
Bidirectionalization Transformation Based on
Automatic Derivation of View Complement Functions

Kazutaka Matsuda† Zhenjiang Hu† Keisuke Nakano† Makoto Hamana‡ Masato Takeichi†
†The University of Tokyo
kztk@ipl.t.u-tokyo.ac.jp

{hu,ksk,takeichi}@mist.i.u-tokyo.ac.jp

‡Gunma University
hamana@cs.gunma-u.ac.jp

Abstract
Bidirectional transformation is a pair of transformations: a view
function and a backward transformation. A view function maps one
data structure called source onto another called view. The corre-
sponding backward transformation reflects changes in the view to
the source. Its practically useful applications include replicated data
synchronization, presentation-oriented editor development, tracing
software development, and view updating in the database commu-
nity. However, developing a bidirectional transformation is hard,
because one has to give two mappings that satisfy the bidirectional
properties for system consistency.

In this paper, we propose a new framework for bidirectionaliza-
tion that can automatically generate a useful backward transforma-
tion from a view function while guaranteeing that the two trans-
formations satisfy the bidirectional properties. Our framework is
based on two known approaches to bidirectionalization, namely the
constant complement approach from the database community and
the combinator approach from the programming language commu-
nity, but it has three new features: (1) unlike the constant comple-
ment approach, it can deal with transformations between algebraic
data structures rather than just tables; (2) unlike the combinator ap-
proach, in which primitive bidirectional transformations have to be
explicitly given, it can derive them automatically; (3) it generates
a view update checker to validate updates on views, which has not
been well addressed so far. The new framework has been imple-
mented and the experimental results show that our framework has
promise.

Categories and Subject Descriptors I.2.2 [Artificial Intelligence]:
Automatic Programming—Program transformation, Program syn-
thesis; D.1.1 [Programming Techniques]: Applicative (Functional)
Programming; H.2.3 [Database Management]: Language—Data
manipulation languages, Query languages

General Terms Languages, Design

Keywords Bidirectional Transformation, View Updating, Pro-
gram Transformation, Automatic Program Generation, Program
Inversion.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP ’07, 1–3, October 2007, Freiburg, Germany.
Copyright c© 2007 ACM 978-1-59593-815-2/07/0010. . . $5.00

1. Introduction
There are many situations in which one data structure, called
source, is transformed to another, called view, in such a way that
changes on the view can be transformed back to those on the orig-
inal data structure. This is called bidirectional transformation, and
practical examples include synchronization of replicated data in
different formats (Foster et al. 2005), presentation-oriented struc-
tured document development (Hu et al. 2004), interactive user
interface design (Meertens 1998), coupled software transforma-
tion (Lämmel 2004), and the well-known view updating mech-
anism which has been intensively studied in the database com-
munity (Bancilhon and Spyratos 1981; Dayal and Bernstein 1982;
Gottlob et al. 1988; Hegner 1990; Lechtenbörger and Vossen 2003).

To be concrete, suppose that we have a list of students and
professors (the source), and we want to create a view that consists
of all the students. This view can be defined by the following view
function.

students : Source → View
students [] = []
students (Student name grade major : ms)

= Student name grade major : students ms
students (Prof name position major : ms)

= students ms

To develop a bidirectional transformation, in addition to the view
function one needs to define another function, a backward trans-
formation function, which is used for view updating, i.e., reflects
changes on the view (such as modification of students’ names) to
the source. The following function studentsB

1 is a backward trans-
formation that accepts a changed view and the original source and
produces a new source.

studentsB : (Source × View) → Source
studentsB ([], []) = []
studentsB (Student n g m : ms, Student n′ g′ m′ : ss)

= Student n′ g′ m′ : studentsB (ms, ss)
studentsB (Prof n p m : ms, ss)

= Prof n p m : studentsB (ms, ss)

However, there are several limitations in manually writing a pair
of view function and backward transformation (such as students
and studentsB) to develop a bidirectional transformation. First, it
is difficult to prove that the two functions satisfy the bidirectional
property and form a bidirectional transformation (Section 2). Sec-
ond, the consistency of the two functions is difficult to maintain. A
small change in the view function may require a big change in the
backward transformation function. For instance, suppose we want
a view that contains only the names of the students who major in

1 The subscript B stands for “backward”.

Computer Science. While it is easy to give the following view func-
tion by composing another function with above the view function,
it requires more thinking to write a backward transformation.

cs students = cs ◦ students
cs [] = []
cs (Student name grade CS : ss) = name : cs ss
cs (: ss) = cs ss

Third, it is hard to automatically infer permitted changes in the
view. Backward transformation functions, such as studentsB, are
usually partial functions, disallowing some changes to the view.
For example, studentsB does not allow insertion of a new student
to the view. When the source and the view are huge, it is better to
have an inference system for validating view changes rather than to
directly compute backward transformation until an error message
appears.

Several methods for automatically deriving backward transfor-
mation functions from view definition functions have been pro-
posed to overcome these three problems. In the database commu-
nity, this issue, known as view updating problem, has been studied
for a long time (Bancilhon and Spyratos 1981; Dayal and Bernstein
1982; Gottlob et al. 1988; Hegner 1990; Lechtenbörger and Vossen
2003).

One known approach (Bancilhon and Spyratos 1981) is to con-
struct an injective function from the view function so that changes
on the image of the injective function can be reflected back to its do-
main by inversion. To do this, lost information in the view genera-
tion is gathered as a complement for later backward transformation.
Bancilhon and Spyratos proposed the concept of view complement
function and the method of view updating under constant comple-
ment. Generally speaking, for a view function from a source to a
view

f : S → V

a view complement function of f is a function from the source to
another view (called a complement view)

g : S → V ′

such that the tupled function

(f M g) : S → (V × V ′)

is injective. This view complement function, g, provides the infor-
mation that does not appear in the view generated by f . Then, for
an original source s, the updated source s′ corresponding to an up-
dated view v can be calculated by

s′ = (f M g)−1(v, g(s)).

Therefore, if a view complement function g can be derived and
the inversion of (f M g) can be calculated, that means we know
how to reflect changes on the view to the source. Since the de-
rived backward transformation depends on g, we should choose
an appropriate g. For example g = idS is the worst one because
the derived backward transformation is defined only on the input
(s, v) by v = f(s), i.e., no updates are allowed. This approach
has been applied to solving the view updating problem in the rela-
tional database system (Cosmadakis and Papadimitriou 1984; Lau-
rent et al. 2001; Lechtenbörger and Vossen 2003). In fact, deriva-
tion of view complement functions and inversion calculation are
simplified in the context of relational databases because views and
sources are sets of flat tuples, and view functions are queries in
a simple form being closed under composition. However, though
tree-structured data, e.g. XML, is now widely used, how to apply
the approach to view functions that can deal with general algebraic
data structures such as trees is still an open problem. The challenge
is to find a suitable form for these view functions such that they not

only have enough descriptive power and view complement func-
tions but are suitable for later inversion calculation.

Another approach, which has received increasing attention in
recent years, is to design a set of general combinators (Foster
et al. 2005; Hu et al. 2004; Meertens 1998) for constructing bigger
bidirectional transformations by composing smaller ones. A set of
primitive bidirectional transformations, each being defined by a
pair of view function and backward transformation, is prepared,
and a new bidirectional transformation is defined by assembling the
primitive transformations with a fixed set of general combinators
(Section 2.4.2). This approach has proved to be practically useful
for domain-specific applications, because primitive bidirectional
transformations for a specific application are easily determined,
designed, and implemented. Moreover, this approach is general
and can deal with trees other than relational tables provided that
suitable primitive bidirectional transformations on trees are given.
However, for an involved application or in a more general setting,
a lot of primitive bidirectional transformations may need to be
prepared, and it is still hard to verify whether a pair consisting of
a view function and a backward transformation forms a (primitive)
bidirectional transformation.

In this paper, we propose a new bidirectional transformation
framework that combines the advantages of the above two ap-
proaches: automatic bidirectionalization and ability to deal with
tree structures. We follow the combinator approach of keeping sep-
arate the design of primitive bidirectional transformations and the
design of composition methods for gluing smaller transformations,
but we borrow the idea of the view complement approach to ob-
tain primitive bidirectional transformations that can manipulate ar-
bitrary algebraic data structures.

