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Abstract In this paper, we present a novel approach

to keyframe-based tracking, called bi-directional tracking.

Given two object templates in the beginning and end-

ing keyframes, the bi-directional tracker outputs the MAP

(Maximum A Posterior) solution of the whole state se-

quence of the target object in the Bayesian framework.

First, a number of 3D trajectory segments of the object are

extracted from the input video, using a novel trajectory seg-

ment analysis. Second, these disconnected trajectory seg-

ments due to occlusion are linked by a number of inferred

occlusion segments. Last, the MAP solution is obtained by

trajectory optimization in a coarse-to-fine manner. Exper-

imental results show the robustness of our approach with

respect to sudden motion, ambiguity, and short and long pe-

riods of occlusion.

1 Introduction
Visual tracking is one of the fundamental problems in com-

puter vision. Given the observations, i.e. a video sequence,

tracking infers the states of the target object(s). Applica-

tions range from video surveillance, human-computer inter-

faces, and augmented reality to digital video editing.

Most tracking approaches work in a recursive way: es-

timating object location at the current time t based on the

observations up to time t. In a Bayesian framework, the

tracking problem is commonly formulated as a recursive es-

timation of a time-evolving posterior distribution P (xt|y1:t)
of state xt given all the observations y1:t. Recursive estima-

tion has two major advantages: 1) it is efficient in computa-

tion, and 2) it naturally fits into real-time or online tracking

applications.

Many real world applications such as event statistics in

video surveillance, object-based video compression, home

video editing, video annotation, and visual motion capture

can be regarded as offline tracking where all the frames from

the input video sequence can be used. In offline tracking,

moreover, a long video sequence can be decomposed into

short ones by specifying a few keyframes, which is also

called keyframe-based tracking. Each keyframe contains an

object template which can be given by hand or by using

some automatic object detection methods.

To utilize the information from these keyframes, a

straightforward method is to apply the recursive approach

from keyframes going forward or backward. One problem

of this approach is that when tracking fails in the middle

of the sequence, we have to add another keyframe at the

failed location. However, it is very difficult to predict when

the method may fail, thus we have to add the keyframe in a

trial-and-error manner which is prohibitively time consum-

ing. The second problem is that the recursive method only

uses information in one keyframe while ignoring informa-

tion in the other keyframe.

Recent work on rotoscoping [1] tracks the contours in

video for animation using user-specified contours in two or

more frames. Rotoscoping makes full use of the informa-

tion in the keyframes to improve the performance of contour

tracking. However, rotoscoping is limited to tracking only

parameterized curves, which is difficult to apply to other

tracking applications.

In this paper, we develop a bi-directional tracking al-

gorithm of generic objects by taking advantage of the in-

formation in both keyframes. Formally, given a video se-

quence and two states x1 and xT in the beginning and end-

ing keyframes, we compute the MAP solution of the whole

state sequence:

P (x2:T−1|y1:T , x1, xT ) ∼ P (y1:T |x1:T )P (x2:T−1|x1, xT )

(1)

The success of our algorithm depends on whether it can

overcome the following two challenges.

One challenge is to provide an efficient optimization al-

gorithm to obtain the MAP solution. In visual tracking, the

whole continuous state sequence space usually has an enor-

mous number of local minimums due to nonlinear dynam-

ics and non-gaussian observations. Gradient-based meth-

ods will often become stuck at a local minimum. The MAP

solution can be also computed by Viterbi algorithm using

a discrete HMM (Hidden Markov Model) representation.

However, the the quantized state space is very large even

for a simple state representation for a 320 × 240 video.

The other challenge is to handle partial or complete oc-

clusions. Short-time occlusions can often be handled by an

appropriate dynamics model. However, for more complex

occlusions, such as long-time occlusions or occlusions by

similar objects, previous methods often fail. How to han-

dle various difficult occlusions using the information in two

keyframes is of both theoretical and practical interest in the

bi-directional tracking.

In order to overcome the above difficulties, our bi-

directional tracking uses a novel trajectory segment repre-

sentation. Trajectory segments are a number of small frac-

tions of possible object trajectories in the 3D video volume.
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Trajectory segments are extracted from the input video us-

ing a spectral clustering method. With this representation,

the MAP solution can be efficiently obtained in a coarse-to-

fine manner by a discrete HMM model. More important, at

the trajectory segment level, we propose an occlusion rea-

soning algorithm to robustly infer possible occlusion trajec-

tory segments of the target object.

