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Bidirectional wavelength-division multiplexing
transmission over installed fibre using a simplified
optical coherent access transceiver
M.S. Erkılınç 1, D. Lavery 1, K. Shi 1, B.C. Thomsen1, R.I. Killey1, S.J. Savory2 & P. Bayvel1

High-speed broadband services require optical fibres in access networks, in which

multiple subscribers are connected to service providers, to satisfy the continuously growing

bandwidth demand. The primitive signaling scheme used in access networks enables the use

of low-cost equipment but diminishes the bandwidth available to end-users. Thus, current

technology will be unable to support future broadband demands. Coherent communication

systems offer significantly improved power- and bandwidth-efficiency, but require

fundamental simplifications to become economically viable for access networks. Here, we

demonstrate a promising simplified coherent receiver exhibiting a robust performance

against polarisation fluctuations over an installed fibre network. It enables the realisation of

high-order modulation formats and offers high sensitivities, achieving a four-fold increase in

the supported number of subscribers and approximately doubling the transmission distance

compared to the recently standardized access technology. The proposed solution indicates

that digital coherent technology can be feasible and transform the access networks, enabling

ubiquitous new services and applications with uncontended, multi-gigabits/user broadband

connections.
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N
etwork operators continue to seek solutions to increase
the capacity of optical access networks to meet the ever-
increasing bandwidth demands, driven by bandwidth-

hungry applications, such as high-definition video-on-demand,
entertainment (e.g., online gaming) and Internet of Things. Fibre-
to-the-Home/Premise/Business or Building (FTTx) is widely
viewed as the only access network technology capable of meeting
this demand. However, it is highly cost-sensitive since the cost of
an overall access network is born solely by the end users sup-
ported in the network. Therefore, the most attractive optical
access network architecture is the passive optical network (PON)
with a tree topology, in which the overall complexity is minimised
by employing only passive splitters/combiners in a remote node
to provide broadband access to the subscribers, i.e., using no
active components, such as electronic switches/routers. In addi-
tion, the transmission fibre can be utilised bidirectionally, i.e., the
downstream and upstream signals counter-propagate in the same
fibre. Such passive optical access networks have been widely
deployed since 20041. Most of the PON solutions have a point-to-
multi-point architecture and connect a service provider's central
office (consisting of several optical line terminals) to multiple
subscribers, using so-called optical network units (ONUs), via an
optical distribution network, as depicted in Fig. 1.

Current PON FTTx technologies such as 10 Gigabit-PON, 10
G Ethernet-PON utilise time-division multiplexing (TDM), and
the recently announced next generation PON technology (NG-
PON2), offering at least 40 Gb/s (4λ × 10 Gb/s) aggregate network
capacity2–5, will employ time-wavelength division multiplexing6, 7

coupled with direct detection receivers. However, TDM trans-
ceivers used in ONUs operate at aggregate data rates rather than
the data rate per subscriber. Hence, they require electrical
bandwidths many times greater than the bandwidth that sub-
scribers can utilise6, e.g., providing just 150Mb/s per user (in a
network supporting 64 users) by using a receiver requiring an
electrical bandwidth of 10 GHz (≈150Mb/s × 64 users). Such
signal orthogonalisation schemes will be inevitably limited when
the demand for bandwidth reaches uncontended multi-gigabit/s
per subscriber. To avoid bandwidth exhaust in PONs, the

utilisation of the wavelength-to-the-user approach, i.e., dedicating
a single wavelength to each user as illustrated in Fig. 1, will be the
ultimate solution for the next generation PONs, referred to as
wavelength-division multiplexing (WDM) PONs8–11.

In PONs, the received signal power is relatively low, and hence,
achieving high receiver sensitivity is a key challenge. However,
direct detection systems are limited by receiver noise (mainly
thermal noise, but also limited photodiode responsivity/gain).
Thus, the advanced direct detection schemes offering higher
bandwidth efficiency will exhibit a lower receiver sensitivity in
unamplified systems vs., for example, on-off keying (OOK).
Fortunately, this limitation can be overcome through the use of
coherent receivers. Besides the power efficiency, coherent tech-
nology inherently enables ONUs with wavelength/frequency
selectivity, e.g., offering 10 Gb/s per user by employing a coherent
receiver with a bandwidth of ≤10 GHz depending on the
achievable spectral efficiency. Moreover, it offers significant
advantages compared to the currently employed intensity mod-
ulation/direct detection transceivers such as linear optical field
detection, high achievable spectral efficiency, and robustness to
chromatic dispersion12.