The key to our framework is a suitable language for describ-
ing primitive view functions. It should be sufficiently powerful to
specify various view functions over algebraic data structures, sim-
ple enough for derivation of view complement functions and in-
version, and suitable for use as components to be composed with
others. We choose a general first-order functional language and re-
quire view functions that are defined in the language to be affine
(each variable is used at most once) and in the treeless form (no
intermediate data structure is used in the definition). In fact, this
class of functions has been considered elsewhere in the context of
deforestation (fusion transformation) (Wadler 1990), where treeless
functions are used to describe basic computation components.

In our framework, view complement functions can be automat-
ically derived from view functions, and the derived view comple-
ment functions are suitable for tupling and inversion. Moreover,
updatability of views can be represented by a regular tree language
with which one can statically check whether changes in views are
valid or not without really performing backward transformation.

We have implemented all the ideas in this paper using a bidirec-
tionalizing system for automatically constructing backward trans-
formation functions from view functions. The derived backward
transformation function is correct in the sense that it forms a bidi-
rectional transformation with the view function, useful in the sense
that all the tracing information between the source and the view is
recorded in such a way that any change in the view element that has
a corresponding element in the source can be reflected to the source,
powerful in the sense that it can deal with bidirectional transforma-
tion between arbitrary algebraic data structures such as lists and
trees, and equipped with an inference system for validating changes
in the view.

This paper is organized as follows. We start by explaining the
basic concepts of bidirectional transformation in Section 2. Then,
after presenting an overview of our system in Section 3, we define
a language for view definition in Section 4, show how to derive
view complement functions in Section 5, explain how to generate

backward transformation functions based on tupling and inversion
in Section 6, and give an algorithm for updatability check in Sec-
tion 7. We illustrate the whole bidirectionalization procedure with
a concrete example in Section 8. Finally, we discuss related work
in Section 9, and conclude the paper and highlight some future di-
rections in Section 10.

For proofs (of all theorems), which are omitted in this paper,
please see Matsuda et al. (2007).

2. Bidirectional Transformation
In this section, we briefly review notations, the basic concept of
bidirectional transformation (i.e., view updating) (Bancilhon and
Spyratos 1981; Dayal and Bernstein 1982; Gottlob et al. 1988;
Hegner 1990; Lechtenbörger and Vossen 2003; Foster et al. 2005),
and the technique of bidirectionalization based on derivation of
view complement functions (Bancilhon and Spyratos 1981). These
will serve as the basis of our approach.

2.1 Notations
Our notations, if not explained, follow Haskell2, a functional pro-
gramming language. For a partial function f , we write f(x)↓ if
f(x) is defined, and write f(x) = ⊥ otherwise. For a function
f : X → Y and a function g : X → Z, we define a tupled
function (f M g) : X → (Y × Z) by

(f M g)(x) = (f(x), g(x)).

For a partial function f : X → Y and a partial function g : X →
Y , we write f v g to denote ∀x ∈ X, f(x)↓ ⇒ f(x) = g(x).
Intuitively, f v g means that g is more widely defined than f .

2.2 View Function and Backward Transformation
Let V be the set of views and S be the set of sources. A total
function f : S → V that constructs a view from a source is called
view function. The following is an example of a view function

mapfst(Nil) = Nil
mapfst(Cons(Pair(a, b), x)) = Cons(a,mapfst(x))

that maps the source, a list of pairs, to the view, a list that contains
all the first components of the pairs in the original list.

A function that translates an update on views to that on sources
is called a backward transformation function. An update from x to
x′ is denoted as x ½ x′; e.g., Nil ½ Cons(A, Nil) represents the
update on the view of mapfst from Nil to Cons(A, Nil). Given a
view function f : S → V , a backward transformation function
ρ : (S × V) → S of f translates f(s) ½ v, an update on views, to
s ½ ρ(s, v), an update on sources, while satisfying the property:

∀s ∈ S, ∀v ∈ V, ρ(s, v)↓ ⇒ f(ρ(s, v)) = v.

This property reads that the updated source produced by the back-
ward transformation should not change the view with the view
function. In other words, for a source element s and v = f(s),
let u be a view update v ½ v′ and u′ a translated source update
s ½ ρ(s, v′), then the following diagram commutes.

-

6

-

6

S

V

S

V

f f

u′

u

It might be easier to understand a backward transformation function
ρ : (S×V) → S as a mapping that accepts an original source and a
changed view as input and produces a changed source as the result.

It is worth noting that backward transformation functions are
partial: ρ(s, v)↓ means that an update on views of f(s) ½ v is

2 Haskell 98 Report: http://www.haskell.org/onlinereport/

translated to an update on sources of s ½ ρ(s, v), and ρ(s, v) = ⊥
means that it prohibits the view update f(s) ½ v. Moreover, back-
ward transformation functions are not unique, and different defini-
tions give different translation policies. For instance, the following
is a backward transformation function of the view function mapfst :

ρ(s, v) =



s if v = mapfst(s)
⊥ otherwise,

which means that any change in the view is ignored and the source
remains unchanged.

2.3 Bidirectional Properties
A backward transformation function ρ and a view function f should
satisfy some bidirectional properties to guarantee consistency after
bidirectional transformation is carried out. The following properties
follow those in the closed view updating (Bancilhon and Spyratos
1981; Hegner 1990), where the source is completely hidden from
the users when the view is updated.

Let s ∈ S and v, v′ ∈ V . A backward transformation function
ρ : (S × V) → S and a view function f : S → V should satisfy
the following bidirectional properties.

ACCEPTABILITY
ρ(s, f(s)) = s

UNDOABILITY
ρ(s, v)↓ ⇒ ρ(ρ(s, v), f(s)) = s

COMPOSABILITY
ρ(s, v)↓ ∧ ρ(ρ(s, v), v′)↓ ⇒ ρ(ρ(s, v), v′) = ρ(s, v′)

Acceptability means that if there is no change in views there
should be no change in sources. Undoability means that all trans-
lated updates can be canceled by updates on views. Composability
means that the update translation should preserve the compositional
structure3, and translated results do not depend on the update his-
tory.

2.4 Bidirectionalization
Bidirectionalization is a program transformation that derives a
backward transformation function from a view function such that
the two functions satisfy the bidirectional properties. It is very
much related to the known view update problem in the database
community, which discusses how to translate updates on views to
updates on sources. We shall review two approaches on which our
method is based.

2.4.1 Constant Complement Approach
Bancilhon and Spyratos (1981) proposed a general approach to
bidirectionalization called constant complement view updating.

Definition 1 (View Complement Function). A function g : S →
V ′ is said to be a (view) complement function to a view function
f : S → V , if the tupled function f M g : S → (V × V ′) is
injective.

Intuitively, a view complement function of a view function pro-
vides information that is not visible in the view to a complement
view such that information from both views can uniquely deter-
mine a source. For example, let add be a function defined by
add(x, y) = x+y. Then, the function fst defined by fst(x, y) = x
is a view complement function of add . Note that the ranges of view
function f and its complement function g can be different. In fact,

3 Note that u1 = f(s)½v is translated to u′
1 = s½ρ(s, v), u2 = v½v′

is translated to u′
2 = ρ(s, v) ½ ρ(ρ(s, v), v′), and their composition

u = u1 ◦ u2 = f(s) ½ v′ is translated to u′ = s ½ ρ(s, v′) =
s ½ρ(ρ(s, v), v′) = u′

1 ◦ u′
2.

the range of the view complement function is unimportant. This
gives us freedom in derivation of view complement functions.

Finding a view complement function of a view function amounts
to bidirectionalization, provided that inversion of can be calculated
out (Bancilhon and Spyratos 1981). If a view complement function
exists, a backward transformation function can be obtained by in-
version. Let f be a view function and g be its view complement
function. The function upd〈f,g〉 defined by

upd〈f,g〉(s, v) = (f M g)−1(v, g(s)) (UPD)

is a backward transformation function and satisfies bidirectional
properties. The function upd〈f,g〉 may be partial. For example,
upd〈mapfst,id〉 defines the same function as ρ in Section 2.2, which
is defined only on the input (s, v) by v = mapfst(s).