2 Previous Work

Tracking remains a very difficult vision problem due to sev-

eral reasons, for example sudden motion, ambiguity and oc-

clusion. The sudden motion of object may be caused by

unexpected dynamic changes of the object itself or abrupt

camera motion. When the target object comes close to a

similar object, tracking algorithms often fail to locate the

correct one due to ambiguity. The target object may be par-

tially or completely occluded. Occlusion can be of short

or long. A number of approaches have been proposed to

alleviate these problems.

Direct optimization The direct optimization ap-

proaches [12, 2, 7, 4] estimate the motion parameters

between two neighboring frames by minimizing a deter-

ministic cost function. The direct optimization approach

assumes slow motion between two frames. This kind of

approach is efficient but not very robust in situations with

rapid sudden motion, ambiguity, and long-time occlusion.

Particle filtering Condensation [10] is the first particle fil-

tering [6, 11] based algorithm introduced in visual tracking.

Particle filtering approximates the posterior distribution us-

ing a set of “weighted particles”. The particle filtering algo-

rithm has advantages on handling sudden motion and short-

time occlusion. However, it often difficult to handle am-

biguity or long-time occlusion. Maccormick & Black pro-

posed a “probabilistic exclusion principle” [13] to address

the ambiguity problem. But their approach is limited to a

special observation model for contour tracking.

Offline tracking Offline tracking exploits all the informa-

tion in the video sequence. In [9], the optical flow over

the entire sequence is estimated simultaneously using a

rank constraint on the rigid motion. Torresani & Bregler

[17] track 3D points using a low rank constraint on a 3D

morphable model and importance sampling in trajectory

space. Multiple hypothesis tracking (MHT) was proposed

by Reid [16] and improved by Cox & Hingorani [5] for mul-

tiple objects tracking. They give a Bayesian formulation for

determining the probabilities of measurement-to-target as-

sociation hypotheses. Recent work in [8] optimizes a MAP

solution of the joint trajectories of objects for multiple ob-

ject tracking. Their approach severely relies on background

substraction and object detection, and no explicit occlusion

reasoning mechanism is presented.

3 Framework
In this paper, we chose a very basic state model and ob-

servation model to demonstrate our bi-directional tracking

approach in the keyframe-based framework.

State The target object is represented as a rectangle R =

{p, s ∗ ŵ, s ∗ ĥ}, where p is the center rectangle and s is the

scaling factor. ŵ and ĥ are a fixed width and height of the

object template, respectively. So, we denote the state of the

object as x = {p, s} ∈ X , where X is the state space. In

the bi-directional tracking, the state x1 in the first keyframe

I1 and the state xT in the last keyframe IT are known.

Observation The observation is the color statistics of the

target object. The object’s color model is represented as

a histogram h = {h1, ..., hH} with H (typically, H =
8×8×8) bins in RGB color space. The Bhattacharyya dis-

tance between the associated histogram h(x0) of the state

x0 and the associated histogram h(xi) of the state xi is de-

fined as: B2[h(x0),h(xi)] = 1 −
∑B

j=1

√
hj(x0)hj(xi).

This model only captures global color statistics. A more so-

phisticate multi-part color model [15] can be used if there is

a certain spatial configration of the target object.

Trajectory Optimization The posterior of the whole state

sequence X = {x2, ..., xT−1} for a given video sequence

Y = {y1, ..., yT } and known two states {x1, xT } can be

represented as follows under the first order Markov inde-

pendence assumption:

P (X |Y, x1, xT ) =
1

Z

T−1∏

i=2

ψ(yi|xi, x1, xT )
T−1∏

i=1

ψ(xi, xi+1),

(2)

where the local evidence ψ(yi|xi, x1, xT ) is defined using

the Bhattacharyya distance:

ψ(yi|xi, x1, xT ) ∼ exp(−min{B2[h(xi),h(x1)],

B2[h(xi),h(xT )]}/2σ2
h),(3)

where σ2
h is the variance parameter. It measures the similar-

ity between the color histogram h(xi) of the state xi to the

closest color histogram between h(x1) in the keyframes I1

or h(xT ) in IT . The potential function ψ(xi, xi+1) between

two adjacent states is defined as:

ψ(xi, xi+1) ∼ exp(−D[xi, xi+1]/2σ2
p), (4)

where D[xi, xi+1] = ||pi − pi+1||
2 + β||si − si+1||

2 is the

similarity between state xi and xj . σp is a variance to con-

trol the strength of smoothness and β is a weight between

location difference and scale difference. It is a smoothness

constraint on the whole trajectory of the target object.

