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The application of psychological measures often results in item response data that arguably are consistent with both unidimensional (a single
common factor) and multidimensional latent structures (typically caused by parcels of items that tap similar content domains). As such, structural
ambiguity leads to seemingly endless “confirmatory” factor analytic studies in which the research question is whether scale scores can be
interpreted as reflecting variation on a single trait. An alternative to the more commonly observed unidimensional, correlated traits, or second-order
representations of a measure’s latent structure is a bifactor model. Bifactor structures, however, are not well understood in the personality assessment
community and thus rarely are applied. To address this, herein we (a) describe issues that arise in conceptualizing and modeling multidimensionality,
(b) describe exploratory (including Schmid-Leiman [Schmid & Leiman, 1957] and target bifactor rotations) and confirmatory bifactor modeling,
(c) differentiate between bifactor and second-order models, and (d) suggest contexts where bifactor analysis is particularly valuable (e.g., for
evaluating the plausibility of subscales, determining the extent to which scores reflect a single variable even when the data are multidimensional,
and evaluating the feasibility of applying a unidimensional item response theory (IRT) measurement model). We emphasize that the determination
of dimensionality is a related but distinct question from either determining the extent to which scores reflect a single individual difference variable
or determining the effect of multidimensionality on IRT item parameter estimates. Indeed, we suggest that in many contexts, multidimensional data

can yield interpretable scale scores and be appropriately fitted to unidimensional IRT models.

Chen, West, and Sousa (2006) wrote, “Researchers interested
in assessing a construct often hypothesize that several highly
related domains comprise the general construct of interest” (p.
189). As a consequence, factor analytic evaluations of such
measures often reveal some evidence of a general factor run-
ning through the items (e.g., a relatively large first eigenvalue)
but also some evidence of multidimensionality (e.g., an inter-
pretable multidimensional solution that arises due to parcels of
items that tap similar content domains). These common findings
invariably spark the age-old debate among researchers whether
a given construct is unitary or multifaceted. Does scale score
variation primarily reflect variation on a single construct (and
thus, scale scores are unambiguously interpretable) or reflect
multiple nonignorable sources of variance (and thus, subscales
need to be formed)?

Consider, for example, the substantial amount of confir-
matory factor analytic research devoted to investigating the
dimensionality of data from the Anxiety Sensitivity Index
(Lilienfeld, Turner, & Jacob, 1993; Zinbarg, Barlow, & Brown,
1997), Dispositional Hope Scale (Brouwer, Meijer, Weekers,
& Baneke, 2008), Self-Monitoring Scale (Briggs, Cheek, &
Buss, 1980), Life Orientation Test (Robinson-Whelen, Kim,
MacCallum, & Kiecolt-Glaser, 1997), Penn State Worry Ques-
tionnaire (Hazlett-Stevens, Ullman, & Craske, 2004), Cen-
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ter for Epidemiologic Studies Depression Scale (Golding &
Aneshensel, 1989), Beck Depression Inventory—II (Dozois,
Dobson, & Ahnberg, 1998), Hamilton Depression Rating Scale
(Bagby, Ryder, Schuller, & Marshall, 2004), a self-concept scale
(Byrne & Shavelson, 1996), and the Toronto Alexithymia Scale—
20 (Gignac, Palmer, & Stough, 2007). For all of these instru-
ments, at issue is whether they measure a single construct or
whether item responses are best thought of as reflecting multi-
ple, more or less correlated, individual differences.

The previously cited research represents only a very small
percentage of the studies of instrument structure and ultimately
interpretability. One reason why the dimensionality issue ap-
pears to cause such consternation is clear: Researchers typically
write self-report items to assess a single construct. Nevertheless,
they also recognize that constructs are substantively complex
(e.g., depression); that is, indicators of the construct are diverse
(in the case of depression, e.g., cognitive-affective vs. somatic-
performance symptoms). Consequently, to validly represent the
construct, items with heterogeneous content need to be included
in the measure. This places personality assessment researchers
in the vexing position of trying to measure one thing while
simultaneously measuring diverse aspects of this same thing.

With that in mind, it is unsurprising that in many psycho-
metric investigations, it is common to observe evidence for a
single dimension and at the same time to uncover evidence
of multidimensionality. Here are two examples from previous
work. First, Reise and Haviland (2005) considered the applica-
tion of a unidimensional item response theory (IRT; Embretson
& Reise, 2000) model and analyzed a 25-item measure of
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cognitive problems. Reise and Haviland reported a first to sec-
ond eigenvalue ratio of 13.29 to 1.5, evidence of a very strong
general factor. Yet, Reise and Haviland also reported that up to
seven additional factors could be extracted from the data, that
these factors were interpretable, and that they led to an improved
statistical “fit.” In Smith and Reise (1998), a 23-item measure
of stress reaction also was considered for application of a unidi-
mensional IRT model to explore hypotheses of differential item
functioning. Again, a very large 9.59 to 0.97 ratio of the first
to second eigenvalues was observed, strongly suggesting unidi-
mensionality. Due to content parcels included within the scale
for content validity purposes (see Tellegen & Waller, 2008),
however, five interpretable correlated factors could be extracted
and interpreted.

In the previous two examples, Reise and Haviland (2005) and
Smith and Reise (1998) had argued that the evidence for the
essential unidimensionality of the measures was clear and that
any observed multidimensionality due to item content parcels
(or mere doublets) was ignorable. Reise and Haviland and Smith
and Reise had argued that it would be indefensible, for exam-
ple, to break the cognitive problems scale into seven superho-
mogeneous subscales. With many other measures, however, the
dimensionality and the scale score interpretability issues sel-
dom will be put to rest so clearly. To address such impasses,
to evaluate the psychometric properties of substantively com-
plex measures, we propose that a bifactor latent structure may
be an excellent alternative to the more commonly used unidi-
mensional, correlated traits, or second-order representations of
ameasure’s latent structure. Bifactor latent structures appear not
to be well understood in the personality assessment community,
however; and thus, they rarely are applied.