This general bidirectionalization framework has been used to
bidirectionalize queries on relational database system (Cosmadakis
and Papadimitriou 1984; Laurent et al. 2001; Lechtenbörger and
Vossen 2003): derivation of view complement functions and inver-
sion calculation is not difficult in this setting because views and
sources are tuples and view definition functions are queries with a
normal form being closed under composition. It is, however, un-
clear how to extend this approach to view functions that can deal
with general algebraic data structures such as trees. In this paper,
we intend to solve this problem.

2.4.2 Compositional Approach
The compositional approach (Foster et al. 2005; Hu et al. 2004;
Meertens 1998) is to derive backward transformation functions
based on the compositional structure of view functions. A view
function is supposed to be defined by

• a primitive view function, or
• a composition of simpler view functions via several combina-

tors.

The combinators for gluing view functions includes familiar con-
structs from functional programming languages:

• composition: f ◦ g defined by

(f ◦ g) x = f(g x)

• mapping: map f defined by

map f [x1, . . . , xn] = [f x1, . . . , f xn]

• product: f × g defined by

(f × g)(x, y) = (f x, g y)

• conditional: if p then f else g defined by

(if p then f else g) x =



f x, if p x
g x, otherwise

It has been shown (Foster et al. 2005) that if one can prepare
backward transformation functions for primitive view functions,
one can get backward transformations for view functions that are
constructed by primitive view functions and the above combinators
for function gluing. The present paper shows how to automatically
derive backward transformations for primitive view functions over
arbitrary algebraic data structures.

2.5 Better Backward Transformation
Generally, there are many backward transformation functions for a
given view function. Recall the constant complement approach to
bidirectionalization and the view function add in Section 2.4.1. All

View Function

Bidirectional Transformation Engine

Deriving Complement Function

Tupling

Inversion

Backward TransformationView Update Checker

Figure 1. System Architecture

functions below are view complement functions of add

fst(x, y) = x

sub(x, y) = x − y

idpair (x, y) = (x, y)

and will lead to the following backward transformation functions
based on the approach in Section 2.4.1.

upd〈add,fst〉((x, y), v) = (x, v − y)

upd〈add,sub〉((x, y), v) = ((v + (x − y))/2, (v − (x − y))/2)

upd〈add,idpair 〉((x, y), v) = (x, y), if v = x + y

These backward transformation functions have different updatabil-
ity: the first two allow any modification of the view, but the last one
disallows arbitrary modification of the view because view v must
be the same as x + y. Bancilhon and Spyratos (1981) introduce the
following preorder, under which smaller view complement func-
tions give more updatability.

Definition 2 (Collapsing Order). Let f : S → V, g : S → V ′ be
functions. The collapsing order, -, is a preorder defined by

f - g ⇐⇒ ∀s, s′ ∈ S, g(s) = g(s′) ⇒ f(s) = f(s′).

Order f - g means that, with respect to the results of mappings, f
collapses input more than g. Hence, all elements in the input col-
lapse into one in the result by the minimal functions, i.e., constant
functions, and nothing collapses by the maximal functions, i.e., the
injective functions. For the above examples, idpair is greater than
the others because it keeps the values of the input. The functions
fst and sub are not comparable.

Note that a complement view keeps information that does not
appear in the view, and that the backward transformation func-
tion derived from the view complement function should forbid any
change in the information that the complement has kept. So, a
smaller view complement function gives a better backward trans-
formation function because it keeps less information. Formally, we
have the following theorem (Bancilhon and Spyratos 1981).

Theorem 1. Let f : S → V be a view function, and g1 : S → V ′

and g2 : S → V ′′ be two complement functions of f . If g1 - g2,
then

upd〈f,g2〉 v upd〈f,g1〉
holds.

3. An Overview
Before we discuss the details of our new approach to bidirection-
alization, we present an overview of our system, explaining its ar-
chitecture and relation with the later sections and illustrating with

an example how it derives backward transformation functions from
view functions that manipulate arbitrary algebraic data structures,
including trees.

Figure 1 shows the architecture of our bidirectionalization sys-
tem. The input to our system is a view function. The output consists
of a backward transformation function and a checker that validates
changes in the view. A change in the view is said to be valid if it
can be reflected back to the source by the backward transformation
function. The core part is the bidirectional transformation engine
mapping from the input to the output.

3.1 View Function
Views are generated by application of view functions to sources.
View functions are defined in a compositional way like

f = (f1 ◦ f2) × map f3.

More precisely, a view function is a combination of primitive view
functions and the gluing combinators, which were explained in
Section 2.4.2.

Each primitive function is in the affine, treeless form defined
by a constructor-based first-order functional language with pattern
matching (Section 4). The patterns and constructors in the language
make it easy to code primitive view functions from one algebraic
data structure to another. As a simple example, consider generation
of a view of a list from two lists by appending them together. This
view function can be defined in our language as follows.

append(Nil, y) =̂ y
append(Cons(a, x), y) =̂ Cons(a, append(x, y))

It decomposes the data by pattern matching and constructs new data
by data constructors.

3.2 Bidirectional Transformation Engine
Since our view functions are compositional, our bidirectionaliza-
tion basically consists of two parts:

• bidirectionalizing primitive view functions, and
• bidirectionalizing the gluing view functions combinators.

Given that bidirectionalization of combinators has been well stud-
ied (Foster et al. 2005; Hu et al. 2004), we will focus on bidirec-
tionalization of primitive view functions, though the whole system
should combine the two.

3.2.1 Deriving View Complement Functions
Our system starts by automatically deriving a small (with respect
to the collapsing order in Definition 2) view complement function
for a given view function so that tupling the two functions gives
an injective function (Section 5). For example, a view complement
function automatically derived by our system for append is as
follows.

appendc(Nil, y) =̂ B1

appendc(Cons(a, x), y) =̂ B2(appendc(x, y))

In this definition, B1 and B2 are data constructors automatically
generated by the system. A close look at the definition reveals that
the derived view complement function actually computes the length
of the first argument. One can easily verify that although append is
non-injective, tupling append and appendc, append M appendc,
is injective.

3.2.2 Deriving Backward Transformation Functions by
Tupling and Inversion

After obtaining the view complement function, our system gen-
erates a backward transformation function based on two program

transformations, tupling and inversion, based on the constant com-
plement approach to bidirectionalization (Section 6).

For the example append , our system first automatically derives
the following definition for the tupled function appendM , appendM
appendc.

appendM(Nil, y) =̂ (y, B1)
appendM(Cons(a, x), y) =̂ (Cons(a, s), B2(t))

where (s, t) =̂ appendM(x, y)

Then, it derives the following inverse of the tupled function.

(appendM)
−1

(y, B1) =̂ (Nil, y)

(appendM)
−1

(Cons(a, s), B2(t)) =̂ (Cons(a, x), y)

where (x, y) =̂ (appendM)
−1

(s, t)

Finally, it applies Equation (UPD) in Section 2.4.1 and produces
the following backward transformation function.

upd〈append,appendc〉(s, v) =̂ (appendM)
−1

(v, appendc(s))

To see what the derived backward transformation function ac-
tually is, let us rename upd〈append,appendc〉 to appendB. Applying
the fusion transformation (Wadler 1990) can yield the following
definition.

appendB((Nil, y), v) =̂ (Nil, v)
appendB((Cons(a, x), y), Cons(b, v)) =̂ (Cons(b, s), t)

where (s, t) =̂ appendB((x, y), v)

That is, appendB is such a function, accepting the original source
(x, y) and a new view v and returning a new source (x′, y′), where
x′ is the first n elements of v and y′ is the rest. Here, n is the length
of x.

3.2.3 Generating View Update Checker
As seen in the above example, a derived backward transformation
function may be partial: function appendB is defined only if the
length of the updated view is not less than the length of the first list
in the original source. Therefore, the backward transformation will
fail if an updated view does not fall in its domain.

Our system automatically generates from a given view func-
tion, together with the original source, a view update checker, rep-
resented by a tree automaton, which can check whether an update
on the view is valid or not. Section 7 explains in detail how to gen-
erate view update checkers, including a generated automaton for
the example append in this section.

