visual

object tracking.

This paper proposes an efficient framework for visual

object tracking. The proposed tracking framework also treats

tracking as a binary classification problem. The HOG variant

(HOGv) [25], [26] and color histogram are utilized as the

feature representation. The single-hidden-layer feedforward

neural network (SFNN) is used as the classifier (observation

model), and then, the SFNN conducts online learning using

the recursive orthogonal least squares (ROLS) algorithm

to distinguish the object from the background. The whole

tracking framework consists of three modules: the forward

tracking module, the backward tracking module and the inte-

gration module. A bidirectional tracking scheme is designed

to determine the final tracked target and model update strat-

egy for every frame.

This paper proposes concatenating the shape and color

descriptors as feature representations because these two com-

plementary features are the most effective features for the

tracking task. The HOGv is used as the shape descriptor, and

the color histogram is used as the color descriptor in this

framework. theHOGv descriptor canmaintain a good balance

between redundancy and local details and has achieved great

success in many fields, e.g., object detection [26] and traffic

sign recognition [25]. Inspired by the extraction of HOGv

descriptor, this paper proposes a color histogram descrip-

tor that can also achieve both computational efficiency and

high discriminative power. Therefore, the concatenation of

the HOGv and color histogram descriptors can address the

aforementioned first issue.

ROLS [27] is the online learning algorithm for the SFNN.

Inspired by the theory [28] that the SFNN with a wide type

of randomly generated hidden nodes is actually universal

approximators, the input weights between input and hidden

layers are randomly assigned. Since only the output weights

between hidden and output layer are trained, layer-by-layer

back-propagated tuning is not required. Therefore, the use of

ROLS can address the aforementioned second issue.

The proposed bidirectional tracking scheme has the abil-

ities to minimize the adverse effects of a bad model update

as much as possible and subsequently re-detect the target
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in a short period. This proposed tracking scheme first uses

the forward tracking module to find all candidate regions.

Then, the backward tracking module is activated to calculate

the respective confidence of each candidate region according

to historical information. Although the region has maximum

confidence can be chosen as the final tracked object in the

current frame, in order to further improve the robustness,

this proposed bidirectional tracking scheme finally uses the

integration module to integrate both the first two modules’

results and the spatial prior to determine the final tracked

object. Finally, a simple yet efficient model update strategy

is also determined by the bidirectional tracking scheme to

account for the appearance change of the target.

Many works focus on model update strategies [17]–[22],

[29]–[34]. Most of these methods try to prevent bad updates

from happening. In other words, these methods focus on

designing a robust learning mechanism but do not consider

a mechanism to correct for past mistakes. Once the learn-

ing mechanism fails, these trackers will miss the chance

to evolve. Different from these methods, Zhang et al. [22]

designs a multi-experts tracking framework, and the mini-

mum entropy criterion is applied to choose the best expert

to identify the model drift. However, this framework does

not consider the strategy of updating each expert. Once all

experts are polluted, the tracker will drift. Compared with

these methods [17]–[22], [29]–[34], the superiority of the

proposed bidirectional tracking scheme is that the integration

module of the scheme can determine the better model update

strategy and the final tracked target for the current frame by

fully considering both of the first two modules’ results and

the spatial prior. This bidirectional tracking scheme is slightly

similar to like ensemble learning techniques that combine the

results that are achieved by weak trackers (i.e., the forward

tracking module, the backward tracking module and the spa-

tial prior) to produce a strong tracker (i.e., integration mod-

ule) that is better than either of the weak trackers. Extensive

evaluations of the existing tracking benchmarks [35]–[38]

have demonstrated that significant performance improve-

ments can be obtained by using the bidirectional tracking

scheme in comparison with the base tracker (without the

bidirectional tracking scheme) and this proposed framework

also outperforms most of state-of-the-art methods. Therefore,

the bidirectional tracking scheme can give a better solution

for the aforementioned third challenging issue.

The remainder of this paper is organized as follows.

Section II reviews related work on visual object track-

ing. Section III introduces the frameworks of this proposed

method. Section IV and Section V present details about the

extraction of features and ROLS-based classifier, respec-

tively. Experimental results are shown in Section VI.

II. RELATE WORK

There are mainly two categories of methods for visual object

tracking depending on appearance model [1]. The first cat-

egory is generative methods [39]–[43] which is to search

for the most similar region to the tracked target in the

consecutive frames by some generative process. To account

for appearance changes of object, many online version of gen-

erative models have been proposed. The subspace is learned

incrementally to model target appearance which has been

introduced to tracking task [39], [40]. A tracking method

based on sparse representation has been proposed [41] (called

ℓ1-tracker), where the target is reconstructed by a sparse

linear combination of the target and trivial templates, and it

has been further improved recently [42], [43]. Although these

ℓ1-trackers can effectively handle the corrupted appearance,

expensive computational cost of ℓ1 minimization limits its

applications in real-time scenarios. Despite much demon-

strated success of these generative methods on the simple

background, only the appearance of object is modeled while

ignoring the influence of the background information result-

ing in failure in the complicated background.