In this article, we (a) describe issues that arise in conceptualiz-
ing and modeling multidimensionality, (b) describe exploratory
(including the Schmid-Leiman [Schmid & Leiman, 1957] and
target bifactor rotations) and confirmatory bifactor modeling, (c)
differentiate between bifactor and second-order models, and (d)
suggest contexts where bifactor analysis is particularly valuable
(e.g., for evaluating the plausibility of subscales, determining
the extent to which scores reflect a single variable even when
the data are multidimensional, and evaluating the feasibility of
applying an IRT model). To accomplish these objectives, we
make reference throughout to an observer report measure of
alexithymia (described following). This measure is an excellent
example because it has parcels of item content, but typically it
is scored as reflecting a single common construct.

THE OBSERVER ALEXITHYMIA SCALE (OAS)

The OAS (Haviland, Warren, & Riggs, 2000; Haviland,
Warren, Riggs, & Gallacher, 2001; Haviland, Warren, Riggs,
& Nitch, 2002) is a 33-item, observer-rated alexithymia mea-
sure; each item is rated on a 4-point scale: 0 = never, not at
all like the person; 1 = sometimes, a little like the person;
2 = usually, very much like the person; and 3 = all of the
time, completely like the person. OAS scores, thus, can range
from O to 99. Item content was taken from the California Q-Set
Alexithymia Prototype (CAQ-AP; Haviland & Reise, 1996). In
CAQ-AP terms, the prototypic alexithymic person has difficul-
ties experiencing and expressing emotion; lacks imagination;
and is literal, socially conforming, and utilitarian. Moreover,
alexithymic individuals are not insightful, are humorless, have
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not found personal meaning in life, and anxiety and tension
find outlets in bodily symptoms. These various characteristics
are a mix of what some call “core” features of alexithymia
(Taylor, 2000) and observable expressions or consequences of
being alexithymic. Specific OAS items were written to corre-
spond to the most and least characteristic items in the CAQ-AP.
This approach to generating an item pool differs from the more
common method, that is, to specify broad features in advance
and write several nearly identical items to represent that feature.

Exploratory and confirmatory factor analytic studies
(Berthoz, Haviland, Riggs, Perdereau, & Bungener, 2005; Hav-
iland et al., 2000, 2001; Yao, Yi, Shu, & Haviland, 2005) have
provided modest evidence that the OAS has a five (correlated)
factor structure: distant (unskilled in interpersonal matters and
relationships), uninsightful (lacking good stress tolerance and
insight or self-understanding), somatizing (having health wor-
ries and physical problems), humorless (colorless and uninter-
esting), and rigid (too self-controlling). It is important to note
here that the subscale labels are terms of convenience and to
underscore that these features were not specified a priori.

In tests of substantive hypotheses, researchers use total, and
not subscale, scores (e.g., Mueller, Alpers, & Reim, 2006;
Perrin, Heesacker, & Shrivastav, 2008). In other words, as with
many scales, the multidimensional structure caused by clus-
ters of items with similar content is ignored in practice. One
objective of this article is to explore the extent to which this
practice can be justified empirically. In the following section,
we provide a foundation for bifactor modeling by introducing
two distinct views of multidimensionality. Data (N = 1,495)
for the various illustrative analyses are from four OAS (English
translation) studies: ratings of people-in-general (close friends
and relatives) by undergraduate, graduate, and professional stu-
dents (Haviland et al., 2000; Riggs & Haviland, 2004); and
outpatients being treated by PhD-level clinical and counseling
psychologists (Haviland et al., 2001, 2002).

CONCEPTUALIZING AND MODELING
MULTIDIMENSIONALITY

To illustrate the examples that follow, we display in Figure 1
four alternative structural models. Model A is easily recognized
as a unidimensional model—each item is influenced by a sin-
gle common factor (the target construct—alexithymia) and a
uniqueness term that reflects both systematic and random er-
ror components. Note that Model A does not state that there is
only one reliable or systematic source of variance for each item;
rather, it states that there is only one common source. For any
item, it is likely that dozens of random and systematic factors
affect item performance, including response sets and reading
proficiency, for example. Importantly, Model A is neutral as to
the size of the common factor; a model with all loadings of .20
(and error variances of .96) and a model with all loadings of
.70 (and error variances of .51) both are unidimensional mod-
els. This is an important point because the size of a loading
on a single factor often is taken incorrectly as an indicator of
unidimensionality. Of course, sizeable loadings are necessary
to reliably distinguish between individuals using a reasonable
number of items.

Model A in Figure 1 is the data structure assumed by all uni-
dimensional IRT models (Embretson & Reise, 2000) for either
dichotomous or polytomous items. It also is the model that scale
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FIGURE 1.—Model A, a unidimensional model; Model B, a correlated traits
model; Model C, a second-order model; and Model D, a bifactor model. F =
factor; E = error; D = disturbance; V = measured variable.

developers hope is reasonably true, so that a summed score pro-
vides an unambiguous interpretation of individual differences
on the target construct. In terms of this data, Model A suggests
that variation on each OAS item is affected by variation on alex-
ithymia (the target latent variable) and no other common vari-
able. Unfortunately, strictly speaking, McDonald (1981) noted
that in regard to the prospect of finding perfectly unidimensional
assessment data, “Such a case will not occur in application of
theory” (p. 102). When researchers believe that the restrictions
in Model A are violated severely, alternative multidimensional
structures often are proposed.