4. View Definition Language
In this section, we introduce our language, VDL, for defining view
functions. It is a first-order functional programming language that
is similar to Wadler’s language for defining basic functions for
fusion (Wadler 1990).

4.1 The Language VDL

The syntax and semantics4 of the language is given in Figure 2. A
program of our language consists of a set of function definitions,
and each function is defined by several rules of the form

f(p1, . . . , pn) =̂ e.

To simplify our presentation, we assume that there is no overlap
among rules of the same function, i.e., no two patterns in the left-
hand side overlap.

There are two important syntactic restrictions on each rule dec-
laration.

4 Note that VDL has the call-by-value semantics, where values are expres-
sions that consists of only constructor symbols in C.

Syntax:

rule ::= f(p1, . . . , pn) =̂ e

p ::= C(p1, . . . , pn) constructor pattern
| x variable pattern

e ::= C(e1, . . . , en) constructor application
| f(x1, . . . , xn) function call
| x variable

where C ∈ C and f ∈ F are of arity n, and x ∈ X .

Operational Semantics:

(Con)
e1 ⇓ v1 · · · en ⇓ vn

C(e1, . . . , en) ⇓ C(v1, . . . , vn)

(Fun)

f(p1, . . . , pn) =̂ e ∈ R
∃θ, f(p1θ, . . . , pnθ) = f(v1, . . . , vn) eθ ⇓ u

f(v1, . . . , vn) ⇓ u

where “eθ” denotes the expression that is obtained by replacing any
variable x in e with the value θ(x), and v1, . . . , vn denotes values:
values are expressions that consist only of constructor symbols in C.

Figure 2. View Definition Language

• The expression, e, of a rule is in a treeless form (Wadler 1990),
i.e., a function call, which may appear inside a constructor
application but never appears inside another function call. It
can be seen in Figure 2 that each argument to a function call
is a variable instead of an expression. This restriction ensures
no intermediate data structure in e.

• Variable occurrences in a rule are affine, i.e., every variable in
the left-hand side of a rule occurs at most once in the corre-
sponding right-hand side. This restriction ensures that there is
no duplication of data.

These two syntactic restrictions play an important role in our auto-
matic bidirectionalization framework, simplifying the generation of
a view complement function from a view function written in VDL.

Though restricted, this language is sufficiently powerful to de-
scribe many interesting view functions. It is not difficult to see that
the view functions we have seen so far, such as students , mapfst ,
and append , can be coded in VDL with slight syntactic modifica-
tion. In the following, we give more examples of view functions in
VDL.

Example 1 (Identity View Function). The simplest view function
is the identity function, which creates a view that is the same as its
source. It can be defined in VDL as follows.

id(x) =̂ x

Example 2 (Projection View Functions). The projection view func-
tions are useful for selecting a component from the source. They
can be defined in VDL as follows.

fst(x, y) =̂ x
snd(x, y) =̂ y

Example 3 (Constant View Functions). A constant view function
is useful for creating a view that is independent of its source. An
example of the constant view function is defined in VDL as follows.

nil(x) =̂ Nil

Example 4 (Recursive View Functions on Natural Numbers).
Many view functions are defined recursively by traversing over

data structures. For example, the view function for addition of two
natural numbers is defined by

add(Z, y) =̂ y
add(S(x), y) =̂ S(add(x, y)).

As in Haskell, we use a symbol starting with an uppercase letter to
denote a constructor and a symbol starting with a lowercase letter to
denote a function or a variable. Function add is defined by travers-
ing over one data structure in the source, while the following func-
tion, max , for computing the maximum of two natural numbers is
defined by simultaneously traversing over two data structures in the
source.

max(Z, y) =̂ y
max(S(x), Z) =̂ S(x)
max(S(x), S(y)) =̂ S(max(x, y))

Example 5 (Recursive View Functions on Lists and Trees). Our
language can be used to define view functions on various data
structures such as lists and trees. As a view function on lists, the
function zip for zipping two lists is defined below.

zip(Nil, y) =̂ Nil
zip(Cons(a, x), Nil) =̂ Nil
zip(Cons(a, x), Cons(b, y)) =̂ Cons(Pair(a, b), zip(x, y))

As a view function on trees, the function for flipping a binary tree
is defined below.

flip(Leaf) =̂ Leaf
flip(Node(n, l, r)) =̂ Node(n,flip(r),flip(l))

4.2 Notations for Manipulating Programs in VDL

In the rest of this paper, we will discuss several program transfor-
mations and prove important properties for them. To do this, we
give a more formal definition of our programs in VDL, and prepare
some notations and functions for later program manipulation.

Formally, a program P in our language VDL is a 4-tuple
(R,F , C,X) where

• R is a set of rules (see Figure 2),
• F is a set of function symbols with associated arities,
• C is a set of constructor symbols with associated arities, and
• X is a set of variables

such that all sets are pairwise disjoint. We call an expression gen-
erated only by constructor symbols in C a value or a tree value and
use TC to denote the set of all values.

A substitution is a mapping θ : X → TC that assigns to
a variable a value. We denote by eθ an expression obtained by
replacing each variable x in e with a tree θ(x).

As discussed before, we do not allow rule overlapping in R.
Formally, R is non-overlapping if for any two distinct rules

f(p1, . . . , pn) =̂ e
f(p′

1, . . . , p
′
n) =̂ e′

there is no substitution θ satisfying (p1, . . . , pn)θ = (p′
1, . . . , p

′
n)θ.

We sometimes use vector notations −→e to denote sequence
e1, . . . , en when the length of sequence n is not concerned. For
example, a rule f(p1, . . . , pn) =̂ e is denoted as f(−→p) =̂ e.

For a rule r, we write Vars(r) to denote the set of all variables
occurring in r, UsedVars(r) the set of all variables occurring in the
right-hand side of r, and LostVars(r) = Vars(r) \ UsedVars(r).

To prove the properties of programs, we sometimes need to
distinguish function symbols from their meanings. We denote the
semantics of f by [[f]]P . Under the operational semantics of VDL,
shown in Figure 2, a program P yields a partial function [[f]]P :

(TC × · · · × TC) → TC for each function symbol f ∈ F :

[[f]]P (v1, . . . , vn) =



v if f(v1, . . . , vn) ⇓ v,
⊥ otherwise.

Note that when it is clear from the context, [[f]]P is sometimes
simply written as [[f]] or even f .

We add two semantic restrictions to VDL to avoid pathological
situations in the proofs of the properties of programs written in
VDL. First, a set of constructors C contains at least two constructors
and one is zero-arity. Second, VDL does not contain functions that
are undefined everywhere. For example, the following function f
is undefined everywhere.

f(x) =̂ f(x)

5. Deriving View Complement Functions
We shall develop algorithms for derivation of view complement
functions from view functions so that tupling them gives an in-
jective function. Compared to the algorithms in Cosmadakis and
Papadimitriou (1984), Laurent et al. (2001) and Lechtenbörger and
Vossen (2003), our algorithms are capable of dealing with functions
on tree data structures. We start with a direct algorithm, and then
improve it with a minimizing procedure with injectivity and range
analysis.

5.1 A Direct Solution
For a given view function f : S → V , to derive its complement
function g : S → V ′, we should be clear about where the non-
injectivity of f comes from. Recall that a complement function g
of f is a function that makes the tupled function (f M g) : S →
(V × V ′) injective. So, if f is injective, its complement function g
can be an arbitrary function from S to V ′ (of course, updatability
of the backward transformation depends on which g to choose). If
f is non-injective, g should return different values for any distinct
arguments x, y ∈ S such that f(x) = f(y).

Syntactically, there are basically two possible cases for a view
function to be non-injective:

1. Some variables on the left-hand side of a rule disappear
in the corresponding right-hand side. For example, function
fst(x, y) =̂ x is non-injective.

2. The ranges of two right-hand sides of a view function overlap.
For example, the following f is obviously non-injective:

f (A) =̂ A f (B) =̂ A.

Using this observation, we give an algorithm to derive a comple-
ment function of a view function.