The second category is discriminative methods [17]–[22],

[29]–[34], [44]–[46] which treats the tracking problem as a

binary classification task and aims to determine the deci-

sion boundary for separating the tracked target from the

background discriminately. Numerous adaptive discrimina-

tive trackers [44]–[46] have been proposed so as to better

handle appearance variations. However, the process of online

updating the appearance model with potentially inaccurate

training examples often brings the model drift problem. Var-

ious strategies have been introduced to alleviate drift prob-

lem [17]–[22], [29]–[33]. A novel online semi-supervised

boosting tracking method is proposed [17] and the update

process of this method depends on combined decision of a

given prior and an on-line classifier. The multiple instance

learning framework is introduced for online tracking and

the model is trained with positive and negative examples

bags [18]. Training-learning-detection (TLD) [19] employs

two independent structural constraints to guide the sampling

process so as to reduce inaccurate training samples. Online

structured SVM is introduced for tracking and the model is

trained using training samples with structured labels which

can alleviate the effect of inaccurate training samples [20].

Self-paced learning is introduced for tracking [21], which is

based on the selection of the most confident frames for learn-

ing appearance. Recently, Zhang et al. [22] propose a multi-

expert tracking framework which maintains a collection of

historical snapshots and the minimum entropy criterion is

applied to expert selection for tracking. Ou et al. [32] and

Liu et al. proposed a simple score function to predict the

optimal candidate directly instead of learning a classifier. The

coefficient constrained model [32] and sparsity-constrained

model [33] are proposed respectively to select representative

samples.

Feature representations play a great importance for visual

object tracking. Hand-crafted features which are incapable to

capture the appearance changes effectively during tracking so

that they have an inherent limitation in complex background.

Deep learning have demonstrated their superior representa-

tion power in various computer vision applications [6]–[8].

Hence, some deep learning based tracking methods [47]–[51]
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have been proposed recently and they aim to replace hand-

crafted features with high-level and robust features by train-

ing multilayer networks on external large-scale datasets.

However, the pre-trained deep model sometimes cannot

adapt well to a specific target so that these methods cannot

attain ideal results in the field of visual object tracking.

References [52]–[54] propose a multi-domain learning strat-

egy to train the CNNs on a set of annotated video sequences,

and showed that the CNNs trained on video sequences are

more robust. Lin et al. [55] propose a novel localization-

aware meta tracker (LMT) guided with adversarial features

to better deal with various appearance variations. Long short-

term memory (LSTM) also be used to learn long-range time

dependencies [56]. Overall, deep learning based trackers are

not efficient but very effective. We refer the readers to a com-

prehensive review on deep learning based tracking methods

in [57].

Correlation filter based tracking methods have become

increasingly popular recently due to its promising perfor-

mance and low computational cost [58]. In essence, they are

related to tracking-by-detection methods, since they can learn

a discriminative regressor from foreground and background

samples. Many attempts have been done to improve the orig-

inal correlation filter model in terms of scale estimation [23],

re-detection [24], kernelized correlation [59], complementary

cues [60], deep feature integrations [11], [12], [61], spatial

regularization [62]–[65], to name a few.

Currently, siamese networks based tracking

methods [9]–[13], [66] gain more and more attention

thanks to the outstanding performance compared with other

state-of-the-art methods in some existing tracking bench-

marks [35]–[38]. This category of tracking method formu-

lates visual object tracking as a verification problem and aims

to learn a similarity metric off-line with a large number of

external tracking videos. However, it’s a bit unfair to compare

this category of tracking methods with those methods that do

not require external tracking videos.

III. FRAMEWORK OF THIS PROPOSED METHOD

The main idea of this proposed tracking framework is also

to formulate the tracking as a binary classification problem.

In this framework, the HOGv [25], [26] feature descriptor

concatenates with the color histogram feature descriptor as

the final feature representation. For the observation model,

an SFNN is developed, and the ROLS algorithm [27] is used

to online update the model (denoted as ROLS classifier).

Different from the traditional methods that directly treat the

regionwith the highest classification score as the final tracked

target, this paper designed a bidirectional tracking scheme

to determine the final tracked target. The framework of this

proposed tracking method is depicted in Fig. 2. This frame-

work includes three successive modules: the forward tracking

module, the backward tracking module and the integration

module. The basic principle of bidirectional tracking scheme

is that the forward tracking framework aims to find all can-

didate regions, and the backward tracking module aims to

calculate the respective confidence of each candidate region

according to historical information. Finally, the integration

module is used to integrate both of the first two modules’

results and the spatial prior to determine the final tracked

result. In other words, the forward tracking module aims to

reduce the false negative regions, and the backward tracking

module aims to further reduce the false positive regions. The

integration module is used to boost the performance of the

first two modules. Compared with the traditional methods,

this proposed bidirectional tracking scheme can achieve more

stable tracking results. Furthermore, a simple yet efficient

model update strategy is also formed by the integration mod-

ule to alleviate model drift.

A. FORWARD TRACKING MODULE

This module is designed to implement three tasks. The first

task is to find all candidate regions C. The second task is to

calculate the corresponding forward confidence values F_V.