Future PONs will require the availability of high-performance,
cost-effective coherent receivers which can be shown to be
feasible in real fibre networks, exhibiting polarisation and
temperature fluctuations; to date, this has not been achieved.
The optical complexity of conventional polarisation- and phase-
diverse intradyne coherent receiver employed in core and long-
haul networks is considered to be excessively high due to the use
of polarisation beam splitter(s)/rotator(s) and 90° optical hybrids.
Therefore, the complexity is the main limiting factor that
prevents its use in ONU transceivers for PON applications.
Although the single-chip monolithic integration of a conventional
coherent receiver is possible13, 14, it is challenging using
mature manufacturing techniques for volume production. Thus,
low-complexity monolithically integrable coherent receivers
maintaining high receiver sensitivity can potentially be the
fundamental driving force of future coherent-enabled PON
systems. Recently, Cano et al.15 demonstrated a coherent-enabled
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Fig. 1 Schematic of a typical passive optical access network. Optical line terminal (OLT), installed by a service provider, distributes a TDM or WDM

signal via ODN, consisting of transmission fibre and passive splitters/combiners. ODN consolidates the backhaul and access spans which are typically up

to 100 km. The optical network units located at business/building/premise, or home receive the transmitted signal and provide bandwidth to each fixed

(e.g., personal computers, and IP-TVs) and mobile (e.g., smartphones, tablets, and laptops) end user supported by the network. ONU: optical network unit,

FTTx: Fibre-to-the-Business/Building/Premise/Home
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PON operating at 1.25 Gb/s effective user bit rate using a
simplified (heterodyne) coherent receiver over a transmission
distance of 50 km, and tested it in a field trial (10 km)16.
Following this, the per-user connection speed was increased to 10
Gb/s employing the same receiver architecture and transmitted
over 25 km17. However, such demonstrations do not exhibit a
bidirectional transmission, implying that a second laser in an
ONU might be required for the upstream signal generation. On
the other hand, we have proposed and presented the principle of
operation of a single-polarisation balanced coherent receiver,
requiring minimum optical complexity18. It avoids power fading
due to the polarisation rotation, enabled by performing polar-
isation-time block coding coupled with heterodyne detection. The
preliminary performance evaluation of the proposed receiver was
assessed in a bidirectional WDM-PON system19.

The main contribution of this work is the installed fibre
network demonstration of bidirectional dense WDM transmis-
sion using quadrature phase-shift keying (QPSK) and 16-quad-
rature amplitude modulation (QAM). This is realized by the full
implementation of a bandwidth-efficient yet low-complexity
coherent ONU transceiver, implemented through the use of a
polarisation-time block coding using digital signal processing
(DSP) combined with heterodyne detection. It is shown that the
proposed receiver exhibits robust performance in the presence of
fluctuations in the polarisation state of the received signal, as
typically occurs in installed fibres, thereby offering high receiver
sensitivities and enabling the realisation of bandwidth-efficient
modulation formats. The proposed transceiver has a 75% lower
optical complexity, quantified by the number of balanced detec-
tors, compared to conventional coherent receivers, which
potentially eases the monolithic integration whilst preserves the
benefits of coherent technology, e.g., exceptionally high receiver
sensitivity, robustness to chromatic dispersion, and colourless
receiver operation due to its frequency/wavelength selectivity.
Some complexity is moved from the optical to the digital domain
whilst maintaining the linearity between the domains since the
cost of silicon-CMOS technology continues to decrease, with
increasing performance (according to Moore’s law). The photonic
integration however, does not have the potential to scale com-
parably with the CMOS technology. Thus, it is likely that high-
bandwidth DSP will be deployed even for low-cost short and
medium reach applications in the near future. Moreover, it offers
significantly higher loss budget and a comparable optical

complexity to the currently employed ONU transceivers, as
outlined in the Discussion section. In particular, we demonstrate
a bidirectional dense WDM-PON transmission over a re-con-
figurable installed dark fibre network, operating at a net aggregate
data rate of 160 Gb/s (8 × 20 Gb/s) downstream and 80 Gb/s (8 ×
10 Gb/s) upstream over a 37.6 km installed fibre network (com-
patible with future PON technologies). This demonstration is a
proof-of-principle for 400 GbE PON, only requiring another 12
wavelengths which can be comfortably accommodated with the
achieved loss budget, offering a four-fold increase in the number
of subscribers or a doubling in the transmission distance com-
pared to the next-generation PON technology.