Below, we use the context notation. A context K is a tree
value containing special holes 21, . . . , 2n and we denote by
K[e1, . . . , en] an expression obtained by replacing 2i with ei

for each i in {1, . . . , n}. Any expression in treeless form can al-
ways be separated as a context, function calls and variables as
K[f1(

−→x1), . . . , fn(−→xn),−→x].

Algorithm 1 (Derivation of Complement Function: ALGc).
Input: A program P = (R,F , C,X) for view functions.
Output: A program P c for view complement functions.
Procedure:

1. For each rule r ∈ R
r = f(−→p) =̂ K[f1(

−→x1), . . . , fn(−→xn),−→x]

construct a rule

rc = fc(−→p) =̂ Br(f
c
1 (−→x1), . . . , f

c
n(−→xn),−→y)

where {−→y } = LostVars(r) and Br is a fresh constructor, and
fc, f1

c, . . . , fn
c 6∈ F are function symbols corresponding to

f, f1, . . . , fn respectively.
2. Create a program as follows.

P c = ({rc | r ∈ R}, {fc | f ∈ F}, {Br | r ∈ R} ∪ C,X).2

Theorem 2 (Soundness of ALGc). Let P = (R,F , C,X) be a
program and P c = (Rc,Fc, Cc,X c) the derived program by
ALGc. Then, for every function symbol f ∈ F , [[fc]] is a com-
plement function of [[f]].

Note that by ALGc, a function is defined if and only if its com-
plement function is defined, i.e., f(−→v) ↓ if and only if fc(−→v) ↓.

Example 6. Consider function fst defined by

fst(x, y) =̂ x.

In this definition, the second argument, y, is discarded. Algo-
rithm ALGc derives the rule

fstc(x, y) =̂ B1(y).

Here, B1 is the newly-introduced constructor for the first rule.
Later, we use the constructor Bi for the ith rule. That is, function
fstc “complements” lost value “y” in the definition of fst .

Example 7. Consider the function add defined in Example 4. In
this definition, all variables are preserved from the left-hand side
to the right-hand side of each rule. Algorithm ALGc derives the
following two rules.

addc(Z, y) =̂ B1

addc(S(x), y) =̂ B2(add
c(x, y))

This function addc actually returns the information of the first
argument.

Example 8. Consider the function max defined in Example 4.
Algorithm ALGc derives the following three rules.

max c(Z, y) =̂ B1

max c(S(x), Z) =̂ B2

max c(S(x), S(y)) =̂ B3(max c(x, y))

This complement function is basically equivalent, with respect
to the collapsing order, to the following function, minle, which
returns the minimum of arguments and a boolean value indicating
whether the first argument is “less than or equal” to the second.

minle(x, y) =



(x, 1) if x ≤ y
(y, 0) if x > y

In general, there can be infinitely many complement functions
for a given view function. Ideally, we want to obtain a complement
function that is minimal with respect to the collapsing order. The
function, fstc, derived by ALGc is a minimal complement of fst ,
but a complement function derived by ALGc is not always a mini-
mal one. Next we will consider how to obtain smaller complement
functions.

5.2 Making it Smaller
Algorithm ALGc does not always return a minimal complement
function. For example, consider the following function not .

not(True) =̂ False not(False) =̂ True

Since the function not is injective, a minimal complement of this
function can be any constant function. But Algorithm ALGc de-
rives the rules

notc(True) =̂ B1 notc(False) =̂ B2

which is obviously not a constant function.

To derive smaller complement functions, we improve Algo-
rithm ALGc by analyzing injectivity of function, and calculating
ranges of the right-hand-side expressions. These two kinds of anal-
ysis are useful to minimize complement functions for the following
reasons:

1. If the input function is recognized to be injective, we should
return a constant function. This requires determination of the
injectivity of a function. Fortunately, this is decidable in VDL.
In the next subsection, we present an algorithm to determine
injectivity.

2. Let e be an expression that may contain free variables. By the
range of an expression e, we mean the set of evaluated values
of all possible ground instances of e, i.e., the set defined by

Range(e) = {v | ∃θ : X → TC , eθ ⇓ v}.
Suppose that we have two rules

f(C1(x)) =̂ e1 f(C2(x)) =̂ e2.

If the ranges of e1 and e2 do not overlap, fc(C1(x)) and
fc(C2(x)) can be safely collapsed to the same value for some
input, and hence [[fc]] becomes smaller. In Section 5.2.2 we
present an algorithm to calculate the range of an expression by
using a tree automaton.

3. In addition to the above, the range analysis is helpful to remove
unnecessary unary constructors. For example, let f be a view
function and fc be its complement function.

f(C1(x)) =̂ D1(f(x)) f(C2) =̂ D2 f(C3) =̂ D2

fc(C1(x)) =̂ B1(f
c(x)) fc(C2) =̂ B2 fc(C3) =̂ B3

The unary constructor, B1, can be removed if the ranges of
D1(f(x)) and D2 do not overlap. This is because the ranges
of right-hand-side expressions of tupled function (f M fc) do
not overlap if for any two rules r1, r2 of f either the ranges of
right-hand-side expressions of r1, r2 or r1

c, r2
c do not overlap.

The obtained complement function defined as

fc(C1(x)) =̂ fc(x) fc(C2) =̂ B2 fc(C3) =̂ B3

is smaller than the original complement function.

5.2.1 Injectivity Analysis
We present an algorithm that determines the injectivity of a func-
tion. The algorithm consists of three major steps. In every step, the
algorithm marks functions if they are non-injective and otherwise
proceeds to other steps. All functions unmarked at the end are in-
jective.

Algorithm 2 (Injectivity Checking: ALGi).
Input: A program P = (R,F , C,X) for view functions.
Output: For each function f ∈ F , “f is injective” or “f is non-
injective”.
Procedure:
1. Mark those functions that have a rule discarding variables.
2. Mark those functions whose ranges of right-hand sides of two

distinct rules overlap.
3. Repeat

Mark those functions that call marked functions.
Until no marking can be done.

4. Return “f is non-injective” if f is marked, otherwise return “f
is injective”. 2

Theorem 3 (Soundness and Completeness of ALGi). For every
function symbol f ∈ F , ALGi returns “f is injective” if and
only if [[f]] is an injective function.

5.2.2 Range Analysis
For every expression occurring in a program, we can construct
an automaton that accepts exactly the trees in the range of the
expression. Our idea was based on the existing result that the image
of a linear tree transducer is a regular tree language (Engelfriet
1975).

Let P = (R,F , C,X) be a program and E be a set of expres-
sions occurring in R. For an expression e ∈ E , we construct a non-
deterministic (bottom-up) finite tree automaton Ae over C. This au-
tomaton is a tuple (Q, C, {qe}, ∆) with a set of states Q, a set of
constructors C, the unique final state qe, and a set of transition rules
∆ where

• Q = {qf | f ∈ F} ∪ {qe′ | e′ ∈ E} ∪ {q∗}
• ∆ consists of

q∗ → qe′ with e′ = x ∈ E and x ∈ X ,

qf → qe′ with e′ = f(. . .) ∈ E and f ∈ F ,

C(qe1 , . . . , qen) → qe′ with e′ = C(e1, . . . , en) ∈ E ,

qe′ → qf for f(. . .) =̂ e′ ∈ R and

C(q∗, . . . , q∗) → q∗ with C ∈ C.

The following lemma states that automaton Ae exactly accepts
the trees in the range of e.

Lemma 1 (The Range of Expressions). Let P = (R,F , C,X) be
a program. For each expression e occurring in P , a tree t is in the
range of e if and only if the tree automaton, Ae, accepts t.

The ranges of two expressions e and e′ overlap if and only
if the language accepted by the intersection of two tree automata
Ae and Ae′ is not empty. Since finite tree automata are closed
under intersection and the emptiness of a finite tree automaton is
decidable (Comon et al. 1997), we have the following corollary.

Corollary 1. For a program P = (R,F , C,X), whether the
ranges of two expressions in R overlap or not is decidable.