The last task is to determine whether the observation model

needs to be updated according to the forward classifier’s

results (denoted as F_update). This module contains six

steps. The first step generates the samples using the sliding

window approach that is centered on the previous predicted

state. Then, the HOGv and color histogram are extracted as

the feature representation of these samples. The third step

puts the feature vector into the trained forward ROLS classi-

fier (denoted as F_ROLS) to determine whether the window

is the background or a target. The details of feature extrac-

tion and ROLS classifier can be viewed in Section IV and

Section V, respectively. The fourth step selects those samples

whose classification labels are the target category as positive

samples, ranks these positive samples according to confi-

dence values that are given by F_ROLS and selects the top

several positive samples (the number of positive samples and

selected positive samples are denoted as P_num and SP_num,

respectively, and SP_num is 10). The fifth step directly uses

the clustering algorithm to merge SP_num positive samples

together to form N candidate targets (e.g. two candidates are

formed, as showed in Fig. 2). The groupRectangles function

on Opencv1 is used to effectively and efficiently cluster the

candidate rectangles. The idea of this function was proposed

by David [67], and it clusters all the input rectangles using the

rectangle equivalence criteria. The last step calculates F_V

and determines F_update. The principle of calculating F_V

is that the more selected positive samples that a specified

candidate contains, the higher the corresponding forward

confidence value of this candidate is. In order to alleviate the

model drift, we avoid using inaccurate samples to update the

classifier as much as possible. Therefore, we do not update

the observation model when the results that are obtained

by the current F_ROLS are confusing, i.e., F_update = 0.

In this framework, we determine the state of confusion using

N and SP_num. That is, confusion occurs when N > 3

(more than three similar object disturbances) or SP_num < 5

1https://docs.opencv.org/3.4/d5/d54/group__objdetect.html#
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FIGURE 2. Framework of this proposed online tracking method.

(severe occlusion or out-of-view).More details of the forward

tracking module are given in Algorithm 1.

B. BACKWARD TRACKING MODULE

This module needs to implement two tasks. The first

task is to calculate the corresponding backward confidence

values B_V. The second task is to determine whether the

observation model needs to be updated according to only the

backward results (denoted as B_update). This module main-

tains a target template set and holds ten different modes of the

target (i.e., historical information of the target). In the first ten

frames, we only use the basic ROLS classifier (without the

bidirectional tracking scheme) to track the target and collect

each tracked result to initialize the target template set. The

main idea of the backward tracking module is that if the

specified candidate is the true tracked target, a new classifier

that is initialized using this candidate as the positive class

can correctly determine the labels of the target templates.

Therefore, we treat N candidates as the true tracked target

and train the corresponding N backward ROLSs (denoted

as B_ROLSi). The principle of calculating B_V is that

the more target templates that are correctly recognized

by B_ROLSi, the higher the corresponding backward

confidence value of B_ROLSi (i.e., the higher the correspond-

ing backward confidence value the ith candidate achieves).

The principle of determining B_update is the same as the

forward module (i.e., B_update = 0 when the results that are

obtained by current B_ROLS are confusing). The condition

that determine the state of confusion is max(B_V). As long

as max(B_V) ≥ 60%, we set B_update = 1. The idea

of the backward module is slightly similar to [68], [69].

Different from our method, [68] utilizes this idea to facilitate

unsupervised feature learning, [69] focus on online evaluation

of the tracking performance. More details of the backward

tracking module are given in Algorithm 2.

C. INTEGRATION MODULE

The integration module integrates both of the first two mod-

ules’ results and the spatial prior to determine the final tracked

target. First, we use the formula (Fmax ,Findex) = max(F_V)

to compute the confidence value of the best candidate and the

corresponding index according to the results of the forward

module, and we use the formula (Bmax ,Bindex) = max(B_V)

to compute the confidence value of the best candidate and the

corresponding index according to the results of the backward

module. The results of the first two modules are mostly
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Algorithm 1 Forward Tracking Module

Require: Frame It

Ensure: Candidate targets (C) and corresponding forward

confidence values (F_V), F_update

1: Crop out the searching window and generate samples;

2: Feature extraction and put feature matrix into F_ROLS

to classify;

3: Initialize F_update = 0;

4: if P_num = 0 then

5: C1←−The region of the same location as It−1 tracked
target, F_V1 = 0%,F_update = 0;

6: else

7: Rank and select positive samples;

8: Merge selected positive samples to formN candidates;

9: for i = 0 to N do

10: Num(Ci) ←−the number of selected positive sam-

ples belonging to Ci;

11: F_Vi←− Num(Ci)/SP_num× 100%;

12: end for

13: if N ≤ 3 and SP_num ≥ 5 then

14: F_update = 1;

15: end if

16: end if

consistent (i.e., Bindex = Findex). The Bindex th (= Findex th)

candidate can be directly chosen as the current tracked target

in this case. However, it is difficult to determine the current

tracked target when the results of the first two modules are

inconsistent (i.e., Bindex 6= Findex). When the confidence

of the Bindex th candidate is high and much better than the

Findex th candidate (i.e., Bmax ≥ 60% and B_VFindex < 60%),

we can directly choose the Bindex th candidate as the current

tracked target. However, confusion occurs when the results

of both modules are high or low. In this case, it is difficult

to directly determine the final tracked target based on con-

fidence. Therefore, the spatial prior is chosen as the final

determinant, and the candidate (from CBindex and CFindex ) that

has the shortest distance to the previous tracked target is

chosen as the current tracked target. Prior works [22], [54]

also integrate the spatial prior to determine the final tracked

target. However, those methods define the spatial prior as a

2D Gaussian distribution map that is centered on the previ-

ously predicted location of the STD σ and then the confidence

map is weighted by the spatial prior map is directly used to

determine the final tracked target. The experimental results in

Section VI validated that the use of spatial prior can slightly

improve the performance.