To the degree that Model A is implausible, alternative mul-
tidimensional structures must be found, and Models B through
D in Figure 1 represent three alternatives. Herein, we refer to
the familiar and commonly applied Model B as the “correlated
traits” model. In this model, a construct domain is broken apart
into its separate, distinct/correlated elements (sometimes called
“primary” traits). Specifically, the variance of each item is as-
sumed to be a weighted linear function of two or more common
factors. In exploratory factor analysis, the weights can change
depending on rotation choice. This model is most reasonable
when a scale is composed of multiple item parcels with similar
content such that the correlation among items within a cluster
is substantially larger than the average interitem correlation. In
such cases, multiple (and interpretable) factors always can be
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extracted and, depending on the degree of correlation among the
factors, arguments for forming a single aggregate versus scoring
subscales can be made.

Model B, however, is not a measurement model per se. Specif-
ically, in Model B, there is no one common target dimension
(i.e., alexithymia) to be measured or that directly affects item
variance. In contrast to Model B, Model C places a measure-
ment structure onto the correlations among the factors. That is,
the factors are correlated because they share a common cause.
In other words, this second-order model states that the target
construct (alexithymia) is a “second-order” or “higher order”
dimension that explains why three or more primary dimensions
are correlated. Notice that as drawn in Model C, there is no
direct relationship between the item and the target construct,
but rather the relationship between alexithymia and each item is
mediated through the primary factor (i.e., an indirect effect).

To determine the item variance due to the second-order factor,
one must multiply the loading of the item on the primary factor
by the loading of the primary factor on the second-order factor
(see example following). Each item also is a function of the dis-
turbance (i.e., that part of the primary factor that is unexplained
by or independent of the second-order factor). To determine
how much item variance is due uniquely to the primary trait
(controlling for the second-order factor), one must multiply the
loading of the item on the primary trait by the square root of the
disturbance (also shown following).

Finally, the remaining Model D in Figure 1 is a bifactor model
(Holzinger & Swineford, 1937; Schmid & Leiman, 1957). As
shown, a bifactor model is a latent structure in which each item
loads on a general factor. This general factor reflects what is
common among the items and represents the individual differ-
ences on the target dimension that a researcher is most interested
in (i.e., alexithymia). Moreover, a bifactor structure specifies
two or more orthogonal “group” factors. These group factors
represent common factors measured by the items that poten-
tially explain item response variance not accounted for by the
general factor. In some applications of the model, the group fac-
tors are termed nuisance dimensions—factors arising because
of content parcels that potentially interfere with the measure-
ment of the main target construct. Group factors are analogous
to disturbances in the second-order model.

In what we refer to as a “restricted” bifactor model (Gibbons
& Hedeker, 1992), each item loads on a single general factor and
at most, on one additional orthogonal group factor. The restricted
bifactor model assumes that the items all measure a common
latent trait (i.e., alexithymia), but that the variance of each item
also is influenced by an additional common factor caused by
parcels of items tapping similar aspects of the trait. Thus, a
chief virtue of the bifactor model is that it allows researchers
to retain a goal of measuring a single common latent trait, but
also models, and thus controls for, the variance that arises due to
additional common factors. In other words, the bifactor model,
in theory, allows one to directly explore the extent to which
items reflect a common target trait and the extent to which they
reflect a primary or subtrait.

From the previous model descriptions, it should be clear that
if a researcher intends to both recognize multidimensionality
and simultaneously retain the idea of a single important tar-
get construct, the second-order or bifactor models are the only
choices. As we explain in detail subsequently, in some ways,
there is no meaningful distinction to be made between these



MODELING MULTIDIMENSIONALITY

two models; whereas in other ways, they are vastly different.
One difference is that second-order models are fairly common
in the literature and in textbooks (e.g., Byrne, 2006), whereas
bifactor models are not. Beyond this applied difference, another
difference lies in how multidimensionality is conceptualized
under the two models.

Underlying the application of both Model B and its nested
cousin Model C is the assumption that common variance on an
item can be partitioned into a weighted function of variation on
two or more correlated primary traits. Thus, under the correlated
traits framework (and its extension to a second-order model),
the “target” latent trait is what a sample of more basic elements,
primary traits (or subdomains), have in common, not what items
have in common. In contrast, the bifactor model specifies that
there is a single (general) trait explaining some proportion of
common item variance for all items, but that there also are group
traits explaining additional common variance for item subsets.
The general and group factors are on equal conceptual footing
and compete for explaining item variance—neither is “higher”
or “lower” than the other. With this viewpoint, the target latent
variable is what is in common among the items (i.e., the common
latent trait approach).

Both the correlated traits and the common latent trait ap-
proaches are reasonable conceptual models for understand-
ing multidimensionality in some contexts. Reckase (2009), for
example, has written an entire book on the utility of multidimen-
sional IRT models of the correlated-traits type in educational as-
sessment contexts. We believe, however, that the common trait
perspective (and its corresponding bifactor structural model)
is more amenable to conceptualizing and studying (a) whether
scale items measure a single common dimension, (b) how well
the scale items measure a single common dimension, (c) the
effect of multidimensionality on scale scores, and (d) the feasi-
bility of applying a unidimensional IRT model in the presence
of multidimensional data. We summarize and comment on our
arguments in the final sections of this article.