5.2.3 Deriving Smaller Complement Functions
With injectivity and range analysis, we can improve Algorithm ALGc

and derive smaller complement functions. We change three parts in
the original algorithm. First, we remove fc(. . .) for every injective
function f from arguments of B in ALGc in the construction of
the complement, because a complement function of any injective
function is a constant function and can be ignored. Second, we use
the same constructor for those rules of fc when the ranges of the
right-hand-side expressions of these rules do not overlap. Third, we
remove a unary constructor from a rule for fc, if the range of the
right-hand-side expression of the corresponding rule of f does not
overlap with the ranges of other rules of f .

As a preprocessing step, we calculate a partition of R = R1]
· · ·] Rk such that for each rule subset Ri the following hold.

• For all r, r′ ∈ Ri, r and r′ define the same function.
• For all r, r′ ∈ Ri, the sum of non-injective functions and lost

variables in both rules are the same.
• For all r, r′ ∈ Ri, the ranges of the right-hand-side expressions

of r and r′ do not overlap.

Algorithm 3 (Improvement of ALGc: ALGsc).

Input: A program P = (R,F , C,X) for view functions and a
partition of R = R1] · · ·] Rk.

Output: A program P c for view complement functions.

Procedure:
For each rule r for defining f ∈ F :

r = f(−→p) =̂ K[f1(
−→x1), . . . , fn(−→xn),−→x] ∈ Rj

do the following:

1. Construct a rule

rc
pre = fc(−→p) =̂ Bk(f ′

1
c
(
−→
x′

1), . . . , f
′
m

c
(
−→
x′

m),−→y)

where the function calls f ′
1(
−→
x′

1), . . . , f
′
m(

−→
x′

m) are obtained
from f1(

−→x1), . . . , fn(−→xn) all injective function calls removed,
and {−→y } = LostVars(r).

2. If rc
pre is in the form of

fc(−→p) =̂ Bj(f
′c(

−→
x′))

and the right-hand-side expression of r does not overlap with
the right-hand-side expression of any other rule r′ for f ∈ F ,
construct a rule

rc = fc(−→p) =̂ f ′c(
−→
x′),

otherwise, construct a rule

rc = rc
pre.

3. Create a program as follows.

P c = ({rc | r ∈ R}, {fc | f ∈ F}, {Bj | Rj},X) 2

Theorem 4 (Soundness of ALGsc). Let P = (R,F , C,X) be a
program and P c = (Rc,Fc, Cc,X c) the derived program by
ALGsc. Then, for every function symbol f ∈ F , [[fc]] is a com-
plement function of [[f]].

Example 9 (Role of Rule Partition). Consider the function, f , de-
fined by

r1 = f (A1) =̂ C1

r2 = f (A2) =̂ C2

r3 = f (A3) =̂ C1

and suppose that R = {r1, r2}] {r3}. Then, Algorithm ALGsc

returns the following complement function.

f c(A1) =̂ B1

f c(A2) =̂ B1

f c(A3) =̂ B2

However, if R = {r1}] {r2, r3}, ALGsc will return another
complement function.

f c(A1) =̂ B1

f c(A2) =̂ B2

f c(A3) =̂ B2

So different rule partitions can lead to different complement
functions. This is why we separate rule partitions from Algo-
rithm ALGsc.

Example 10 (Complements of Injective Functions). Consider the
function, mapnot , defined as follows.

mapnot(Cons(a, x)) =̂ Cons(not(a),mapnot(x))
mapnot(Nil) =̂ Nil
not(True) =̂ False
not(False) =̂ True

In contrast with mapfst defined above, mapnot is injective. With
injective analysis we know that mapnot and not are injective
functions, so ALGsc returns the following complement functions

mapnotc(Cons(a, x)) =̂ B1

mapnotc(Nil) =̂ B1

notc(True) =̂ B2

notc(False) =̂ B2

which is a minimal complement function of mapnot with respect
to the collapsing order.

It is worth remarking that Algorithm ALGsc will derive con-
stant functions for injective functions if a partition of R is R =
Rf1] · · ·] Rfn where Rfi is the set of all rules for fi. The exis-
tence of such a partition is easily checked by the range analysis.

Example 11 (Removing Constructors). Consider the function zip
in Example 5. Algorithm ALGsc returns

zipc(Nil, y) =̂ B1(y)
zipc(Cons(a, x), Nil) =̂ B2(a, x)
zipc(Cons(a, x), Cons(b, y)) =̂ zipc(x, y)

which is a minimal complement function of zipc. Note that ALGsc

has removed the constructor from the third rule, compared to the
old algorithm, ALGc.

The complement functions obtained by ALGsc have two good
characteristics. First, they have the same form as view functions,
which makes the later tupling step and the inversion step easy. Sec-
ond, as will be seen later, the updatability of backward transforma-
tion functions with these complement functions is easy to under-
stand.

6. Generating Backward Transformation
Functions

After obtaining a view complement function fc : S → V ′ for a
given view function f : S → V , we get the following backward
transformation according to Equation (UPD).

ρ(s, v) = (f M fc)−1(v, fc(s))

That is, a backward transformation function can be derived if the
tupled function, (f M fc), and its inverse (f M fc)−1 can be
effectively derived.

The point is how to calculate an inverse program. Although this
is generally difficult, now we need merely to treat the tupled func-
tion of the form (f M fc). Thanks to the correspondence between
the rules of f and fc, we can obtain a program of (f M fc) which
is in a good form for this inversion. In the following, we show how
tupling and inversion can be done automatically.

6.1 Calculation of Program of (f M fc)

A program for tupled function (f M fc) can be straightforwardly
calculated because the rules of f and the corresponding fc have the
same patterns and the same form of recursive calls in the right-hand
sides. However, we cannot directly describe the tupled function in
the treeless form because of the tuple structure, which needs to be
treated specially. We extend language VDL with “where-clauses”
and tuples:

rule ::= · · ·
| f(p1, . . . , pn) =̂ (e1, . . . , em)

where (x1, . . . , xk) =̂ g(y1, . . . , ym)
. . .

(x′
1, . . . , x

′
k′) =̂ g′(y′

1, . . . , y
′
m′)

where e1, . . . , en do not include any function calls, i.e., they have
the same forms as patterns, and all variables appear on the left-hand
sides of the where-clause are different from those on the right-
hand sides. The two restrictions above are the treeless condition
of tupled functions. Additionally, this new form of rules must
satisfy the affine condition. That is, all variables used at most once
(actually, all variables are used exactly once in tupled functions).
The operational semantics is straightforwardly extended. Note that
this extension is behind the scene of the view definition users; it is
only used internally during bidirectionalization transformation.

Algorithm 4 (Tupling).
Input: A where-free program P .
Output: A program P M for tupled functions.
Procedure:

1. Let P c be the program derived from P by ALGsc.
2. For each non-injective function f , and for each rule r of f in P

do
(a) Let rc be the corresponding rule for r in P c.
(b) Structure r and rc in the following forms

r = f(−→p) =̂ K[
−→
t ,−→u ,−→x]

rc = fc(−→p) =̂ K′[
−→
t′ ,

−→
x′]

where
• −→

t : non-injective function calls f1(
−→y1), . . . , fn(−→yn),

• −→
t ′: function calls of the forms f1

c(−→y1), . . . , fn
c(−→yn),

• −→u : injective function calls g1(
−→z1), . . . , gm(−→zm).

(c) Prepare fresh variables ti, t
′
i, uj for i ∈ {1, . . . , n}, j ∈

{1, . . . , m}.
(d) Construct the rule, rM , as follows:

rM = fM(−→p) =̂ (K[
−→
t ,−→u ,−→x], K′[

−→
t
′ ,
−→
x′])

where {(ti, t
′
i) =̂ fi

M(−→yi)}i∈{1,...,n}
{uj =̂ gj(

−→zj)}j∈{1,...,m}

3. For each injective function g, and for each rule r of g in P ,
construct the rule, r′, as follows in the similar way:

r′ = g(−→p) =̂ K[−→u ,−→x]

where {uj =̂ gj(
−→zj)}j∈{1,...,m}

4. Gather all rM and r′ to form P M . 2

This algorithm correctly gives a program of tupled functions,
i.e., [[fM]](

−→
t) = ([[f]] M [[fc]])(

−→
t). An example is given in Sec-

tion 8.