This module also ultimately determine whether the

F_ROLS and the Ttarget need to be updated by synthetically

analyzing the results of the first two modules. To ensure that

the candidate set contains the true target as much as possible

(even if an ambiguous inference owing to bad F_update

update occurs), we need to update the F_ROLS as soon as

Algorithm 2 Backward Tracking Module

Require: Candidate targets (C), feature matrix of searching

window

Ensure: Corresponding backward confidence values of C

(B_V), B_update

1: for i = 0 to Num(C) do

2: TakeCi as positive category and collect Corresponding

positive and negitive features to train B_ROLSi;

3: Judge the labels of target templates using B_ROLSi;

4: Num(Ci)←−the number of templates being correctly

judged by B_ROLSi;

5: B_Vi←− Num(Ci)/10× 100%;

6: end for

7: max_value = max(B_V);

8: if max_value ≥ 60% then

9: B_update = 1;

10: else

11: B_update = 0;

12: end if

possible so that it can account for appearance changes of the

object. Therefore, we set two conditions: F_update = 1 and

B_update = 1. As long as one of these two conditions is met,

we start to update F_ROLS.

The target template set Ttarget holds ten different modes

of the target, and it also needs to be updated online.

Ttarget should be more carefully updated in order to avoid

target templates from being wrongly replaced. Therefore,

compared to the F_ROLS update condition, theTtarget update

needs to meet another condition: Findex = Bindex . When

meeting all of the update conditions, we add the current

tracked target into the target template set and discard the

oldest tracked target. To avoid all of the target templates being

wrongly replaced, we fix five of these ten templates. More

details of the integration module are given in Algorithm 3.

IV. EXTRACTION OF HOGV AND COLOR HISTOGRAM

DESCRIPTOR

This proposed tracking framework uses the HOGv [25], [26]

descriptor and color histogram descriptor as the feature rep-

resentation. The HOGv descriptor consists of two improve-

ments compared with the original HOG descriptor [4]. First,

both contrast sensitive and contrast insensitive orientations

of gradients are included such that more detailed local infor-

mation of objects can be involved into the accumulated

histograms. Second, after each cell’s oriented histogram is

normalized over four of its neighboring blocks, respectively,

these normalized histograms of this cell are dimensionally

reduced based on a principal component analysis (PCA) like

strategy [26] so as to remove redundant information. The

HOGv descriptor is a good shape feature widely used for

object detection [26].We refer the readers to a comprehensive

review on the HOGv in [25], [26].

In order to better represent the object, color information

also plays a key role. This proposed color histogram refers
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Algorithm 3 Integration Module

Require: Outputs of the first two modules

Ensure: Tracked target Ot at frame It

1: (F_max,F_index) = max(F_V);

2: (B_max,B_index) = max(B_V);

3: if Findex = Bindex then

4: Ot ←− CBindex (or CFindex )

5: else

6: if B_VFindex < 60% and B_max ≥ 60% then

7: Ot ←− CBindex
8: else

9: dB ←− The distance between CBindex and the It−1

tracked target;

10: dF ←− The distance between CFindex and the It−1

tracked target;

11: Ot ←− (dB < dF)?CBindex : CFindex
12: end if

13: end if

14: if F_update = 1 or B_update = 1 then

15: Online update F_ROLS;

16: end if

17: if (F_update = 1 andB_update = 1) andFindex = Bindex
then

18: Ttarget ←− Ot , discard the oldest mode.

19: end if

to the idea of extracting HOGv features. The entire picture is

first divided into non-overlapping grids. The histograms were

calculated for each grid and all histograms are concatenated

to form a color histogram descriptor. To reduce the distur-

bance by various light andweather conditions, the RGB space

was converted to Lab space.

In this paper, we directly concatenate the HOGv descrip-

tor with the color histogram descriptor as the final feature

representation. We carefully set the configuration parameters

(e.g., the number of bins and cells) of both two descriptors

in order to better balance discriminative power and effi-

ciency. Details of the parameters setting can be shown in

Section VI. The final concatenate feature embedded in the

proposed tracker has low dimensions (below 400), which is a

relatively lightweight feature representation, and canmeet the

efficiency requirement of real-time tracking. However, how

to integrate data from different modalities more effectively

and efficiently requires further exploration in future work.

V. ROLS BASED CLASSIFIER

A. STRUCTURE OF ROLS

ROLS [27] is basically a machine learning algorithm for

online training SFNN. Considering the unified framework of

SFNN, The equation for calculating the output value is given

by

fL(x) =
L∑

i=1
θihi(x;wi, bi). (1)

where x is the input feature vector of an image patch. The

dimension number of x is denoted as P. hi(x;wi, bi) is the

output of ith hidden node with respect to the input x, where

h is the activation function. This paper uses the sigmoid

function as the activation function. wi is the weight vector

between the input nodes and the ith hidden node. bi is the

bias of the ith hidden node and L is the number of hidden

nodes. θi is the output weight between the ith hidden node

to the output node. Given total training samples {xi}i=1,...,N
and its corresponding labels {ti}i=1,...,N , if the network can

fit these N samples exactly, we have the following compact

formulation:

H2 = T (2)

where H ∈ R
N×L is called the hidden output matrix of the

neural network.2 ∈ R
L×C andT ∈ R

N×C are corresponding

matrices of the output weights and targets, respectively. C is

the number of output nodes, for tracking task, C = 2.

Inspired by the theory [28] that the SFNN with a wide type

of randomly generated hidden nodes are actually universal

approximators, so the input weights and biases are randomly

assigned in this paper.

