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Luminescence due to the radiative recombination of localized biexcitons has been observed at low
temperature(5 K) in ZnO/Zny 7Mgg 20 multiquantum wells grown by laser-molecular-beam
epilaxy on a lattice-matched ScAIMgGubstrate(0001). The emission components due to the
recombination of localized excitons and biexcitons and due to the exciton—exciton scattering were
verified by examining their relative energy positions and intensity dependence on excitation power
density. The excitation threshold for biexciton emission was significantly lower than that for
exciton—exciton scattering. The binding energy of biexcitons in multi-quantum wells is largely
enhanced by quantum confinement effect. 26801 American Institute of Physics.
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Wide band gap semiconductors have been paid intensivédimensional structures like quantum wells because of the
attentions for a long time because of their potential applicaenhancement in binding energies of both excitons and biex-
tions to meet the commercial need for short wavelength opeitons due to the quantum confinement effect. In this letter,
toelectronic devices. Initially, main efforts were concentratedve report on the first observation of luminescence induced
on ZnSe-based I1-VI compound semiconducfoRecently, by the radiative recombination of localized biexcita@xx)
however, GaN-based materials have progressed more rapidiy high quality ZnO/Zg,/MgyO multiquantum wells
since the demonstration of blue/green light emitting diodeSMQWSs) at 5 K. The hiexcitonic emission appears at excita-
and laser diodes from InGaN quantum well structdres. tion intensity lower than that of emission induced by exciton-
Meanwhile, another wide band gap material, ZnO, has alsexciton scattering. The binding energies of biexcitons in
received particular attentioi$. Compared with ll-V ni- MQWSs are largely enhanced compared with that of bulk
tride materials and other 11-VI compound semiconductorsZnO.

ZnO has larger exciton binding energgbout 60 meY, The ZnO/ZnMgO MQWSs were grown on a ScAIMgO4
which in principle should allow for efficient excitonic lasing substrate(0001) by laser-molecular-beam epitaxy method.
mechanisms operating at room or even higher temperature$he detailed preparation process has been described

Recent experiments have shown that low-thresholdlsewhere’ The total structures consist of 10 periods of al-
stimulated emission or laser action could be achieved in Zn@ernating ZnO well layers and 5-nm-thick ZnMg,O bar-
thin films and ZnO{Zn, Mg)O multiguantum wells up to rier layers. The Mg content of the barrier layers was chosen
room temperature due to inelastic exciton-excitonatx=0.26, corresponding to a barrier height of about 0.5 eV.
scattering’™® It is well established that, at dense excitation, Two samples investigated in this letter have well widths of
two excitons with opposite spins may interact and form a3.7 and 1.75 nm, respectively
bound state known as biexcitgor exciton molecules Biex- In Fig. 1, the lowest traces show the photoluminescence
citons can play an important role in optical properties such a$PL, solid ling and optical absorptiodotted ling spectra
lower threshold density for stimulated emission or laser actaken @5 K from a MQWs sample with well width of 3.7
tion and higher gain coefficiefit! Such effects related to nm. The PL spectrum is observed in a conventional back-
biexcitons have been observed in a large variety of semicorscattering geometry using the 325 nm line of a continuous-
ductors, especially in [I-VI wide band gap semiconductorsvave He—Cd laser as the excitation source. It is dominated
because of their larger binding energy of excitons and biexby the radiative recombination of localized excitons with
citons so that excitongbiexcitong exist stable at higher peak energy of 3.369 eV and linewidth of about 22 meV,
density’~** Luminescence of biexciton recombination hasrespectively. The lower emission peak at 3.296 eV originates
been also reported previously in bulk ZA®and recently, in  from the 1 LO phonon replica of localized excitonic emis-
ZnO epitaxial layers® It is predicted that this nonlinear op- sion. The difference in peak energies between the PL and
tical phenomenon should be more pronounced in low-£excitonic absorption spectra is about 30 meV. This energy

difference results from the localization of excitons induced

dAuthor to whom correspondence should be addressed; electronic maiI::)y the fluctuation of well width. . .
sunhd@postman.riken.go.jp The upper traceg(b), (c), and(d)] in Fig. 1 show the
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FIG. 1. Luminescence spectra & K taken from a ZnO/Zg;Mgg O )
MQW with well width of 3.7 nm under various excitation power densities. FIG- 2. (&) Luminescence spectra at 5 K taken from a ZnQ/ZNgo .0