6.2 Calculation of Program of (f M fc)−1

Next, we calculate an inverse program for (f M fc)−1 from the
program of (fMfc). The basic idea is to swap the left-hand side and
the right-hand side of each rule and to apply inversion recursively.

Algorithm 5 (Inversion of Tupled Functions).
Input: A program P M = (R,F , C,X) for tupled functions.
Output: A program

(P M)
−1

=
`

R−1,
˘

f−1 | f ∈ F
¯

, C,X
´

for tupled functions.
Procedure: For each rule r in R

r = f(−→p) =̂ (−→e) where {(ti, t
′
i) =̂ fi(

−→yi)}i∈{1,...,n}
{uj =̂ gj(

−→zj)}j∈{1,...,m}

construct the rule r−1 in R−1 as follows.

r−1 = f−1(−→e) =̂ (−→p) where {(−→yi) =̂ f−1
i (ti, t

′
i)}i∈{1,...,n}

{(−→zj) =̂ g−1
j (uj)}j∈{1,...,m} 2

Theorem 5 (Correctness). Let P be a program, and (P M)
−1 the

generated program. Then, (u1, u2) = [[fM]]P M(t1, . . . , tn) implies
(t1, . . . , tn) = [[(fM)−1]](P M)−1(u1, u2).

Note that the obtained inverse program may be nondeterminis-
tic. However, since the original function to be inversed is injective
in our framework, it is possible to uniquely determine a rule with

a domain analysis similar to the range analysis discussed before,
when the inverse program is executed. An example of inversion is
given in Section 8.

7. Generating View Update Checker
A view update checker is designed to decide whether or not an up-
date on views is valid without execution of the backward transfor-
mation. An update on views is said to be valid if it can be success-
fully reflected to the source by the derived backward transforma-
tion function. Recall that in our framework, a backward transfor-
mation is given by upd〈f,fc〉(s, v) =̂ (f M fc)−1(v, fc(s)). This
means that, for a view function f and the original source, s, we can
check whether or not a view update is valid by confirming whether
(v, fc(s)) is in the range of (f M fc), where v is an updated view.

We define below a nondeterministic (bottom-up) tree automaton
for validating view updates. The tree automaton has three kinds of
states: state q∗ is reached by any view, state qf is reached by a view
in the range of f , and state qt

fM is reached by a view v such that
(v, t) is in the range of fM . Therefore, when the final state is a state
qt0

fM , the tree automaton exactly accepts a view v such that (v, t0)

is in the range of fM (i.e., (v, t0) is in the domain of (fM)
−1).

Definition 3 (View Update Checker). Let P be a program, P c be
a complement program derived by our algorithm, t0 be a comple-
ment view, and P M = (RM,FM, CM,XM) be a tupled program of
P and P c. A view updating checker is defined as a tree automaton
AU = (Q, CM, {qt0

f }, ∆) where

• Q = {q∗}∪{qf | f ∈ F}∪{qt
fM | fM ∈ FM, t is a subtree of t0}

• ∆ consists of the following transition rules:
C(q∗, . . . , q∗) → q∗ with C ∈ C,
K[−→qf ′ ,−→q∗] → qf with f(−→p) =̂ K[

−→
t ,−→x] ∈ R and

ti = f ′
i(
−→e), and

K[
−−→
qt′θ

f ′M ,−→qg′ ,−→q∗] → qt′′
fM with

2

4

fM(−→p) =̂ (K[
−→
t ,−→u ,−→x], K′[

−→
t′ ,

−→
x′])

where {(ti, t
′
i) =̂ f ′

i
M
(−→yi)}i∈{1,...,n}

{uj =̂ g′
j(
−→zj)}j∈{1,...,m}

3

5 ∈ RM

where t′′ is a subtree of t0 and t′′ = K′[
−→
t′ ,

−→
x′]θ.

Theorem 6 (Validity of View Update Checker). A view updating
checking tree automaton AU = (Q, CM, {qt0

fM}, ∆) in Definition 3
exactly accepts view v such that (v, t0) is in the range of fM .

We show examples of automatically generated view update
checkers for some view functions. Note that the view update check-
ing automata below have been reduced where unnecessary states
have been removed.

Example 12. Consider function append and its complement func-
tion in Section 3. When the initial source is

(s1, s2) = (Cons(True, Cons(False, Nil)), Nil),

the view is append(s1, s2) = Cons(True, Cons(False, Nil)) and
the complement view is appendc(s1, s2) = B2(B2(B1)).

Then, the view update checker generated by our system is the
automaton A = (Q, C, {qB2(B2(B1))

appendM }, ∆) where

• Q = {q∗, qB2(B2(B1))
appendM , q

B2(B1)
appendM , qB1

appendM} and
• ∆ consists of the transition rules of

t → q∗ where t ∈ {True, False, Nil},
Cons(q∗, q∗) → q∗,
Cons(q∗, q

B2(B1)
appendM) → q

B2(B2(B1))
appendM ,

Cons(q∗, q
B1
appendM) → q

B2(B1)
appendM , and

q∗ → qB1
appendM .

In fact, this automaton only accepts lists that are 2 or longer, which
means one can only update the view of lists in such a way that its
length is not less than 2.

Example 13. Consider the function, filter , defined as

filter(Nil) =̂ Nil
filter(Cons(A1, x)) =̂ Cons(A1,filter(x))
filter(Cons(A2, x)) =̂ Cons(A2,filter(x))
filter(Cons(A3, x)) =̂ filter(x)

and the complement function derived by our algorithm as follows.

filterc(Nil) =̂ B1

filterc(Cons(A1, x)) =̂ B2(filterc(x))
filterc(Cons(A2, x)) =̂ B2(filterc(x))
filterc(Cons(A3, x)) =̂ B3(filterc(x))

When the initial source is

s = Cons(A2, Cons(A3, Cons(A1, Nil))),

the view is filter(s) = Cons(A2, Cons(A1, Nil)) and the comple-
ment view is filterc(s) = B2(B3(B2(B1))).

Then, the view update checker derived by our system is automa-
ton A = (Q, C, {qB2(B3(B2(B1)))

filterM }, ∆) where

• Q = {qB2(B3(B2(B1)))
filterM , q

B3(B2(B1))
filterM , q

B2(B1)
filterM , qB1

filterM}
• ∆ consists of transition rules

Cons(t, q
B3(B2(B1))
filterM) → q

B2(B3(B2(B1)))
filterM where t ∈ {A1, A2},

Cons(t, qB1
filterM) → q

B2(B1)
filterM where t ∈ {A1, A2},

q
B2(B1)
filterM → q

B3(B2(B1))
filterM , and

Nil → qB1
filterM .

This automaton accepts lists that are 2 long, and each list element
is either A1 or A2.

8. An Example
To give a whole picture of how our system works concretely,
recall the example in the Introduction. The following view function,
students , is the same as that in the Introduction, except that we
write Cons for (:) and Nil for [].

students(Nil) =̂ Nil
students(Cons(Student(name, grade,major)),ms))

=̂ Cons(Student(name, grade,major), students(ms))
students(Cons(Prof(name, position,major)),ms))

=̂ students(ms)

The function, students , extracts all student members from a mem-
ber list. This behavior of students is similar to the function, filter .
The derived complement function by our algorithm is as follows.

studentsc(Nil) =̂ B1

studentsc(Cons(Student(name, grade,major)),ms))
=̂ B2(studentsc(ms))

studentsc(Cons(Prof(name, position,major)),ms))
=̂ B3(name, position,major , studentsc(ms))

Tupling the two functions students and studentsc gives

studentsM(Nil) =̂ (Nil, B1)
studentsM(Cons(Student(name, grade,major),ms))

=̂ (Cons(Student(name, grade,major), x), B2(y))
where (x, y) =̂ studentsM(ms)

studentsM(Cons(Prof(name, position,major),ms))
=̂ (x, B3(name, position,major , y))

where (x, y) =̂ studentsM(ms),

and inversion of this tupled function yields the following result.