B. ONLINE UPDATE PROCESS

Model online update means that the training data are

sequentially (one-by-one or chunk-by-chunk) presented to

the learning algorithm. considering (2) for a set of training

samples Xt = {xi}Nti=Nt−1+1 and its corresponding labels

Tt = {ti}Nti=Nt−1+1, at iteration t, we have:

T(t) = H(X(t))2(t) + E(t) (3)

where

X(t) = [X1,X2, · · · ,Xt ]= [x1, x2, · · · , xNt−1 , · · · , xNt ]
T

(4)

T(t) = [T1, T2, · · · , Tt ] = [t1, t2, · · · , tNt−1 , · · · , tNt ]
T (5)

E(t) = [e1, e2, · · · , eNt−1 , · · · , eNt ]
T (6)

E(t) is the error matrix. We need to solve an optimal 2(t) at

iteration t that minimizes the following error cost function:

J(t) = ‖E(t)‖2F =
∥∥∥∥
[
T(t−1)

Tt

]
−

[
H(t−1)

Ht

]
2(t)

∥∥∥∥
2

F

. (7)

where ‖ ∗ ‖F is the Frobenius norm defined as

‖X‖F =
√
trace(XTX ),

H(t−1) = [h1,h2, · · · ,hNt−1]
T (8)

Ht = [hNt−1+1,hNt−1+2, · · · ,hNt ]
T (9)

One can obtain the ROLS applying orthogonal decompo-

sition.

Then the formula of (7) can be written as:

J(t) = ‖E(t)‖2F =
∥∥∥∥
[
T̂(t−1)

Tt

]
−

[
R(t−1)

Ht

]
2(t)

∥∥∥∥
2

F

. (10)
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To find the update for R(t−1) and T̂(t−1), one can compute

another orthogonal decomposition:
[
R(t−1)

Ht

]
= Q(t)

[
R(t)

0

]
, (11)

[
T̂(t)

T̃ t

]
= (Q(t))T

[
T̂(t−1)

Tt

]
. (12)

Hence, the optimal2(t) in (10) can be easily solved from (13)

by backward substitution.

R(t)2(t) = T̂(t) (13)

In summary, the procedure of the ROLS algorithm is as

following: Let αI and 0 be initial values for R(0), T̂(0), where

α is a small positive number. We set α = 0.01 in the tracking

framework. For solving 2(t) in (13), we calculate R(t) in (11)

and T̂(t) in (12) at iteration t.

VI. EXPERIMENTS

In this section, we provide the implementation details of

the proposed tracker and analyze the effects of the mod-

ules in the tracker by ablation studies. We denote the pro-

posed tracker as BiROLS for clarity. Extensive experiments

are conducted to evaluate the BiROLS tracker against the

state-of-the-art trackers on four benchmarks: OTB-2013 [35],

OTB-2015 [36], VOT-2015 [37], and VOT-2017 [38]. All the

tracking results are using the reported results to ensure a fair

comparison.

A. EXPERIMENTAL SETUP

The proposed tracking framework is implemented using

Matlab and C++ with OpenCV library and runs at around

12 fps on a PC with Inter i7-4790 CPU (3.6 GHz).

To balance the computational efficiency and capability of

the feature representation, we first scale the images of each

video to the fixed size of w× h pixels according to the target’s

size in the first frame and the smallest of w and h is set to

36 pixels. For color video, the HOGv descriptor and color

histogram descriptor are utilized. To extract HOGv descrip-

tor, each window is divided into 4 × 4 non-overlapping cells

and 2× 2 cells are grouped into a block.We set 12 orientation

bins over 0◦∼360◦ and 6 orientation bins over 0◦∼180◦.
So the dimension of the color image’s HOGv descriptor

is 88. To extract color histogram descriptor, each window

is divided into 5 × 5 non-overlapping cells. Three spaces

are respectively voted into the corresponding histograms

(the number of the bin is set to 4) for each cell according

to the pixel’s value. All histogram are concatenated to form a

300 dimensional vector as the color descriptor. For grayscale

video, we only use HOGv descriptor, in order to represent

more local details, the images of each video are divided into

6 × 6 non-overlapping cells. So the dimension of the gray

image’s HOGv descriptor is 352. Search for the target is

conducted within a radius of
√
wh of the previous prediction

(the ratio is set to 1.5 in our method). To generate samples in

each frame, the window stride is set to [3,3]. The number of

hidden layer nodes is set to L= 500. For model initialization,

we collect 50 positive and 120 negative samples from the first

frame, where negative samples do not significantly overlap

the prediction (IOU < 0.5). For the model online update,

we collect 10 positive and 40 negative samples every frame.

We fix all the parameters for all experiments.

B. DATASETS AND EVALUATION METRICS

1) OTB BENCHMARK

The OTB-2013 [35] and OTB-2015 [36] datasets are com-

posed of 51 and 100 sequences, respectively. We report the

results of the one-pass evaluation (OPE) based on average

success and precision rate. The success plot illustrates the

percentages of successfully tracked frames at the threshold of

intersection over union (IOU) in the range of 0 to 1. The area

under the curve (AUC) is used to rank the trackers. The pre-

cision plot illustrates the percentage of successfully tracked

frames at the threshold of center location error (CLE), and

the representative precision score at Threshold = 20 pixels

is used to rank the trackers. For more thorough evaluations

and analysis of the performance of the trackers, the providers

propose to classify the sequences by annotating them with

the 11 attributes including illumination variation (IV), scale

variation (SV), occlusion (OCC), deformation (DEF), motion

blur (MB), fast motion (FM), in-plane rotation (IPR), out-of-

plane rotation (OPR), out-of-view (OV), background clutters

(BC), and low resolution (LR).