The curves have been normalized and relatively shifted. The lowest tracddQW with well width of 1.75 nm under excitation power densities: 248
represent the low excitation Hi(a), solid line] and absorptioridotted ling Wient, (2) 1257 Wwienf, (3) 3347 Wiend, (4) 6417 Wiend, (b) spectral
spectra &5 K for the same sample. separation procedure of the exciton and biexciton components.

of excitation, taken a5 K from the same MQW sample. In lations betweerly (Ixx) and the excitation density can be
this case, the optical excitation was carried out by a pulsedescribed by the similar relations. In our experiment, the
dye lase(341 nm) which is pumped by a XeCl excimer laser excitation laser has pulse duration of 13 ns, which is consid-
(308 nm with a pulse width of~13 ns and a repetition rate ered to be much longer than the lifetimes of excitons and
of 10 Hz. At the lowest power densityl00 Wi/cnf, Fig. biexcitons. Therefore, a steady-state condition is established,
1(b)], the luminescence spectrum is dominated by radiativém%i the steady-state solutions fgr (I1xx) can be described
recombination of localized excitons marked as an open do®
(denoted by X, same as low-excitation PL. As the excitation

1/2
power density increases, there appears a shoulder marked as |, « (1+ E) _1}' (2a)
a solid dot(denoted by XX on the low-energy side of the X Go
band. This emission band, located at 3.35 eV, grows super- G112 12
linearly with respect to the excitation intensity. With further |y (l+ _) _1} , (2b)
increase in excitation intensity, a second peak denoted by P Go

e e e g, e o ehere Go=(n r ) (L1 717 s the charactersic
inelastié/ excitgn-exciton scatte’ri fg 9 generation rate that separates the exciton-dominant from the

On the basis of the relative ener osition. we tenta_biexciton—dominant region. These equations predict that
tively assign this newly observed Xxggarﬁ)d as tr;e radiativeUXX) grows sublinearlysuperlinearly with the increase in

y assig| y o . . ._excitation intensity and the exponential factors fgrand
recombination of localized biexcitons. This assignment i

3 re excitation intensi ndent. However, the relation
supported by the dependence of luminescence intehgity X 2'5 © citation intensity dependent. However, the relatio

and 1~ on excitation densit Ixxocli holds true for the whole excitation intensity range
X Y. where only X and XX contribute to the luminescence spec-

Following Ref. 18, we analyze the excitation power den- . . - .
. : . . . trum. In practical samples, various emission mechanigoas
sity dependence of luminescence intensity from X and XX in__. . o X
calized excitons and biexcitons, exciton—phonon and

some detail. A system of excitons and biexcitons with den-__"_ : : .
. . . exciton—exciton scattering, plasma, g¢twompete with each
sitiesny andnyy can be described by the rate equations,

other! As shown in Fig. 1, at high excitation intensity, both

dny Ny Ny N 1 Nyx the emission from biexciton recombination and emission in-
gt G o to o2 t2 (18 duced by exciton-exciton scattering appeared in the PL spec-
T c c trum. However, the former process has much lower excita-
dnyy Nex  NX 1 Nyy tion threshold than the latter one.
=t T (1b) Figure 2@ shows the PL spectra of another MQWs
dt TxX n TC TC

sample with well width of 1.75 nm at different excitation
whereG is the generation rat@roportional to pump powgr  power densities. In this sample, the biexciton emission
Tx andryyx are the exciton and biexciton lifetimes, anglis  emerged at a much lower excitation intensity compared with
the characteristic interconversion time wheg=nyy=n*. that shown in Fig. 1. In a range of excitation intengidy-30
Supposing that exciton emission intensity (biexciton  kW/cn), only two peaks represented by X and XX appeared

emission intensityt yy) is proportional tony (nyy), the re- in the spectra. At higher excitation density tReband ap-
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can be reasonably understood to be a consequence of quan-
tum confinement effect in the well growth direction. We be-
lieve that the biexciton binding energy in quantum wells
could be further enhanced due to the very large exciton bind-
ing energy in ZnO! In view of the thermal activation en-
ergy atT=300K (~25 meV), it is expected that the biexci-
tonic effect in ZnO-based quantum structures can play an
important role at higher temperatures or even room tempera-
ture, which is desirable for the realization of ultralow thresh-
old lasers.

In summary, we have studied the dependence of ex-
citon-related luminescence on excitation intensity in
Zn0O/Zr, 7.Mdg 20 MQWSs. We observed the luminescence
due to the radiative recombination of localized biexcitons at
low temperature in ZnO-based quantum well structures. The
biexciton emission emerged at much lower excitation inten-
sity than that of exciton—exciton scattering. The biexciton
el — binding energy in MQWs was largely enhanced compared

10 with bulk ZnO due to the quantum confinement effect.
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