INDEPENDENT CLUSTERS AND CROSS-LOADINGS

In what follows, we describe and illustrate both exploratory
and confirmatory bifactor modeling. Throughout, we make ref-
erence to the idea of items being factorially simple (loading on
one and only one factor) versus complex (having cross-loadings
on two or more factors). We also make use of the concepts of in-
dependent cluster (IC) structure and IC basis (ICB). McDonald
(1999) provided precise definitions of these concepts:

ICB:

a factor pattern in a confirmatory factor/multidimensional item re-
sponse model in which each common factor is identified by two or
more factorially simple variables (for correlated factors) or by three or
more factorially simple variables (for uncorrelated factors). (p. 460)

IC:

In a confirmatory factor/item response model, a model in which each
variable loads on just one factor. In an exploratory factor model, each
variable has a nonnegligible loading on just one factor.” (p. 460)

These concepts play two critical roles in bifactor modeling.
First and more generally, they provide a set of rules for identify-
ing and meaningfully interpreting factors in the common factor
model (e.g., the correlated traits model). If a structure has an
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IC basis (and that basis is more than just mere doublets), for
example, we can justify substantively interpreting the factors,
and items that cross-load on multiple factors can be viewed as
blends of two or more dimensions (McDonald, 1999, 2000).
Second, and more directly related to bifactor modeling, both
restricted second-order and bifactor models are viable to the
degree that a given dataset has an IC structure (i.e., no cross-
loadings in a correlated traits solution). When data violate IC
structure, restricted models will display poor statistical “fit”;
and more important, parameter estimates (e.g., factor loadings
or IRT discriminations) may be seriously distorted.

Software Programs

Many of the analyses that we present require software be-
yond the most widely available packages. Thus, it may be help-
ful to review the options available to researchers interested in
performing such analyses or replicating our results. The R Sta-
tistical Package (R Development Core Team, 2010) is perhaps
the most versatile existing statistical package. This program can
be freely downloaded from http://cran.r-project.org/

Many of the exploratory analyses conducted herein used R
software, including polychoric correlation estimation, ordinary
exploratory factor analysis, and Schmid—Leiman factor rotation
(all from the psych package; Revelle, 2009).

For target factor rotation (described following), we used
the Comprehensive Exploratory Factor Analysis program
(CEFA; Browne, Cudeck, Tateneni, & Mels, 2004), available
free at http://faculty.psy.ohio-state.edu/browne/programs.htm.
CEFA is capable of exploratory factor analysis using multi-
ple extraction methods. We used standard maximum likelihood
(ML) extraction on polychoric correlation matrices.

Finally, ordinary confirmatory factor analytic techniques do
not apply to dichotomous or polytomous data (Byrne, 2006).
Instead, special estimation procedures are required (Wirth &
Edwards, 2007). There basically are three options for working
with polytomous item response data. The first is to compute a
polychoric matrix and then apply standard factor analytic meth-
ods (see Knol & Berger, 1991). A second option is to use full-
information item factor analysis (Gibbons & Hedeker, 1992).
The third is to use limited information estimation procedures
designed specifically for ordered data such as weighted least
squares with mean and variance adjustment (MPLUS; Muthén
& Muthén, 2009). For all confirmatory factor analyses, we used
EQS (Version 6.1; Bentler & Wu, 2003) to conduct ML esti-
mation with robust standard errors (Satorra & Bentler, 1994)
based on a polychoric correlation matrix. Thus, any fit indexes
reported herein are “robust” indexes. This is important to rec-
ognize because traditional benchmarks for structural equation
modeling fit indexes do not necessarily apply when working
with dichotomous or polytomous item response data, and so
their interpretation must be treated with extreme caution (see
Cook & Kallen, 2009).

EXPLORATORY FACTOR ANALYSES OF THE OAS

As a lead into exploratory bifactor analysis, we first present
alternative exploratory factor representations of the models de-
scribed previously. Table 1 shows the unidimensional (ML ex-
traction) and five-factor correlated traits (ML extraction, oblimin
rotation) OAS solutions (loadings < .20 not shown). The load-
ing pattern in the unidimensional solution shows a great deal
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TABLE 1.—Exploratory factor analysis of the Observer Alexithymia Scale.

5-Factor Exploratory (Oblique Rotation)

Item Subscale Unidimensional 1 2 3 4 5
1 Distant 0.73 0.77

2 Uninsightful 0.54 0.69

3 Somatizing 0.42 0.78

4 Humorless 0.76 0.74

5 Rigid 0.46 0.73
6  Distant 0.64 0.84

7  Distant 0.73 0.60 0.25

8  Uninsightful 0.42 0.69

9  Somatizing 0.40 0.76

10 Humorless 0.62 0.92

11 Rigid 0.29 —-0.20 0.72
12 Distant 0.55 0.85

13 Uninsightful 0.49 0.59

14 Somatizing 0.30 0.72

15 Humorless 0.75 0.68

16  Rigid 0.71 0.24 0.61
17  Distant 0.63 0.56 0.21
18  Distant 0.45 0.46 —-0.22

19 Uninsightful 0.40 0.60

20  Distant 0.62 0.26 0.48

21 Uninsightful 0.51 025 0.51

22 Somatizing 0.48 0.66 0.20

23 Humorless 0.68 035 033
24 Distant 0.74 029 0.20 024 023
25  Distant 0.63 0.46 0.23

26  Uninsightful 0.64 0.21  0.56 0.23

27  Somatizing 0.39 029 0.49

28  Humorless 0.71 0.21 0.28 0.35
29  Distant 0.56 0.37 0.29

30  Uninsightful 0.38 0.55

31  Rigid 0.52 0.26 0.51
32 Uninsightful 0.58 0.55 0.21

33  Rigid 0.46 0.47
2nd-order loadings 059 057 038 058 0.71

of variation, with a few items having loadings greater than .70
(e.g., Items 1, 4, 7, 16, 24, and 28) and a few items loading
at or below .30 (Items 11 and 14). The former items have the
largest average interitem correlations (and, thus, the highest es-
timated communalities), whereas the latter have the lowest (the
lowest estimated communalities), meaning it is the former that
disproportionally define the latent variable. The highest loading
items appear to be predominantly drawn from the distant content
domain.