2) VOT BENCHMARK

The visual object tracking (VOT) benchmark has many

versions, and we use VOT-2015 [37] and VOT-2017 [38].

Both datasets comprise 60 videos showing various objects in

challenging backgrounds. Different from OTB benchmarks,

the VOT benchmarks evaluate a tracker by applying a reset-

based methodology. Whenever a tracker has no overlap with

the ground truth, the tracker will be restarted by the ground-

truth five frames after the failure. The performance is mea-

sured in terms of expected average overlap (EAO), accuracy

and robustness. For VOT-2017, the toolkit also carried out the

OTB [35] no-reset (unsupervised) experiment. The tracking

performance of this experiment was evaluated in terms of the

average overlap (AO).

C. ABLATION STUDIES

In this subsection, we first compared the full tracking frame-

work (BiROLS) with a baseline tracker in order to evalu-

ate the performance of the proposed bidirectional tracking

scheme. We then carry out some ablation studies to bet-

ter understand the contributions of each component of the

proposed tracker. All ablation studies are performed on the

OTB-2013 dataset [35].

To evaluate the performance of this proposed bidirectional

tracking scheme, we compare the BiROLS tracker with a

baseline tracker, which is denoted as ROLS. The ROLS

tracker is only based on one base classifier (i.e., one SFNN is

159206 VOLUME 7, 2019



Z. Huang et al.: Bidirectional Tracking Scheme for VOT Tracking Based on ROLS

FIGURE 3. The precision and success plots of BiROLS tracker with different configurations on the OTB-2013 dataset [35].

developed as the observation model, and the model is updated

every frame by simply using the ROLS algorithm without

the bidirectional tracking scheme). There are two main dif-

ferences between these two methods: 1) The ROLS tracker

directly treats the region that has the highest classification

score as the final tracked object. In addition, the BiROLS

tracker first searches for more than one region to used as

candidates, and it then chooses the best result from these

candidates as the final tracked object according to the bidi-

rectional tracking scheme. 2) The ROLS tracker is updated

online at every frame while the model update strategy of

the BiROLS tracker for the current frame is determined by

the bidirectional tracking scheme. For a fair competition,

the other parameters of the ROLS tracker are the same as

those of the BiROLS tracker.

Fig. 3 illustrates the success and precision plots of the

BiROLS tracker and ROLS tracker on the benchmark dataset.

It can be seen that the BiROLS tracker achieves a noticeable

performance increase. The BiROLS tracker outperforms the

ROLS tracker by approximately 11.2% and 7.3% in terms

of the precision plot and success plot, respectively. Based

on this observation, we can confirm the importance of the

model update strategy in the tracker and the effectiveness of

the proposed bidirectional tracking scheme.

To evaluate the contributions of each component of the

proposed tracker, we compare the BiROLS tracker with three

variants: BiROLS_f (BiROLS without both the backward

and integration modules), BiROLS_b (BiROLS without the

integration module) and BiROLS_no (BiROLS without the

spatial prior in the integration module). BiROLS_f tracker

directly chooses the Findex th candidate as the final tracked

target according to F_V and choose F_update to determine

whether to update the F_ROLS. BiROLS_b tracker chooses

the Bindex th candidate as the final tracked target according

to B_V and choose B_update to determine whether to update

the Ttarget . BiROLS_no tracker also chooses the Bindex th

candidate as the final tracked target according to B_V but the

integration module is used to determine whether to update the

F_ROLS and Ttarget .

From Fig. 3, it can be seen that BiROLS_f tracker signifi-

cantly improves the performance compared with the ROLS

tracker. This improvement can be attributed to the simple

update strategy in the forwardmodule benefitting the tracking

performance.In addition, the BiROLS_b tracker outperforms

the BiROLS_f tracker by about 2.6% and 1.5% in terms of

the precision plot and success plot, respectively. This result

indicated that the backward module has a better capability

to determine the final tracked target from the candidate tar-

gets than the forward module. From the performances of

BiROLS_no tracker and BiROLS tracker, one can see that

the performance of the BiROLS tracker obtains an obvious

improvement by using the integration module. This result

demonstrates that the integration module indeed can inte-

grate both the first two modules’ results and the spatial

prior to boost the performance. By further comparing the

performances of BiROLS_b tracker, BiROLS_no tracker and

BiROLS tracker, it can be confirmed that the spatial prior

helps to slightly boost the performance, but the update strat-

egy that is determined by the integration module helps to

more significantly improve the capability of tracker. To sum-

marize, all three components are helpful in improving the

tracking accuracy, which together explain the favorable per-

formance of our BiROLS tracker.

D. QUANTITATIVE EVALUATION

1) COMPARISONS ON OTB BENCHMARKS

On OTB-2013, OTB-2015 benchmarks, we compare the pro-

posed BiROLS tracker against 29 trackers that were reported

by [35]. We also compare our method with recent state-

of-the-art methods: FCNT [50], MEEM [22], LCT [24],

TGPR [72], and DSST [23]. Among these five meth-

ods, the FCNT [50] is the CNN based tracker, and the
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FIGURE 4. The precision plot and success plot of OPE for our tracker and the compared trackers on OTB-2013 dataset [35].