The goal of the bi-directional tracking is to obtain the

MAP solution of Equation (2). To efficiently perform the

optimization and handle possible occlusion, we present a

novel approach based on trajectory segment analysis. Fig-

ure 1 shows the basic flow of our approach:
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Figure 1: Flowchart of bi-directional tracking.

1. Trajectory segment analysis. For a given video se-

quence and object templates in two keyframes, trajec-

tory segment analysis extracts a number of small 3D

trajectory segments in the video volume using a spec-

tral clustering method.

2. Occlusion reasoning. To handle both short-time and

long-time occlusions, we connect disjointed trajectory

segment pairs where an occlusion segment may exist

in between.

3. Trajectory optimization. A number of discrete states in

each frame are sampled from the segments obtained in

step 2. The MAP solution of Equation (2) is obtained

by a discrete HMM model in a coarse-to-fine manner.

4 Trajectory Segment Analysis

Trajectory segment analysis consists of two steps: 2D mode

extraction in each frame independently and 3D trajectory

segment extraction in the whole video simultaneously.

4.1 2D mode extraction

The purpose of 2D mode extraction is to significantly re-

duce the whole state space so that further analysis on a

sparse state set is tractable. For each frame, we can com-

pute an evidence surface using Equation (3). The 2D modes

are peaks or local maxima on this surface. A 2D mode rep-

resents a state x′ whose observation is similar to the ob-

ject templates in the keyframes. Namely, the local evident

ψ(y|x′, x1, xT ) is high.

To efficiently find these modes, we adopt the mean

shift [4] algorithm which is a nonparametric statistical

method seeking the nearest mode of a point sample distrib-

ution. Given an initial location, mean shift can compute the

gradient direction of the convoluted evidence surface by a

kernel G [4]. With this property, the mean-shift algorithm

is a very efficient iterative method for gradient ascent to a

local mode of the target object.

To perform 2D mode extraction, we uniformly sample

the location in the image and the scale (3-5 discrete lev-

els) to obtain a set of starting states. The spatial sampling

interval is sightly smaller than half the size of the object.

Then, the mean shift algorithm runs independently from

each starting state. After convergence, we get a number

of local modes. Finally, we reject the state mode x′ whose

local evidence ψ(y|x′, x1, xT ) ≤ 0.5 and merge very close

modes to generate a sparse set of local 2D modes in each

frame, as shown in the bottom row of Figure 2.

Figure 2: 2D mode extraction. Top: three frames in the “cup”

sequence. Bottom: each black circle is a 2D mode whose local

evidence is high. For example, in the first column, the left cluster

corresponds to two green cups in the image and the right two circle

corresponds to a background region with similar color statistics of

the object templates in the keyframes.

4.2 3D trajectory segment extraction

Figure 3 shows the “circles” example containing two occlu-

sions (one arm occludes a cup from frame 16 to 35, and

from frame 98 to 132) and one ambiguity (two cups meet

from frame 52 to 86). Figure 4(a)(b) shows the all extracted

2D mode points in a 3D volume. We found that the “true”

object trajectory is a curved structure, which may contain

discontinuities caused by occlusion or is very close to other

“irrelevant” points due to ambiguity. It is not trivial to ex-

tract it at the point level. Therefore, we first extract a num-

ber of trajectory segments from all points. An ideal segment

extraction should have two properties: 1) a segment rep-

resents a fraction of a “meaningful” trajectory, and 2) the

length of each segment is as long as possible or the number

of segments is small. In this paper, we use spectral cluster-

ing methods [14] to perform this task.