The five-factor oblique solution in Table 1 demonstrates that
for the most part, items fall cleanly into their respective content
domains. The solution is far from a perfect IC structure (each
item loading on one and only one factor), and whether the so-
lution has an IC basis depends on what cross-loading value a
researcher judges to be meaningful. McDonald (1999) cited a
criterion of .30 for a meaningful (cross-) loading, and by this
standard, each (correlated) factor does have at least two items
that load uniquely on that factor. Thus, the factors are mean-
ingfully interpretable. On the other hand, if one uses a more
stringent criterion of .20 for a significant (cross-) loading, then
Factor 5 (rigid) is questionable, given that there are only two
items (5, 33) loading simply on it.

Although not shown in Table 1, the factor correlations ranged
from r = .07 (distant and somatizing) to r = .49 (distant and
humorless), and the average was approximately r = .30. The
size of these factor correlations suggests acommon dimension of
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modest strength! among the primary factors. Clearly, the size of
the factor correlations does not suggest that the content domains
are fungible indicators of a single construct. To model the factor
intercorrelations, the last row of Table 1 shows the loadings of
the five primary traits on the general factor, alexithymia. These
loadings were derived by simply conducting a factor analysis of
the correlations among the primary traits. That is, these loadings
in the bottom of Table 1 represent the relationships between the
second-order factor and the primary traits in a second-order
factor model. Note that disturbances for each of the primary
traits are equal to 1 minus the loading squared. In this model,
Factor 5 (rigid) has the highest loading (.71), whereas Factor
3 (somatizing) has the lowest. These results suggest that it is
highly questionable whether somatizing relates to alexithymia
in the same way that the other features do (a point that we return
to after more testing).

EXPLORATORY BIFACTOR MODELING

The term exploratory implies that no restrictions are placed on
a solution. In terms of bifactor structures, exploratory means that
items are free to load on the general and any number of group
factors. Familiar exploratory factor analytic rotation methods
are designed to identify simple structure solutions, but in a
bifactor structure, items are free to load on a general and a set of
group factors. In short, researchers will not be able to identify
an exploratory bifactor structure using standard factor rotation
methods such as oblimin or promax (however, see Jennrich &
Bentler, 2010). There are two alternatives, each with its own
strengths and weaknesses, which we describe next.

SCHMID-LEIMAN (SL) ORTHOGONALIZATION

One method to obtain a bifactor solution is the SL procedure
(Schmid & Leiman, 1957). For the SL bifactor solutions, we
used the Schmid routine included in the psych package (Revelle,
2009) of the R software program (R Development Core Team,
2008). The Schmid procedure works as follows. Given a tetra-
choric or polychoric correlation matrix, Schmid

1. Extracts (e.g., minres, ML) a specified number of primary
factors.

2. Performs an oblique factor rotation (e.g., oblimin).

3. Extracts a second-order factor from the primary factor cor-
relation matrix.

4. Performs an SL orthogonalization of the second-order factor
solution to obtain the loadings for each item on uncorrelated
general and group factors.

I'This does not surprise us given the nature of the alexithymia construct and
how it is captured by the OAS. Alexithymia refers to deficits in the processing
of emotionally charged information. The construct emerged from the clinical
literature and has never, to our knowledge, emerged in any empirically based
major taxonomies of personality or psychopathology. In short, its behavioral
penetrance probably is low, and thus, we do not expect indicators (which are
very distal from the trait) to be highly correlated. Second, this is an observer-
report measure that attempts to indirectly capture the construct by collecting
ratings of its observable manifestations in a variety of domains; for example,
interpersonal matters and relationships, insight and self-understanding, health
worries, humor, and rigidity. We recognize, actually expect, that individual
differences in alexithymia is just one possible common source of individual
differences on these variables. For this reason as well, we did not expect high
factor intercorrelations.
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Specifically, assuming that an item loads on only one pri-
mary factor, an item’s loading on the general factor simply is
its loading on the primary factor multiplied by the loading of
the primary factor on the general factor. In real data in which
loadings are never exactly zero, an item’s loading on the general
factor is found by summing the products of the item’s loading
on a primary factor with the primary factor’s loading on the
second-order. For Item 1, for example, the actual loadings in
Table 1 are .774, .013, .070, .104, and .060. In turn, the loadings
of the five primaries on the second order are .590, .574, .377,
713, and .575. The sum of the products

(774 x .590) + (.013 x .574) + (.070 x .377)
+(.104 x .713) + (.060 x .575) = .585

is the loading on the general factor for Item 1.

Anitem’s loading on a group factor simply is its loading on the
primary factor multiplied by the square root of the disturbance
(the disturbance is variance of the primary factor that is not
explained by the general factor). For Item 1 and group Factor 1,
this value would be

74 x sqrt(1 — .590%) = .625

The loadings for this item on the remaining four factors follow
a similar logic.

SL is a transformation of a second-order factor pattern, which
in turn is a function of a correlated traits solution. Unsurprisingly
then, to the extent that the items have IC loading patterns (i.e.,
no cross-loadings) on the oblique factors in the correlated traits
solution, the items will tend to load on one and only one group
factor in the SL. To the extent that the items lack an IC structure
in an oblique rotation, the loadings in the SL become more
complicated to predict. Moreover, to the degree that the primary
factors are correlated, loadings on the general dimension in the
SL will tend to be high.