Results
Principle of operation and Alamouti coding. Alamouti coding is
a space-time block coding scheme, and was first proposed to
achieve two-branch transmit diversity using a single receiver in
wireless communications20. It has been adapted for optical fibre
communication systems using a conventional coherent intradyne
receiver21 by drawing an analogy between the two transmit
antennae and the two polarisation modes, as depicted in Fig. 2a.
Note that such a design can be seen as a multiple-input-single-
output system. The key idea is to divide a sequence of symbols
into pairs over two polarisation, e.g., X- and Y-polarisation,
modes, referred to as polarisation-time block coding, and to send
the same information twice during two symbol duration, as
illustrated in Fig. 2b. The symbol pairs are coded such that the
information symbols are transmitted over two polarisation modes
[EX and EY] as X1 X2½ �, X3 X4½ � whilst their reciprocal pairs
( �X�

2 X�
1

� �

; �X�
4 X�

3

� �

) are sent in the next time slot where
* represents the complex conjugate. Note that the symbol pairs
transmitted over X- and Y-polarisation modes are mutually
orthogonal to those transmitted in the next time duration. The
detailed comprehensive discussion regarding the Alamouti coding
scheme can be found in our paper22. Although this coding
scheme introduces 50% redundancy due to the replication of the
transmitted symbols and requires a polarisation modulator in the
transmitter, it does not require any additional DSP complexity,
higher bandwidth or resolution of the DACs/ADCs. Furthermore,
it enables to remove the polarisation beam splitter(s)/rotator(s),
the 90° optical hybrid and two of the balanced photodetectors
which are used in a conventional polarisation- and phase-diverse
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Fig. 2 Realisation of Alamouti coding. a The analogy between wireless (two transmit antennae) and optical fibre communication (dual-polarisation

transmitter), corresponding to a multiple-input-single-output system. b Alamouti polarisation-time block coding (PTBC) scheme and the illustration of
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coherent receiver. This approach can be attractive in applications
such as access networks, in which asymmetrical transceiver
architectures are typically employed (i.e., higher complexity
transceivers can be employed in the Central Office than the
ONUs). Furthermore, the polarisation-independent single polar-
isation coherent receiver enabled by Alamouti coding reintains
many of the advantages of coherent detection including high
power/bandwidth efficiency, linear optical field detection, and
robustness to fibre impairments.

The polarisation of the optical field undergoes polarisation
rotation along the fibre link during transmission, as illustrated in
Fig. 2b. Since the beating between the transmitted signal [EX EY]
and the local oscillator (LO) laser ELO is the superposition of the
polarisation modes from both transmitters, the information
symbols (X1, X2, X3, X4, …) can be successfully recovered,
independently from the state of polarisation of the received signal
and ELO

22. Consequently, this feature makes the detection process
independent of the polarisation rotation which occurs during
transmission. The coding scheme therefore removes the need for
any optical polarisation tracking unit in the receiver such as a
PBS, polarisation rotator or controller. This leads to a significant
reduction in optical complexity compared to the conventional
polarisation- and phase-diverse coherent receiver architecture,
allowing the implementation of the proposed simplified coherent
receiver using the minimum number of optical components
possible, as further described in the Discussion section.

ODN/OLT and ONU transceiver implementations. The
schematic of the bidirectional dense WDM-PON transmission
test-bed is depicted in Fig. 3. In the proposed configuration, eight
downstream (DS) and upstream (US) channels were placed on a
50 GHz frequency grid with a 12.5 GHz offset, i.e., λDS1=λUS1 =
1551.2/1551.1 nm and λDS8=λUS8 = 1554.0/1553.9 nm, as shown in
the insets (a) and (b) in Fig. 3. It is crucial to note that the

frequency offset, which is used to avoid significant penalties due
to the back-reflections in the ONU, was enabled by heterodyne
detection and chosen such that it allows the simultaneous use of
the ONU laser as a LO laser for the DS and the source laser for
the US channel, as shown in Fig. 3. The optimisation of frequency
offset between the DS and US channels is further discussed in the
Back-to-back performance evaluation section.

The optical distribution network (ODN), emulating the back-
haul and access spans, was used to transmit the DS and US signals
over passive sections of a re-configurable dark fibre network,
installed between University College London, Telehouse and
Powergate, as shown in Fig. 3. Two demonstrations were
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The frequency offset between the downstream and upstream channels was chosen to be 12.5 GHz, as shown in the insets a, b. The network was configured

to first 37.6 (from UCL to Telehouse and back to UCL) and then 108 km (from UCL to Power gate via Telehouse and back to UCL via the same route).

When the transmission distance was set to 108 km, the control switch in the ONU was changed from the 3-dB coupler to the optical circulator. It is worth

noting that particularly in the ONU, a 3-dB coupler, which has 20–30 dB less isolation compared to an optical circulator, is more preferable. Blue lines
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performed to evaluate the system performance. In the first
transmission experiment, the network was configured to have a
typical PON reach (37.6 km of standard single mode fibre (SSMF)
with 10 dB link attenuation); 8 DS channels (first Alamouti-coded
orthogonal frequency-division multiplexing (OFDM) with QPSK,
and then switched to 16-QAM subcarriers, operating at 10.7 and
21.4 Gb/s, respectively) and 8 US channels (binary
phase-shift keying (BPSK) operating at 10.7 Gb/s) were bidir-
ectionally transmitted over the installed fibre. Following this, a
bidirectional 10.7 Gb/s symmetric long-reach dense WDM-PON
transmission experiment was carried out by changing the
network configuration to 108 km of SSMF with a total link
attenuation of 27.6 dB. The link attenuation and average
chromatic dispersion coefficients of the installed fibre were 0.26
dB/km and 16.5 ps/nm/km at 1550 nm, respectively.