4.2.1 Spectral clustering

Each 2D mode is a 3D point mn = [pn, tn] in the video

volume, where pn and tn are the spatial location and the

temporal location (frame number) respectively. Given a set

of points M = {mn}
N
n=1 in ℜ3, spectral clustering builds

an affinity matrix A and then clusters data points based on

the eigenvector analysis of the Laplacian matrix of A. Vari-

ants of spectral clustering algorithms analyze the eigenvec-

tors in sightly different ways. In this paper, we use Ng’s

algorithm [14] which uses K eigenvectors simultaneously

for K-class clustering. In our trajectory segment analysis,

the basic affinity matrix A ∈ ℜN×N is defined as follows:

Aij = exp(−||pi − pj ||
2/2σ2

p − ||ti − tj ||
2/2σ2

t ), (5)

where the scaling parameters σp and σt control how rapidly

the affinity Aij falls off with the distance between two

points mi and mj in space and time, respectively. To en-

courage more compact trajectory segments, we use an ap-
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pearance dependent definition in this paper:

A′
ij = αAij + (1 − α) exp(−B2[h(mi),h(mj)]/2σ2

h),
(6)

where the last term measures the similarity between the ap-

pearances (color histogram in this paper) of two modes. α is

a weighting factor (typically 0.5). The process to partition

the points into K clusters is as follows:

1. Build the affinity matrix A according to Equation (6).

2. Construct the matrix L = D−1/2AD−1/2 where D is

a diagonal matrix (Dii =
∑N

j=1
Aij ).

3. Compute the matrix E = [e1, ..., eK ] ∈ ℜN×K , where

ek is the normalized K largest eigenvectors of L.

4. Treat each row of E as a point in ℜK , and cluster

them into K clusters by K-means algorithm. Assign

the original point to cluster k if row i of the E was

assigned to cluster k.

After spectral clustering, we treat all 3D points in cluster k
as a trajectory segment Trk. Namely, we get a number of

K trajectory segments Tr = {Tr1, ..., T rK}. Figure 4(e)

shows the extracted trajectory segments on the “circles” se-

quence. Spectral clustering successfully produces a number

of “meaningful” trajectory segments.

4.2.2 Why use spectral clustering?

We get less “meaningful” results from a standard k-means

clustering. The reason is that the “true” trajectory is usu-

ally highly curved and some partition of it may not be a

convex region, but every cluster of k-means has to be a con-

vex region. Figure 4(a)(b) shows two k-means results using

different scaling factors of the time variable t. In fact, we

found that k-means always gives unsatisfactory results no

matter what the scaling factor is for this example.

In contrast, in spectral clustering, 3D data points are em-

bedded on the surface of a unit sphere in another K dimen-

sional space spaned by the K largest eigenvectors of L. In

this space, curved trajectories or manifolds in the original

3D space can be well separated. Clustering in the embed-

ded space using spectral analysis is the key to our trajectory

segment analysis. We refer the reader to [14, 3] for more

details and comparisons.

5 Occlusion Reasoning
If there is no occlusion of the target object, trajectory seg-

ments extraction is already a very good “proposal” for state

space sampling in trajectory optimization. However, due to

partial or complete occlusion occurring in the input video,

the occlusion (trajectory) segment (the states during occlu-

sion stage) does not exist in already extracted segments.

The occlusion segment should be inferred and sampled be-

tween object trajectory segments. This section presents a

simple but effective occlusion reasoning algorithm at the

trajectory segment level.

After analyzing the trajectory segments on a number of

video sequences, we have several observations:

A. The trajectory segment including object templates in

the keyframes must be in the “true” object trajectory.

B. The trajectory segment parallel to the segment which

contains object templates should be excluded.

C. No occlusion segment exists between two overlapping

trajectory segments along the time axis.

D. There are certain speed and time limits on an occlusion

segment.

In observation B, two segments are parallel if the overlap-

ping time and the shortest distance between them are not

more than certain empirical thresholds. For example, in

Figure 4(e) the vertical segment (red) in the center will be

excluded because it is parallel to two segments (cyan and

dark-green) containing object templates.

5.1 Occlusion reasoning algorithm

Based on the above observations, we propose an bi-

directional, tree-growing algorithm for occlusion reasoning

as follows:

1. Build two trees TA and TB . Each tree has an empty

root node. Then, add one trajectory segment contain-

ing an object template in the keyframe to each tree as

an active node. The remaining segments are denoted

as a candidate set.

2. Exclude the trajectory segment from the candidate set

using the current two trees according to observation B.