To perform an SL, a measure should contain at least two (if
the primary factors are constrained to be equally related with the
second order) but preferably three parcels (so that the primary
factor correlation matrix can be factor analyzed). The loadings
derived from a SL (a) are affected by both the factor extraction
and oblique rotation method selected, and importantly, (b) con-
tain proportionality constraints (see Yung, Thissen, & McLeod,
1999). The proportionality constraints emerge because the group
and general factor loadings in the SL are functions of com-
mon elements (i.e., the loading of the primary factor on the
second-order factor and the square root of the primary factor
disturbance).

Although the SL is easy to implement, there is a critical
problem: Because of the proportionality constraints, the factor
loadings produced from a SL typically are biased estimates of
their corresponding population values. In other words, if one
were to assume that in the population, the factor loading matrix
had a bifactor structure, the SL only can recover the precise
loadings in real data if (a) the data have a perfect IC structure
and (b) the ratio of an item’s group to general factor loading is
equal for items within each cluster (thus retaining proportional-
ity). When these conditions are not met, the loadings in the SL
may not accurately reflect the true population loadings, even in
models that display an excellent fit to the data.
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To demonstrate, in the top portion of Table 2, we display (from
left to right) three true bifactor population loading patterns. For
each of these patterns, we computed the implied population
correlation matrix and then conducted an SL orthogonalization.
In the first set of columns, it is clear that the SL will recover
the population loading matrix with perfect accuracy when the
group and general factor loadings are proportional. The middle
column displays the SL’s lack of accuracy when group factor
loadings vary in their relation to the item’s general factor. Most
important, the third set of columns shows the distorting effect of
cross-loadings. Specifically, for the items with cross-loadings,
the SL overestimates the loadings on the general factor and
underestimates the loadings on the group factors. Despite this
obvious limit of the SL, the distortions in the SL are generally
not of great concern if a researcher is primarily interested in
identifying the pattern of salient and nonsalient loadings as
opposed to estimating their specific value in the population.

Target Pattern Rotation

If the proportionality constraints of the SL are a concern,
a clear alternative is to estimate an even less restricted model
such as a rotation to a target matrix. Rotation of a factor pattern
to a partially specified target matrix (Browne, 1972a, 1972b,
2001) only is recently gaining popularity due to the availabil-
ity of software packages to implement target and other types
of nonstandard rotation methods (e.g., MPLUS; Asparouhov
& Muthén, 2008; comprehensive exploratory factor analysis,
CEFA; Browne et al., 2004). In this study, we used the freeware
CEFA program exclusively. This program allows the user to
specify a target pattern matrix in which each element in the tar-
get factor pattern is treated as either specified (0) or unspecified
(7). Extracted factors then are rotated to this target.

The target matrix in a targeted rotation “reflects partial knowl-
edge as to what the factor pattern should be” (Browne, 2001,
p- 124). It forms the basis for a rotation that minimizes the
sum of squared differences between the target and the rotated
factor pattern. The use of targeted bifactor rotations raises two
important questions. The first is how to form an initial target,
empirically or theoretically. Empirical preliminary analyses, for
example, such as a SL or cluster analysis, could be used to sug-
gest the number of group factors and a bifactor target structure.
Alternatively, one may rely on theory to determine the number
of factors and which items belong to the various content parcels.
In either case, the target pattern matrix will consist of unspeci-
fied elements (?) in the first column to represent the fact that the
general trait is related to every item and that each item will have
zero (which means that the item is a pure marker of the general
trait) or one or more unspecified elements on the group factors.

One potential (and likely) challenge of target rotations is that
a researcher must correctly specify the target matrix. Unfortu-
nately, there is no research on the robustness of target bifactor
rotations to initial target misspecification. The second question
is, given a correctly specified target pattern, how well can a tar-
geted rotation to a bifactor structure recover the true population
loadings? The answer presently is not known. In Table 3, using
the examples from Table 2, we show that when an initial target
matrix is correctly specified, a target rotation will recover the
true population loadings perfectly, thus avoiding the problems
in the SL. On the other hand, the recovery of bifactor load-
ings in the context of target rotations has not been thoroughly
explored under a variety of conditions. Although Reise, Moore,
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TABLE 2.—Schmid-Leiman orthogonalization under three conditions.