The optical line terminal (OLT) transceiver implementation is
as follows: The OLT transmitter for the even channels (λ2,4,6,8)
consisted of a dual-polarisation nested Mach-Zehnder (IQ)
modulator, seeded with the output from external cavity lasers
with a linewidth of 100 kHz. Note that it is acceptable to use a
narrow linewidth laser in the OLT since the cost is shared by the
users supported in the network. Nevertheless, the linewidth
tolerance of the proposed simplified coherent receiver has been
investigated up to 10MHz23 in which additional 0.5 and 1.5 dB
reductions in the receiver sensitivity were observed at a linewidth
of 2 MHz for Alamouti-coded OFDM QPSK and 16-QAM
signals, respectively. It is worth noting that the combined
linewidth of the system can be assumed to be ~2MHz if a
distributed feedback (DFB) laser with a linewidth of 1 MHz is
used, the same as the ONU laser. The modulator was driven using
an Alamouti-coded OFDM signal with subcarriers modulated,
initially with QPSK, and subsequently, 16-QAM. The electrical
driving signals were generated using an arbitrary waveform
generator, operating at 12 GSa/s with an effective number of bits
(ENOB) of 5-bit at 4 GHz. The signal waveforms were generated
offline and the required DSP is explained in the Methods section.
The odd channels were generated in a similar manner using a
single-polarisation IQ-modulator, followed by the polarisation
multiplexing delay-line emulation stage (decorrelating the second
polarisation by 120 symbols). Subsequently, odd and even
channels were coupled to form an 8-channel 10.7 and 21.4 Gb/s
Alamouti-coded OFDM QPSK and 16-QAM signals, respectively,

assuming a 7% overhead due to hard decision forward error
correction (HD-FEC), as shown in Fig. 3. An Erbium-doped fibre
amplifier with a noise figure of 5 dB followed by a variable optical
attenuator were used to control the launch power of the DS
channels into the fibre.

In the OLT receiver side, the US (8 × 10.7 Gb/s BPSK) signal
was detected using a polarisation- and phase-diverse intradyne
coherent receiver. The received signal was digitised using an
analogue-to-digital converter (ADC) with a 3-dB electrical
bandwidth of 20 GHz (operating at a sampling rate of 50 GSa/
s), followed by a 7 GHz LPF. The required sampling rate for the
received US signal was 21.4 GSa/s. The DSP was performed
offline, and is detailed in the Methods section.

In the ONU transceiver, the DS signal was detected using the
simplified coherent receiver, consisting of a 3-dB coupler and a
single balanced photodiode, implemented using discrete optical
components. The DFB laser with 1MHz linewidth was split using
a 3-dB splitter. One of its output ports was coupled with the
received DS signal operating as a LO laser at a power of 10.5 dBm,
as shown in Fig. 3. Following this, the signal was digitised using a
single ADC, operating at 50 GSa/s with 3-dB electrical bandwidth
of 20 GHz and an ENOB of 5-bit at 10 GHz. The required
sampling rate for the DS channels was 40 GSa/s due to the
simultaneous use of the ONU (both for DS LO and US
transmitter) laser enabled by heterodyne detection. The offline
DSP for the demodulation of the received DS signals (Alamouti-
coded OFDM QPSK and 16-QAM) is described in the Methods
section.

The ONU transmitter utilised the second output port of the
3-dB split DFB laser to generate the US signal, as shown in Fig. 3.
The output was used as a source laser for the single-drive MZM
with a 3-dB bandwidth of 10 GHz which was driven by a pulse
pattern generator operating at 10.7 Gb/s. The modulator was
biased at its null point to generate the BPSK signal, as shown in
the inset (c) of Fig. 3. The bandwidth of the US transmitter
electronics was limited to 7 GHz using a Bessel low-pass filter
(LPF) to densely place the US and DS signals, as discussed above.
It is crucial to note that a conventional 3-dB coupler with a 30 dB
return loss was sufficient to combine the DS and US signals over
37.6 km transmission in the ONU, thanks to the achieved high
receiver sensitivity enabled by the simplified coherent receiver. It
was replaced with an optical circulator when the link length was
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increased to 108 km. This issue is further discussed in the
Transmission demonstrations section.