FIGURE 5. The precision plot and success plot of OPE for our tracker and the compared trackers on OTB-2015 dataset [37].

LCT tracker [24] and DSST tracker [23] are correlation

filter based trackers. It should be mentioned that the LCT

tracker [24] also contains an online random fern classi-

fier to re-detect objects in case of tracking failure. The

MEEM tracker [22] uses a multi-expert mechanism to alle-

viate the model drift problem. The TGPR tracker [72] treats

the tracking problem as a Gaussian process regression task.

Fig. 4 and Fig. 5 presents the precision and success plot for

OTB-2013 and OTB-2015, respectively. For presentation

clarity, only the top 10 trackers are presented in each plot.

With respect to the OTB-2013, BiROLS tracker achieves

performance that is competitive with that of the state-of-the-

art methods in both metrics. It can be seen from Fig. 4 that

the BiROLS tracker ranks the first position in terms of the

precision rate while it ranks third in terms of the success rate

among all of these state-of-the-art methods. The reason for

achieving a relatively lower success score is that BiROLS

tracker does not handle scale variations while the FCNT

tracker [50] and LCT tracker [24] contain schemes to estimate

the change in the scale. It can also be seen that the perfor-

mance of the BiROLS tracker is close to the performance

of the FCNT tracker. However, it is worth mentioning that

the BiROLS tracker only uses specific target information of

the first frame to initialize the model while the FCNT tracker

uses CNN model that is pre-trained using auxiliary training

data.

The competitive performance of the BiROLS tracker can

be further demonstrated using OTB-2015 dataset. It can be

seen from Fig. 5 that the BiROLS tracker ranks first in terms

of the precision rate while it ranks second in terms of the

success rate among all of these state-of-the-art methods (We

did not compare BiROLS tracker with the FCNT tracker on

the OTB-2015 benchmark, since the results of the FCNT

tracker were not published). Note that the BiROLS tracker
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TABLE 1. Average precision scores and average success scores in terms of individual attributes on the OTB-2013 dataset. The red fonts indicate the best
performance, the blue fonts indicate the second best ones, and the green fonts indicate the third best ones.

achieves a precision score of 0.820, which outperforms the

suboptimal tracker (i.e., MEEM) by a large margin.

To gain insight into the performance of BiROLS tracker,

we further evaluate the top 10 trackers’ performances on

sequences with 11 attributes using the OTB-2013 bench-

mark. Table 1 shows the average precision scores and aver-

age success scores for the different attributes, respectively.

It can be seen that the BiROLS tracker performs favorably

in almost challenges and achieves the highest average pre-

cision score for 6 attributes. However, as shown in Table 1,

the BiROLS tracker only achieves the highest average success

score for 3 attributes due to lack of the scale estimation

strategy. As shown in Table 1, for FM, MB and OV attributes,

the BiROLS tracker performs the best against the other track-

ers in terms of both metrics. Specifically, the BiROLS tracker

achieved extremely compelling performances for the OV as it

outperforms the suboptimal tracker by approximately 12.4%

and 6.9% in terms of the precision plot and success plot,

respectively. It can be attributed that BiROLS tracker can re-

detect the object.

2) COMPARISONS ON VOT BENCHMARKS

On the VOT-2015 benchmark, we compare the BiROLS

tracker with state-of-the-art trackers, including MDNet [52],

DeepSRDCF [63], Struck [20], MEEM [22], TGPR [72],

KCFv2 [59], DSST [23], MIL [18], and IVT [39]. Table 2

shows the results of our BiROLS tracker and state-of-the-

art trackers. We can observe that the BiROLS tracker ranks

third in terms of EAO and robustness metrics. However,

the top performing trackers (MDNet and DeepSRDCF) are

far from meeting the real-time requirements. In addition,

MDNet tracker employs a large number of external tracking

videos for training, while our tracker does not need offline

training. It is worth noting that the BiROLS tracker per-

forms much worse than the top performance trackers in terms

of accuracy metric, which is ascribed to the lack of scale

estimation strategy. However, the BiROLS tracker achieve

comparable performance with DeepSRDCF tracker in terms

of robustness metric.

On VOT-2017 benchmark, we compare BiROLS tracker

with state-of-the-art trackers, including ECO [64],

SiamDCF [12], MEEM [22], SiamFC [11], Staple [60],

TABLE 2. Comparison with the state-of-the-art trackers on the
VOT-2015 dataset. The results are presented in terms of expected average
overlap (EAO), accuracy (A), and robustness (R).

TABLE 3. Comparison with the state-of-the-art trackers on the
VOT-2017 dataset. The results are presented in terms of expected average
overlap (EAO), accuracy (A), and robustness (R).

KCF [59], MIL [18], Struck [20], and DSST [20]. It can be

seen from the Table 3 that BiROLS tracker also ranks the

3rd in terms of EAO and robustness metrics among all these

state-of-the-art methods. Specifically, the performance of our

BiROLS tracker is similar to the SiamDCF tracker in terms

of robustness.

We further analyze the performance of BiROLS tracker

on VOT-2017 benchmark by no-reset experiments. Table 4

shows the results of these trackers on videos with differ-

ent attributes based on the average overlap. The annotated

attributes include camera change (Cam.), illumination change

(Illu.), motion change (Mot.), occlusion (Occ.), size change

(Size), and not assigned (N/A). It can be seen that the BiROLS
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FIGURE 6. Representative tracking results of the BiROLS tracker compared with other 9 trackers on some challenging sequences.