3. For each active leaf-node (node without child) in TA,

add the Q-best occlusion segments from the candidate

set or the active leaf-nodes in TB as its child nodes,

according to observations C and D. The newly added

child node is set to active if it comes from the candidate

set. Otherwise, it is set to inactive in both trees.

4. The tree TB grows one step in a similar way.

5. If there is no active leaf-node in both trees, stop; oth-

erwise, go step 2.

Occlusion trajectory generation For two disjoint trajec-

tories Tr1 and Tr2 in time, we want to fill in the miss-

ing occlusion segment O in between, as shown in Figure

5. Given all points {mj = [pj , tj ]}
N ′

j=1 in Tr1 and Tr2, we

fit a B-spline r(s) =
∑NB

n=0
Bn(s)qn using weighted least

squares:

min
{qn}

∑N ′

j=1
w(mj)||r(s

′
j) − mj ||

2, (7)

where s′j = (tj − t1)/N
′ is a temporal parametrization of

the B-spline in frame tj . Although it is an approximation of
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Figure 3: The ”circles” example. Bi-direction tracker successfully tracked the whole sequence. Forward tracker and backward tracker

failed at frame 031 and 105 respectively. The keyframes 000 and 179 contain two object templates.

50 100 150 200 250 300

0
50

100
150

200
250

0

20

40

60

80

100

120

140

160

180

50 100 150 200 250 300

0
50

100
150

200
250

0

10

20

30

40

50

60

70

80

90

50 100 150 200 250 300

0
50

100
150

200
250

0

20

40

60

80

100

120

140

160

180

(a) (c) (e)

80100120140160180200220240260

0

50

100

150

200

250

0

20

40

60

80

100

120

140

160

180

50 100 150 200 250 300

0
50

100
150

200
250

0

200

400

600

800

1000

1200

1400

1600

1800

50 100 150 200 250 300

0
50

100
150

200
250

0

20

40

60

80

100

120

140

160

180

(b) (d) (f)

Figure 4: Trajectory segments analysis on ”circles” sequence. (a)(b) two views of all 2D mode points in 3D. The vertical axis is the

frame number in the sequence. (c)(d) two k-means results with different time scaling factors. K-means does not provide very meaningful

”segments” in terms of trajectory. (e) meaningful ”segments” from spectral clustering. (f) result after occlusion reasoning. Black circles

in dashed rectangles are filled-in occlusion segments. Please view the electronic version for a better illustration in color.
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mj

Tr1

Tr2

O

Figure 5: Occlusion trajectory generation. Point mj is an 2D

local mode and {Tr1, T r2} are 3D trajectory segments in the 3D

video volume. O is an inferred occlusion (trajectory) segment be-

tween Tr1 and Tr2.

the parametrization of a B-spine in a strict sense, we found

that it is good enough in our application. The weighting

function w(mj) is defined as:

w(mj) =

{
exp(−σ−1

w ||tj − teA||) j ∈ Tr1

exp(−σ−1
w ||tj − tsB||) j ∈ Tr2,

(8)

where teA and tsB are the last frame number in Tr1 and the

first frame number in Tr2. The scaling parameter σw is set

to 20 in our experiments. Using a weighting function, we

can give a larger weight to a point nearby tend
A and tstart

B .

Finally, we treat the fitted B-spline curve between Tr1 and

Tr2 as the occlusion segment O.

Q-best hypothesis For an active leaf node Tra, we search

forward for all possible trajectory segments Tr∗ that sat-

isfy the observation C. Then, we generate the occlusion

segments between Tra and every trajectory segments in

Tr∗. The Q-best occlusion segments are selected based

on (LO + γSO), where γ = 10 is a weighting factor. LO

and SO are the length (pixel) and maximum speed (pixel

∗ frame−1) of the hypothesized B-spline between two con-

nected trajectory segments. As mentioned in the last sec-

tion, a large K is selected in our system. A long trajec-

tory segment may be divided into two very close segments.

Therefore, we add a dominant grouping process in the Q-

best hypothesis: we just keep one trajectory segment if

(LO + γSO) of this segment is significantly smaller than

others.

Figure 4(f) shows the final trajectory segments and oc-

clusion segments inferred by occlusion reasoning. The ver-

tical segment in the center (red) is excluded in the first iter-

ation using observation B. Curved occlusion segments are

successfully generated by our weighted least squares fitting.