Sensitivity evaluation in back-to-back operation. First, the
optimum frequency offset between the DS and US channel was
determined in single channel bidirectional operation by
monitoring the bit error ratio (BER) performance of the DS
channel in the presence of the US signal. It was tested with
US transmitter powers of up to 15 dBm using the method
described in ref. 24. The frequency offset was controlled by
varying the ONU laser wavelength, operating at 10.5 dBm power
at the photodiode input. It should be noted that such high LO
power managed to be launched since the insertion loss of the
proposed simplified coherent receiver, requiring only a 3-dB
coupler (no PBSs and 90° hybrids), is ~7 dB lower than that of the
conventional PPDI coherent receiver through the excess insertion
loss due to these components. The offset was swept from 7.5 GHz
to 17.5 GHz at −40 dBm received power, achieving a BER of 10−3,
as shown in Fig. 4. To minimize the penalty due to the back-
reflections in the 3-dB coupler, the optimum spacing between the
counter-propagating channels was found to be ≥11 GHz. Sig-
nificant performance degradation was observed below 11 GHz
due to the linear crosstalk between the DS and back-reflected US
signals. On the other hand, the coherent receiver and ADC
bandwidths were the limiting factors above 14 GHz. Thus, 12.5
GHz, which is compatible with the ITU grid, was chosen as the
frequency offset between the DS and US channels. The robustness
to linear crosstalk between the DS and US channels was also
achieved due to the frequency selectivity of the coherent ONU
receiver.

Following the selection of the frequency offset, the receiver
sensitivities for the DS (Alamouti-coded OFDM QPSK) and US
(BPSK) signals operating at 10.7 Gb/s were measured to be −40.9
and −38.8 dBm, respectively, at the HD-FEC threshold (assumed
to be 4 × 10−3), as shown in Fig. 5 along with their received
constellation diagrams at the HD-FEC threshold shown in the
insets (a) and (b). The 2 dB performance difference between the
signals was due to the fact that the US transmitter electronics’
bandwidth was limited to 7 GHz using a LPF. The distortion
caused by the filtering can also be clearly observed from the eye
diagram, shown in the inset (c) of Fig. 3. To further demonstrate
the phase-diversity of the proposed polarisation-independent
coherent receiver, and increase the achievable spectral-efficiency,

the sensitivity performance of Alamouti-coded OFDM 16-QAM
with the received constellation at the HD-FEC threshold are also
presented in Fig. 5. The required receiver sensitivity at the HD-
FEC threshold was found to be −32 dBm. A total sensitivity
penalty of 9 dB was observed when the modulation format was
switched from QPSK to 16-QAM as it is highly susceptible to
laser phase noise and nonlinear distortion caused by clipping
compared to QPSK, i.e., 6.7 dB degradation in sensitivity due to
the decrease in minimum Euclidean symbol spacing, 0.8 dB due
to the limited resolution of DACs/ADC, and 1.5 dB due to the
residual phase noise.

Transmission over 37.6 km. Initially, the US launch power was
optimised while the DS transmitter was switched off to maximise
its power budget. The optimum launch power per channel for the
US (BPSK) signal was found to be 7 dBm. Once, the launch power
for the US signal was determined, the DS transmitter was
switched on and its launch power was similarly optimised in the
presence of US signal operating at its optimised launch power.
The optimum launch power per channel for the DS (Alamouti-
coded OFDM QPSK) signal was found to be 4 dBm. A power
budget of 44.5 dB (at the HD-FEC threshold) over an installed
SSMF at a transmission distance of 37.6 km was achieved for all
DS and US channels, as presented in Fig. 6a. Note that the system
power budget is determined by the channel exhibiting the
worst performance, that is Channel #2. Following the QPSK
transmission, the optimum launch power per channel was
increased to 6.5 dBm for the Alamouti-coded OFDM 16-QAM
signal. Consequently, the achieved power budget was found to be
reduced to 38.5 dB due to the higher required received signal
power of the Alamouti-coded OFDM 16-QAM signal, but the
achieved bit rate for the DS channels was doubled, as shown in
Fig. 6a. In both transmission experiments, a variation of ±0.5 dB
in achieved power budgets across the channels is observed due to
the small power variations between the channels, as can be seen
from the optical spectra shown in the insets (a) and (b) of Fig. 3.
Assuming that a 3-dB splitter has a typical loss of 3.5 dB, the
power budgets of 44.5 and 38.5 dB enable 1:512- and 256-way
power splits (the number of subscribers) plus 2.6 and 0.5 dB
sensitivity margins over a transmission distance of 37.6 km SSMF,
respectively. Such exceptional power budgets were achieved due
to the high receiver sensitivity, frequency selectivity, and the
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robustness to chromatic dispersion that are all facilitated by the
coherent technology.