TABLE 4. The average overlap (AO) for no-reset experiments on
VOT-2017 dataset. Attributes include camera change (Cam.), not
assigned(N/A), illumination change (Illu.), motion change (Mot.),
occlusion (Occ), and size change (Size).

tracker ranks second on the overall performance. We notice

that the BiROLS tracker performs worse than some trackers

under size change attribute due to lack of the scale estimation

strategy. But regard to the occlusion, motion change, camera

change and not assigned attributes, our method performs bet-

ter than themost of trackers. Specifically, the BiROLS tracker

exhibits obvious advantages for the occlusion attribute, out-

performs the ECO tracker by about 3.6%.

Overall, the experimental results on VOT benchmarks are

consistent with those on the OTB benchmarks, which further

prove the validness of the proposed bidirectional tracking

scheme.

E. QUALITATIVE EVALUATION

To better visualize the tracking performance of the proposed

framework, Fig. 6 compares the tracking results of the pro-

posed BiROLS tracker with other 9 state-of-the-art track-

ers, i.e., FCNT [50], LCT [24], MEEM [22], DSST [23],

TGPR [72], Struck [20], SCM [71], TLD [19] and VTD [70],
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on 8 representative video sequences in the OTB-2013

benchmark [35].

It can be seen fromFig. 6 that the proposedBiROLS tracker

performs well on all challenging sequences. The FCNT

tracker and LCT tracker perform well in the most sequences,

but they are less robust to fast motion, e.g., FCNT tracker fails

in the Matrix sequence and LCT tracker fails in the Skiing

sequence. In addition, the LCT tracker fails to handle fast

deformation, e.g., it loses track of the target after frame #14

in theMotorRolling sequence. It also can be seen from Fig. 6

that the performances of other trackers (i.e., DSST, TGPR,

Struck, SCM, TLD, VTD) are far worse than the proposed

BiROLS tracker except for MEEM tracker (those trackers

lose track of the target in most of the challenging situations).

For visual tracking, background clutters is the most com-

mon challenge. Fig. 6 presents some sampled results in

two sequences (i.e., Matrix and Soccer) in which the target

objects undergo background clutters. Most of the trackers

gradually lose the target objects in these sequences dur-

ing tracking, but the BiROLS tracker reliably tracks target

objects which performs slightly better than the FCNT tracker.

It demonstrates that the proposed feature representation has

a good discriminative capability to distinguish the tracked

target from the backgrounds.

During the tracking process, rotation and deformation will

result in appearance changes. e.g., inMotorRolling sequence

and in FleetFace sequence. In the MotorRolling sequence,

the mountain bike has the in-plane rotations due to its acro-

batic actions in the arena. In theFleetFace sequence, theman’

face has significant out-of-plane rotations due to the poses of

his head changes a lot. In order to deal with these challenges,

the observation model of tracker needs to online update to

account for appearance change of the target. It can be seen

from Fig. 6 that most of the trackers could not adapt to the

serious rotation and gradually drift away in theMotorRolling

sequence. Only the FCNT tracker and BiROLS tracker can

track the target well. It can be attributed to the effective and

efficient learning algorithm (i.e., ROLS) of BiROLS tracker.

Fig.6 shows the sampled results of Jogging2 and SUV

sequences where the targets undergo heavy occlusions.

In the Jogging2 sequence, the tracked person is almost fully

occluded by the traffic light (i.e., #53, #57). In the SUV

sequence, the tracked vehicle is frequently occluded by dense

tree branches(i.e., #524, #787). It can be seen from Fig.6 that

most of the traditional trackers drift away to the distracters,

but the BiROLS tracker is able to re-detect the target after

occlusion (e.g., after frame #69 in Jogging2 sequence). It can

be attributed that the BiROLS tracker can determine an appro-

priate update strategy to avoid degradation of the observa-

tion model performance. The multi-expert mechanism of the

MEEM tracker also has the ability to handle occlusion, but

this mechanism is not stable. It can be seen from the results of

SUV sequence that the MEEM tracker drifts after the second

occlusion (i.e., frame #787).

It can also be seen from Fig.6 that the BiROLS tracker

lacks the ability to deal with the scale changes. In theMatrix

sequence, although the BiROLS tracker can reliably track

man’s head, it cannot calculate the accurate bounding box

of tracked target. In the MoterRolling sequence, since only

one fixed scale is used, when the target is zoomed out

(i.e., frame #62 and #149), a lot of background information

included in the bounding box so that the discriminative power

of feature representation degrades, so the tracker slightly

drifts away.

VII. CONCLUSION

This paper proposes an efficient framework for visual object

tracking. This framework presents concatenation of HOGv

and color histogram descriptor for building feature repre-

sentation and develops an SFNN that can be online trained

using ROLS algorithm for observation model. A bidirectional

tracking scheme is designed to alleviate the model drift prob-

lem during online tracking. The whole framework consists of

three modules: the forward tracking module, the backward

tracking module and the integration module. The main idea

of this framework is slightly similar to like ensemble learning

techniques that combine the results that are achieved by weak

trackers to produce a strong tracker that is better than either

of the weak trackers. Extensive evaluations demonstrate the

effectiveness of the proposed bidirectional tracking scheme.

Experimental results also show that this proposed framework

outperforms most of state-of-the-art methods. Future work

focuses on designing an effective and efficient scale estima-

tion strategy to further improve the performance.
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