6 Trajectory Optimization

After getting a set of trajectory segments and occlusion seg-

ments, a single optimal trajectory between two keyframes

is computed by trajectory optimization. In order to obtain

a more accurate tracking result, we perform trajectory opti-

mization of Equation (2) in a coarse-to-fine manner. Two-

levels is sufficient for all examples in the experiments. In

the coarse level (spatially down-sampled only), we uni-

formly sample M (500-1000) states around (in a small ra-

dius, e.g. 5 pixels) the segments using three discrete scaling

factors s in each frame. A optimal trajectory is computed in

this level using a discrete HMM model. In the fine level, we

sample M states around the optimal solution obtained from

the coarse level using five discrete scaling factors in each

frame. For a 10 second video, the trajectory optimization

took about 8 seconds.

7 Experimental Results
In this paper, we compare our approach with standard par-

ticle filtering (PF) with a first-order dynamics with 500 par-

ticles. The observation model in PF tracker is exactly the

same as the likelihood in our bi-directional tracker.

Parameter setting In 2D mode extraction, G is a Gaussian

kernel whose standard deviation is about 1/6 the size of the

target object in the keyframe. In the 3D trajectory extrac-

tion, scaling parameters σp and σt are set to 10 and 20. We

set the clustering number to K = 7 or K = 10 for all ex-

amples shown in this paper. Adaptive selection of K may

be addressed in future work. In trajectory optimization, the

variance parameters σh and σp are 10 and 1, respectively.

In the first-order dynamic xi = xi−1 + cv(i) of PF,

c = diag(cx, cy, cs) and v(t) ∼ N(0, 1) is a normal dis-

tribution. In our experiment, we set the parameters as: cx

is 8 pixels/frame, cy is 8 pixels/frame, and cs is 0.1 /frame.

We have also tested a second-order dynamic and turned the

parameters video by video. But we found that the improve-

ments are marginal on our test sequences.

“Cup” sequence includes two almost identical objects. The

target object passes close to the other from frame 33 to 66.

This ambiguous event corresponds the red asterisk trajec-

tory segment in Figure 6(a). Neither forward PF nor back-

ward PF can correctly track the target after this event. To

solve this ambiguity, our occlusion reasoning generates two

hypotheses and trajectory optimization selects a smoother

one, as shown in Figure 6(a).

“Leg” sequence shows a complete occlusion from frame

35 to 45. This event can be easily identified in Figure

6(b). Occlusion reasoning hypothesizes two occlusion seg-

ments. The correct path is picked by trajectory optimiza-

tion. Again, forward PF and backward PF is incorrect from

frame 36 and 40 respectively because the background’s

color is more similar to the target than the leg’s color.

“Toy” sequence shows two long-time occlusions from 23 to

70, and from 155 to 209. Two curved occlusion segments

are inferred by our B-spline based estimation, as shown in

Figure 6(c). The tracking results are shown in Figure 7.

“Magic” sequence shows a more ambiguous event. Two

indistinguishable Pepsi cans enter and then leave a blind

area. For the target object on the left side in frame 0, it can

go back the left side or go to the right side in frame 127. To
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Figure 6: Trajectory segments analysis results (Top) and occlusion reasoning results (Bottom). The black circles in dash rectangles are

inferred occlusion segments. (a) two segments corresponding to the cup in the center and a green region on the background are excluded.

(b) two possible occlusion segments are hypothesized. (c) two highly curved occlusion segments are estimated.

solve this ambiguity, our bi-directional tracker can give two

reasonable guesses by specifying two kinds of keyframes,

as shown in Figure 7.

8 Conclusion
In this paper, we have presented a bi-directional tracking ap-

proach based on trajectory segment analysis. Curved target

object trajectories are successfully extracted by trajectory

segment analysis and connected by the occlusion reasoning

algorithm. With a trajectory segment representation, more

challenging visual tracking tasks can be well handled.

There are many opportunities to improve and general-

ize our approach, such as automatic selection of clustering

number, handling large appearance changes between two

keyframes, integrating more visual cues, developing other

state representations, and bi-directional tracking of multi-

ple objects.
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Figure 7: “Cup”, “Leg”, “Toy”, and “Magic” examples (from top to bottom). In “cup” and “leg” examples, we compare bi-direction

tracking result with forward PF and backward PF. The image containing a red rectangle is the keyframe.
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