The significance of this demonstration is that it is commensu-
rate with the NG-PON2 standards, which specify a 100 GHz grid
and 40 Gb/s aggregate data rate over a transmission distance of
40 km of SSMF. At this transmission distance, our proposed
coherent ONU transceiver offers 8 and 4 times higher split ratios
(number of subscribers) using Alamouti-coded OFDM QPSK and
16-QAM signals, respectively, compared to the NG-PON2
standards. Thus, such demonstrations provide important markers
for comparison. In addition, typically an optical circulator is used
to couple the DS and US signals (both in OLT and ONU sides) in
research studies even though the integration of a circulator in an
ONU transceiver is challenging due to the ONU’s stringent size
requirements. Therefore, in practice, it is preferable to use a 3-dB
coupler instead of an optical circulator, particularly in the ONU.
However, a 3-dB coupler has 20–30 dB less isolation which
implies that sensitivity penalties might result from the back-
reflected DS or US signals. Due to the high sensitivity and
frequency selectivity of the proposed coherent receiver, the
isolation provided by the 3-dB couplers was adequate to
successfully couple and bidirectionally transmit the DS (both
Alamouti-coded OFDM QPSK and 16-QAM) and US signals
with negligible sensitivity penalties over a distance of 37.6 km of
installed SSMF, as shown in Fig. 6a.

Transmission over 108 km-long-reach WDM-PON demon-
stration. The network was next configured to increase the total
transmission distance to 108 km (compatible distance for future
long-reach PON technology3, 25) with 27.6 dB total link
attenuation. 10.7 Gb/s Alamouti-coded OFDM QPSK as the DS
signal and single-carrier BPSK as the US signal were transmitted
bidirectionally at their optimum launch powers (as discussed in
the previous section) over a 108 km of installed SSMF. Compared
with the previous transmission experiments, similar power
budgets for each channel were achieved for this network
configuration (Fig. 6b). The scheme offers a 1:16-way power split

(number of subscribers) with a 2.4 dB sensitivity margin without
the use of mid-span amplification or an opto-electronic extender
at a transmission distance of 108 km over the installed SSMF. It is
important to note that, although there was no significant linear
crosstalk between DS and US channels, the resolution of the
sampling scope was dominated by the back-reflected US signal
from the 3-dB coupler in the ONU. Therefore, the coupler was
replaced with an optical circulator only in the ONU to achieve
higher isolation between the DS and US signals. This could be
easily avoided by using an electrical band-pass filter (BPF) with a
3-dB bandwidth of 10 GHz having cut-off frequencies of 8 and 17
GHz, which was not available during the experiment. In the OLT,
an electrical LPF with a 3-dB bandwidth of 7 GHz was used to
filter out the back-reflected DS signal. This demonstration
matches well with the typical transmission distance requirements
for future generation long-reach WDM-PON systems25.

We next extrapolated the desired NG-PON2 power budget and
the achieved power budgets to distances of up to 120 km to
estimate the achievable splitting ratios with respect to the
transmission distance, as shown in Fig. 7. In this analysis, the
achieved power budgets of 44.5 and 38.5 dB for the Alamouti-
coded OFDM QPSK and 16-QAM signals were used whereas the
NG-PON2 power budgets were considered to be 31 and 32.5 dB,
respectively, due to the difference in launch power per channel in
the two demonstrations2. The ODN used in this work has 31 dB
loss (=3.5-dB per splitter × 64 users + 38 km × 0.26 dB/km), and
hence, it can be considered as class N2, allowing a launch power
per channel between 5 and 9 dBm, as indicated in Tables 11–5
at p. 24 in ref. 2. Note that the loss of 1:2-way power split
and the average fibre attenuation were assumed to be 3.5 dB and
0.26 dB/km, respectively. The figure exhibits that the achieved
power budgets at a given transmission distance, e.g., say 40 km,
can support four and eight times more subscribers than the
NG-PON2 standards, respectively. Alternatively, the reach of an
optical access network can be extended from 40 km to 65 km and
90 km at a given number of subscribers, e.g., say 64 users, whilst
offering 21.4 Gb/s and 10.7 Gb/s per user using QPSK and
16-QAM signals, respectively.

Discussion
Intensity modulation/direct detection (IM/DD) transceivers using
TDM signaling (the currently employed technology) will be
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ultimately inadequate to offer multi-gigabit/s per user broadband
connections, as discussed in the Introduction. In contrast, a
WDM-PON architecture offers promising solutions since each
user is assigned to a different wavelength, i.e., no bandwidth
sharing among the users is required. Moreover, it is scalable to
even higher data rates per user and compatible with the existing
passive split-based ODN infrastructures.

The proposed polarisation-independent (PI) receiver,
comprising just a 3-dB coupler and a single balanced photo-
detector, uses the simplest (minimum) possible optical
architecture for a coherent receiver, corresponding to a 75%
reduction in the number of photodetectors compared to the
conventional polarisation- and phase-diverse coherent receiver
whereas the direct detection receiver consists of an optical BPF
followed by a single-ended photodiode. The PI coherent receiver
is able to operate at a bit rate of 10.7 Gb/s Alamouti-coded
OFDM signal requiring just 59 photons-per-bit (−40.9 dBm
receiver sensitivity) whereas, to the best of our knowledge, the
highest reported receiver sensitivity for a 10 Gb/s TDM-OOK
signal achieving the HD-FEC threshold is −27.2 dBm (~1400
photons-per-bit), and require the use of an APD receiver26, as
shown in Fig. 8.