True Population Structure

IC: Proportional IC: Not Proportional IC: Basis
Item Gen Gl G2 G3 Gen Gl G2 G3 Gen Gl G2 G3
1 0.50 0.70 0.40 0.74 0.50 0.70
2 0.50 0.70 0.40 0.15 0.50 0.70 0.40
3 0.50 0.70 0.40 0.19 0.50 0.70
4 0.50 0.70 0.40 0.33 0.50 0.70
5 0.50 0.70 0.40 0.75 0.50 0.70
6 0.50 0.50 0.40 0.23 0.50 0.50
7 0.50 0.50 0.40 0.75 0.50 0.40 0.50
8 0.50 0.50 0.40 0.12 0.50 0.50
9 0.50 0.50 0.40 0.79 0.50 0.50
10 0.50 0.50 0.40 0.51 0.50 0.50
11 0.50 0.30 0.40 0.12 0.50 0.30
12 0.50 0.30 0.40 0.22 0.50 0.40 0.30
13 0.50 0.30 0.40 0.40 0.50 0.30
14 0.50 0.30 0.40 0.59 0.50 0.30
15 0.50 0.30 0.40 0.25 0.50 0.30
Schmid-Leiman
Item Gen Gl G2 G3 Gen Gl G2 G3 Gen Gl G2 G3
1 0.50 0.70 0.41 0.74 0.01 0.01 0.52 0.68 0.01 0.02
2 0.50 0.70 0.29 0.21 0.06 0.14 0.61 0.63 0.06 0.23
3 0.50 0.70 0.30 0.25 0.06 0.13 0.52 0.68 0.01 0.02
4 0.50 0.70 0.33 0.37 0.04 0.09 0.52 0.68 0.01 0.02
5 0.50 0.70 0.41 0.74 0.01 0.01 0.52 0.68 0.01 0.02
6 0.50 0.50 0.31 0.06 0.28 0.12 0.49 0.02 0.51 0.02
7 0.50 0.50 0.41 0.00 0.74 0.01 0.59 0.32 043 0.08
8 0.50 0.50 0.29 0.07 0.19 0.14 0.49 0.02 0.51 0.02
9 0.50 0.50 0.41 0.01 0.77 0.02 0.49 0.02 0.51 0.02
10 0.50 0.50 0.36 0.02 0.53 0.05 0.49 0.02 0.51 0.02
11 0.50 0.30 0.31 0.06 0.05 0.24 0.41 0.06 0.07 0.40
12 0.50 0.30 0.34 0.03 0.03 0.30 0.53 0.02 0.36 0.28
13 0.50 0.30 0.41 0.01 0.01 0.41 0.41 0.06 0.07 0.40
14 0.50 0.30 0.44 0.03 0.03 0.46 0.41 0.06 0.07 0.40
15 0.50 0.30 0.35 0.03 0.03 0.32 0.41 0.06 0.07 0.40

Note. Bold shows items with overestimated general factor loadings. IC = independent cluster; Gen = general factor; G = group factor.

and Maydeu-Olivares (in press) suggested reasonable accuracy
with sample sizes greater than 500 if the data are well structured
and if the target matrix is correct, accuracy tests under other
conditions are needed.

Exploratory Bifactor Rotations With The OAS

Table 4 displays two five-group-factor exploratory bifactor
rotations of the OAS. Columns 2 through 7 show the SL, and
columns 8 through 13 show the target rotation output from
CEFA (loadings less than .20 are not shown). The target pattern
matrix for the target rotation was built according to the proposed
OAS structure, meaning that the results of the SL were not
used to suggest which elements should be (non-)specified in the
target matrix. In this data, the results of the SL and the target
rotation are very similar with one notable exception. Namely,
the loadings on the general factor almost always are higher in
the target rotation than in the SL; and thus, loadings on the
group factors almost always are lower in the target rotation
relative to comparable values in the SL. Notice also that in
each solution, there are items that display cross-loadings on the
group factors. This is not a major concern in these exploratory
analyses; they potentially are a major source of model misfit
and item parameter estimation distortion in restricted models,
which we consider next.

CONFIRMATORY LATENT STRUCTURES

The preceding analyses involved models that were either com-
pletely unrestricted (e.g., correlated traits) or partially restricted
(Schmid-Leiman). In this section, we now shift and consider
highly restricted or (confirmatory) models. These multidimen-
sional models are highly restrictive because they assume that
each item loads on a single factor or, in the bifactor, loads only
on the general and one and only one group factor. Table 5 shows
parameter estimates (standardized solution) based on fitting a
unidimensional model to the matrix of polychoric correlations
using ML estimation in EQS. This model was identified by fix-
ing the variance of the latent factor to 1.0. Note that this solution
is exactly the same as the unidimensional solution in Table 1
(with only one factor, of course, there is no distinction between
the exploratory and confirmatory models).

Unsurprisingly, the fit of this model by conventional bench-
marks (which may or may not apply) is not acceptable: Over-
all model X2 = 12,407 (df = 495, p < .01), comparative fit
index (CFI) = .83, and root mean square error of approxima-
tion (RMSEA) = .13. Also not surprising, the modification
indexes suggest that additional dimensions need to be specified;
specifically, items within a parcel have correlated residuals (the
three largest are between Items 14 and 3; Items 28 and 23;
Items 12 and 6). As noted in the previous section, the OAS in-
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TABLE 3.—Target rotation under three conditions.
True Population Structure
IC: Proportional IC: Not Proportional IC Basis
Item Gen Gl G2 G3 Gen Gl G2 G3 Gen Gl G2 G3
1 0.50 0.60 0.40 0.27 0.50 0.60 0.50
2 0.50 0.60 0.40 0.68 0.50 0.60
3 0.50 0.60 0.40 0.65 0.50 0.60
4 0.50 0.60 0.40 0.21 0.50 0.60
5 0.50 0.60 0.40 0.65 0.50 0.60
6 0.50 0.50 0.40 0.43 0.50 0.50 0.50
7 0.50 0.50 0.40 0.51 0.50 0.50
8 0.50 0.50 0.40 0.29 0.50 0.50
9 0.50 0.50 0.40 0.27 0.50 0.50
10 0.50 0.50 0.40 0.19 0.50 0.50
11 0.50 0.40 0.40 0.61 0.50 0.50 0.40
12 0.50 0.40 0.40 0.13 0.50 0.40
13 0.50 0.40 0.40 0.46 0.50 0.40
14 0.50 0.40 0.40 0.64 0.50 0.40
15 0.50 0.40 0.40 0.53 0.50 0.40
Targeted Rotation
Item Gen Gl G2 G3 Gen Gl G2 G3 Gen Gl G2 G3
1 0.50 0.60 0.40 0.27 0.50 0.60 0.50
2 0.50 0.60 0.40 0.68 0.50 0.60
3 0.50 0.60 0.40 0.65 0.50 0.60
4 0.50 0.60 0.40 0.21 0.50 0.60
5 0.50 0.60 0.40 0.65 0.50 0.60
6 0.50 0.50 0.40 0.43 0.50 0.50 0.50
7 0.50 0.50 0.40 0.51 0.50 0.50
8 0.50 0.50 0.40 0.29 0.50 0.50
9 0.50 0.50 0.40 0.27 0.50 0.50
10 0.50 0.50 0.40 0.19 0.50 0.50
11 0.50 0.40 0.40 0.61 0.50 0.50 0.40
12 0.50 0.40 0.40 0.13 0.50 0.40
13 0.50 0.40 0.40 0.46 0.50 0.40
14 0.50 0.40 0.40 0.64 0.50 0.40
15 0.50 0.40 0.40 0.53 0.50 0.40