(studentsM)
−1

(Nil, B1) =̂ Nil

(studentsM)
−1

(Cons(Students(n, g ,m), x), B2(y))
=̂ Cons(Student(n, g ,m),ms)

where ms =̂ (studentsM)
−1

(x, y)

(studentsM)
−1

(x, B3(n, p,m, y))
=̂ Cons(Prof(n, p,m),ms)

where ms =̂ (studentsM)
−1

(x, y)

Then, a backward transformation ρ = upd〈students,studentsc〉 can
be derived (after some fusion transformation) as follows.

ρ(Nil, Nil) = Nil
ρ(Cons(Student(n, g, m),ms), Cons(Student(n′, g′, m′), ss))

= Cons(Student(n′, g′, m′), ρ(ms, ss))
ρ(Cons(Prof(n, g, m),ms), ss)

= Cons(Prof(n, g, m), ρ(ms, ss))

This is exactly the same function as studentsB in the Introduction.
Now one can freely change the names in the view, and the

backward transformation can reflect them to the source. Consider
the case where the source s is as follows.

s = Cons(Student(X, DC, CS), Cons(Prof(Y, AP, CS), Nil))

Let v be the view generated by the view function, students , on
s, i.e., v = Cons((Student(X, DC, CS), Nil). Updating view v to
Cons(Student(X, DC, Math), Nil) is acceptable and results in the
following source.

Cons(Student(X, DC, Math), Cons(Prof(Y, AP, CS), Nil))

However, both inserting and removing elements, e.g., updating the
view to Nil, are prohibited.

This updatability can be precisely represented by an automaton.
Let

v1 = B2(B3(Y, AP, CS, B1))
v2 = B3(Y, AP, CS, B1)
v3 = B1,

then updatability of v with respect to source s is captured by
automaton A = (Q, C, {qv1

students}, ∆), where

• Q = {qv1
students , q

v2
students , q

v3
students , q∗}

• ∆ consists of transition rules

C(q∗, . . . , q∗) → q∗ where C ∈ C,

Cons(Student(q∗, q∗, q∗), q
v2
students) → qv1

students ,

qv3
students → qv2

students , and

Nil → qv3
students .

Note that the view, Cons((Student(X, DC, CS), Nil), is accepted
by the automaton, A, but the view, Nil, is not.

9. Related Work
Our work is based on the idea of deriving (relational) complement
functions on relational databases, where view functions are ex-
pressed in terms of relational algebras. Cosmadakis and Papadim-
itriou (1984) showed that finding minimal complement functions
when views are defined only by projections is NP-Complete. Lau-
rent et al. (2001) proposed an algorithm to compute complement
functions when views are defined by projections, selections, and
joins. They also discussed the conditions for minimal complement
functions. Their algorithm is expensive because it uses the results
of NP-Complete sub-problems. Lechtenbörger and Vossen (2003)
improved on Laurent et al.’s work. They proposed a polynomial-
time algorithm for computing complement functions when views
are defined by projections, selections, joins, and renaming. Their

algorithm computes smaller complement functions than Laurent
et al.’s, and the obtained complement functions are minimal when
view functions contain no projection. Our work can be considered
an extension of these works such that view functions can be de-
fined on tree-like data structures other than tuples. Moreover, our
approach is based on syntactic program transformations, whereas
the existing methods focus more on function semantics.

Our work was greatly motivated by works on bidirectional
transformation on trees. In addition to the work by Foster et al.
(2005) that proposed a combinatorial approach to the problem (as
discussed in the Introduction), Hu et al. (2004) showed how bidi-
rectional transformation can be used to maintain data dependency
in the tree view, which can be seen as an application that develops
constraint maintainers on trees (Meertens 1998). Mu et al. (2004)
improved the consistency of Hu et al.’s framework by imposing
restrictions on updating operators. These frameworks are domain-
specific and designed for specific applications. In contrast, our
work is more general.

Our work is also related to work on updating XML views
constructed from relational data. Wang and Rundensteiner (2004)
applied the work in Dayal and Bernstein (1982) to XML views over
relational data. Braganholo et al. (2004) proposed an algorithm to
map updates on XML views to relational data. However, they did
not consider the case where the source is XML too, and our method
may shed a new light on their problems.

10. Conclusion
This paper presents a new transformational approach to bidirec-
tionalization that can automatically derive backward transforma-
tion programs from view definition programs written in a simple
functional language. The new bidirectionalization method is built
upon three program transformations: automatic derivation of com-
plement functions, tupling transformation, and inverse transforma-
tion. These three transformations are composed together through
programs in a treeless and affine form, which simplifies and enables
implementation of the transformations and automatic generation of
a view update checker. Our approach is different from many exist-
ing approaches where only a bidirectional interpreter is derived and
execution of the interpreter requires passing the source through all
the interpretation steps, our approach does produce a program for
backward transformation. This makes it possible to utilize an opti-
mizing compiler for more efficient execution of backward transfor-
mation.

There are several issues that are worth looking into in the future.
First, it would be interesting to see if our view language could
be extended with regular patterns and the restriction on variable
uses could be relaxed so that more view functions could be defined
and backward transformation could be derived. Second, we want to
see if our bidirectionalization framework can be adapted to other
bidirectional semantics. The bidirectional properties (semantics)
used in this paper are known as “closed update semantics” where
sources are invisible to the users who want to modify views. There
is another useful semantics called “open update semantics” where
both the source and the view are visible to users. Third, although
the system has been implemented, we would like to test it with
more practical applications.

References
F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM

T. Database Syst., 6(4):557–575, 1981.

V. P. Braganholo, S. B. Davidson, and C. A. Heuser. From XML view
updates to relational view updates: old solutions to a new problem. In
VLDB ’04: International Conference on Very Large Data Bases, pages
276–287, 2004.

H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Ti-
son, and M. Tommasi. Tree automata techniques and applications.
http://www.grappa.univ-lille3.fr/tata, 1997.

S. S. Cosmadakis and C. H. Papadimitriou. Updates of relational views. J.
ACM, 31(4):742–760, 1984.

U. Dayal and P. A. Bernstein. On the correct translation of update operations
on relational views. ACM T. Database Syst., 7(3):381–416, 1982.

J. Engelfriet. Bottom-up and Top-down Tree Transformations — A Com-
parison. Math. Syst. Theory, 9(3):198–231, 1975.

J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt.
Combinators for bi-directional tree transformations: a linguistic ap-
proach to the view update problem. In POPL ’05: Proceedings of the
32nd ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, pages 233–246, 2005.

G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of
consistent views. ACM T. Database Syst., 13(4):486–524, 1988.

S. J. Hegner. Foundations of canonical update support for closed database
views. In ICDT ’90: Proceedings of the Third International Conference
on Database Theory, pages 422–436, 1990.

Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for developing
structured documents based on bidirectional transformations. In PEPM
’04: Proceedings of the 2004 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation, pages 178–189,
2004.

R. Lämmel. Coupled software transformations (extended abstract). In First
International Workshop on Software Evolution Transformations, pages
31–35, 2004.

D. Laurent, J. Lechtenbörger, N. Spyratos, and G. Vossen. Monotonic
complements for independent data warehouses. VLDB J., 10(4):295–
315, 2001.

J. Lechtenbörger and G. Vossen. On the computation of relational view
complements. ACM T. Database Syst., 28(2):175–208, 2003.

K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidirection-
alization transformation based on automatic derivation of view comple-
ment function. Technical Report 2007-44, Graduate School of Informa-
tion Science and Technology, the University of Tokyo, 2007.

L. Meertens. Designing constraint maintainers for user interaction.
http://www.cwi.nl/~lambert, 1998.

S.-C. Mu, Z. Hu, and M. Takeichi. An algebraic approach to bidirectional
updating. In APLAS ’04: Second ASIAN Symposium on Programming
Languages and Systems, pages 2–18, 2004.

P. Wadler. Views: a way for pattern matching to cohabit with data abstrac-
tion. In POPL ’87: Proceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages 307–313,
1987.

P. Wadler. Deforestation: Transforming programs to eliminate trees. Theor.
Comput. Sci., 73(2):231–248, 1990.

L. Wang and E. A. Rundensteiner. On the updatability of XML views
published over relational data. In ER 2004: International Conference
on Conceptual Modeling, pages 795–809, 2004.