A direct detection alternative to a coherent receiver, which
ostensibly offers a comparable optical complexity, electrical
power requirement, and power sensitivity, is a single-photodiode
receiver with optical pre-amplification. In this receiver design,
the LO laser in the coherent system is substituted for an optical
pre-amplifier. For many coherent PON configurations, this would
be a reasonable comparison, however for the simplified coherent
receiver presented herein, the use of a single laser for both the US
signal and LO means that only a single laser is present in
the ONU (equivalent to the direct detection ONU without
pre-amplification, which requires a laser for US transmission).
The simultaneous use of ONU laser comes at the expense of
higher electronic complexity (approximately doubling the
required ADC bandwidth and sampling rate) compared to a
direct detection receiver. The maximum ONU laser power used
in the proposed coherent receiver was 14 dBm, which was shared
between the US signal and the LO, and is comparable to the
maximum laser power used for current PONs. Furthermore,
midspan device-based solutions exist to make direct detection
solutions more competitive with coherent solutions in terms of
maximum reach. For example, arrayed waveguide gratings
(AWGs) eliminate mid-span power splitter losses, and enable

WDM for direct detection systems. Notwithstanding the
complexity of including thermally stabilised AWGs at a remote
node, it should be noted that the reach advantages apply equally
to direct detection and coherent systems; with the advantage in
the coherent scenario that the system is not dispersion-limited
and requires no AWGs since coherent detection is inherently
wavelength/frequency selective.

The achieved high sensitivity makes the polarisation-inde-
pendent coherent receiver particularly attractive in such appli-
cations. Exceptionally high receiver sensitivity yields an increase
in the number of subscribers supported in a network, i.e., redu-
cing the operating cost-per-subscriber. Moreover, the proposed
low-complexity coherent ONU is comparable in complexity to
the IM/DD ONU transceiver, as shown side-by-side in Fig. 9, as
IM/DD ONU transceiver requires a laser to generate an US
signal. The other key advantages of the proposed coherent ONU
transceiver are: (1) linear optical field detection, yielding high
achievable spectral-efficiency (through the realisation of high-
order modulation formats, e.g., M-QAM) and robustness to
chromatic dispersion, enabling longer reach (consolidating back-
haul and access spans) in long-reach PONs. Hence, this
technology potentially offers further cost savings by extending
the physical reach of the access network to the core network
using no mid-span amplification or opto-electronic extenders.
(2) Frequency selectivity for colourless network operation, i.e., no
need for AWGs used as demultiplexers in WDM-PONs. (3) Last
but not least, the proposed coherent ONU has the potential to be
compatible with the recently approved PON standard NG-PON2,
requiring a typical power budget of 31 dB (the proposed solution
exceeds this, offering a power budget of 44.5 dB), and it can
co-exist with the previous G-PON systems, enabling the gradual
migration of subscribers.

The complexity of the proposed coherent ONU transceiver can
be further reduced by using a directly modulated laser, removing
the need for external modulation such as an electro-absorption or
Mach-Zehnder modulator, as demonstrated in ref. 27. In addition,
if an Alamouti-coded single carrier transmission (rather than
OFDM signaling) can be realized for the DS signal, the required
DSP for the proposed coherent ONU can be reduced, such as
requiring no frame synchronization or FFT operations, yielding
lower power consumption. However, the conventional receiver
DSP utilised for single carrier systems (2 × 2 multiple-input-
multiple-output equaliser followed by carrier phase recovery
using Viterbi and Viterbi algorithm28) cannot be performed in
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the case of single carrier Alamouti-coded system due to the
conjugation of a symbol in the received symbol-pair, as shown in
Eq. (5) in ref. 22. Besides this, Alamouti polarisation-time block
coding has an orthogonal structure so that it is highly susceptible
to phase noise, introducing random rotations, and reduces the
block code orthogonality. Hence, either a joint channel and car-
rier phase estimation scheme needs to be performed, as proposed
and tested in simulations in ref. 29 or the carrier phase estimation
needs to be performed prior to the channel estimation.

Methods
Digital signal processing. In the OLT transmitter, the DS signal modulation
format was chosen to be Alamouti-coded OFDM QPSK and 16-QAM. The OFDM
signal frames were generated offline in Matlab using mutually decorrelated de
Bruijn bit sequences of length 216. In both cases, the fast Fourier transform (FFT)
size was chosen to be 512, of which 316 subcarriers were found to be sufficient to
achieve 10.7 and 21.4 Gb/s per channel, respectively. 18 subcarriers were dropped
around the DC frequency (so-called null subcarriers) to insert an optical carrier,
which was utilised in frequency offset correction (FOC) and phase noise mitigation.
Note that dropping 18 subcarriers was found to be sufficient to mitigate the phase
noise, originated from 100 kHz transmitter laser and 1MHz LO laser, as described
in the DSP in the ONU Section below. The carrier was inserted (by biasing the
modulator close to its null point) on both polarisation modes to avoid any power
fading on the detected polarisation state during fibre transmission due to polar-
isation rotation for robust FOC and phase noise mitigation. The optical carrier-to-
signal power ratio (CSPR) per polarisation was set to −9 dB. Note that the optimum
CSPR was found to be the same for both QPSK and 16-QAM signals. Two highly
correlated OFDM symbols were inserted on both polarisation modes for the
Alamouti-coded OFDM frame synchronization for the same reason, as stated for
the FOC and phase noise compensation. Pair-wise training symbols (TSs) (20 of
them at the start of the OFDM frame, and 4 of them at every 34th OFDM symbol)
were used for channel estimation. In the time domain, Alamouti coding was
applied to the orthogonal polarisation states, as discussed in the Principle of
operation and Alamouti coding section and detailed in refs. 20, 22. Pre-emphasis
was applied to optimise the transmitter signal-to-noise ratio, degraded due to the
DACs’ finite bandwidth, and subsequently, a 512-point inverse FFT was applied to
generate the orthogonal subcarriers. Chromatic dispersion tolerance was achieved
using a cyclic prefix, appending 25 samples per OFDM symbol. Finally, the OFDM
waveforms were clipped to minimise the distortion due to the DACs’ limited
resolution, i.e., setting the peak-to-average-power ratios of QPSK and 16-QAM
waveforms to 7.4 and 9.2 dB, respectively. For QPSK and 16-QAM signaling
schemes, the raw bit rates of each DS channel were set to 11.3 and 22.6 Gb/s,
respectively. In both cases, a 4% overhead cyclic prefix to achieve tolerance to the
accumulated chromatic dispersion, and a 5% overhead pair-wise TSs for channel
estimation were inserted. This yields total net bit rates of 10.7 and 21.4 Gb/s,
respectively, with a HD-FEC threshold of 4 × 10−3 being assumed.

The US channels were detected using a PPDI coherent receiver, and digitized
using four ADCs (two quadratures for each polarisation) in the OLT receiver. The
receiver DSP was performed offline in Matlab. Following de-skewing and
orthogonalization, the received signal was resampled to 2 samples-per-symbol.
Constant modulus algorithm based adaptive equalisation was applied using a
T/2-spaced 11-tap real-valued equaliser, as described in ref. 30. The multiple-input-
single-output equaliser taps were updated using the least mean squares algorithm.
Prior to carrier phase estimation, the intermediate frequency (IF) offset of
~100MHz was estimated and corrected using the block-based method (removing
the data by raising to the second power, and consequently, locating the peak
frequency using a FFT over a window of length 1024 samples). Carrier phase
estimation was performed by applying the Viterbi-Viterbi algorithm31, averaging
the complex field over 64T-spaced sliding window to improve the estimation
performance. Finally, symbols were mapped to bits making hard decisions, and the
BER was estimated by error counting over 218 bits.

DSP in the ONU. In the ONU receiver, the signal was digitised using a single
ADC and processed offline in Matlab. Since the heterodyne detection was used,
the received Alamouti-coded OFDM electrical signal was double sideband
(real-valued), the frequencies from DC to 7 GHz allocated for the US signal
whereas the received DS signal occupied the frequencies from 8 to 17 GHz, and the
optical carrier inserted at DC frequency in the DS transmitter appeared as an IF
tone. The received signal was down-converted at an IF of 12.5 GHz to re-construct
the in-phase and quadrature components. The OFDM frame synchronization was
achieved using the Schmidl and Cox algorithm32. Following the synchronization,
residual frequency offset was corrected by locating the down-converted IF
pilot-tone frequency. Since the phase noise distorted the pilot tone exactly the
same way as the signal, the pilot tone was filtered using a 5th-order Butterworth
LPF (a 3-dB bandwidth of 20 MHz), subsequently conjugated and multiplied with
the received signal to mitigate the random phase rotations due to the laser phase
noise33, 34. The cyclic prefix was stripped off and a 512-point FFT was applied prior

to channel estimation. Training symbols were utilised to estimate the channel
response via the zero-forcing criteria35 using an Alamouti decoder22, followed by
the BER estimation through error counting over 218 bits. There is no DSP required
for the US transmitter to preserve the simple implementation of the ONU
transceiver.

Data availability. The data that support the findings of this study are available on
request from the corresponding author (M.S.E.). The data are not publicly available
due to the research participant privacy/consent.
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