Note. IC = independent cluster; Gen = general factor; G = group factor.

cludes five item content parcels and thus, it is understandable
that structural equation modeling (SEM) fit indexes would lead
to the rejection of such a model. These fit values, however, do
not necessarily imply either that a unidimensional IRT model is
impossible to meaningfully fit to the data or that a researcher
cannot measure a single common alexithymia construct using
these items. We address both of these issues following.

Table 5 shows the loadings and factor intercorrelations for a
five-factor solution in which each item is restricted to load on
one and only one primary trait. For identification, each factor
variance was fixed to 1.0. The fit of this model is acceptable and
much improved relative to the unidimensional model: Model
x* =4,447 (df =485, p < .01), CFI = .94, and RMSEA = .07.
Modification indexes reveal that for several items, the restriction
that they load on a single primary trait was responsible for the
lack of fit; for example, we needed to free up the loading (i.e.,
allow cross-loadings) for Item 24 on rigid and Items 26 and
32 on distant. Finally, the estimated correlations among the
primary factors range between .76 (distant and humorless) and
.29 (distant and somatizing). These values are much larger than
comparable values in the exploratory analysis.

Table 6 displays the loadings of the OAS in a second-order
model in which each item is restricted to load on a single pri-

mary factor. Model x> = 4,818 (df = 490, p < .01), CFI = .94,
and RMSEA = .08. The modification indexes are a little more
complicated in this model due to all the restrictions. Modifica-
tion indexes suggested that we needed to free up the direct ef-
fect between Item 24 and the second-order factor (alexithymia).
Moreover, the second-order factor does not completely explain
the correlation among primary traits as evidenced by the need to
free up the correlation between uninsightful and somatizing. As
in Model B, a number of cross-loadings still need to be estimated
to reduce the overall model chi-square. Finally, inspections of
the paths among the second-order and primary traits reveal that
distant, humorless, and rigid are the most highly related to the
second-order trait.

Table 6 also displays the loadings for the confirmatory bi-
factor model in which each item loads on the general and one
and only one group factor. To highlight the items providing the
best discrimination on the general factor, we put the 15 items
loading greater than .50 on the general factor in boldface type.
These items are mostly from the distant and humorless con-
tent domains. Moreover, we put in boldface type the loadings
on the group factors that were larger than an item’s loading on
the general factor. These items are relatively better measures of
the specific group factor construct than they are of alexithymia.
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TABLE 4.—Exploratory bifactor analyses of the Observer Alexithymia Scale.
Schmid-Leiman Orthogonalization Targeted Rotation
Item Gen Gl G2 G3 G4 G5 Gen Gl G2 G3 G4 G5
1 0.59 0.63 0.62 0.59
2 0.48 0.57 0.57 0.52
3 0.38 0.72 0.51 0.62
4 0.68 0.52 0.57 0.33 0.57
5 0.43 0.60 0.47 0.57
6 0.50 0.68 0.56 0.60
7 0.59 0.49 0.20 0.62 0.47
8 0.37 0.57 0.49 0.51
9 0.36 0.71 0.52 0.58
10 0.59 0.65 0.42 0.74
11 0.29 0.59 0.31 0.59
12 0.42 0.69 0.48 0.58 —0.24
13 0.44 0.49 0.51 0.47 0.24
14 0.27 0.66 0.41 0.58
15 0.66 0.47 0.53 0.39 0.51
16 0.61 0.50 0.69 0.38
17 0.51 0.45 0.48 0.51
18 0.34 0.37 0.21 0.35 0.37 —0.26
19 0.35 0.49 0.41 0.45
20 0.53 0.21 0.33 0.48 0.31 0.36
21 0.42 0.20 0.41 0.52 0.33 —0.22
22 0.43 0.61 0.49 0.54
23 0.59 0.24 0.27 0.76 0.32
24 0.63 0.23 0.59 0.35 0.22
25 0.51 0.37 0.47 0.45
26 0.53 0.46 0.48 0.31 0.48
27 0.36 0.23 0.45 0.43 0.25 0.46
28 0.61 0.29 0.85 —0.21 0.25
29 0.46 0.30 0.20 0.39 0.43
30 0.31 0.45 0.42 0.32
31 0.43 0.21 0.41 0.51 0.32
32 0.48 0.45 0.44 0.26 0.43
33 0.41 0.39 0.45 0.35

Note. Gen = general factor; G = group factor; Gl = distant; G2 = uninsightful; G3 = somatizing; G4 = humorless; G5 = rigid.

Note that some items (e.g., Item 6) are fairly good measures of
both general and group factors.

The fit of the bifactor model (see Table 6) also is adequate:
Overall model X2 = 3,152 (df =462, p < .01), CFI = .96, and
RMSEA = .06. The rescaled chi-square difference test showed
that the bifactor model is a statistically significant improve-
ment over the second-order model in terms of overall model
chi-square. In other words, restricting the direct effects among
the second-order factor and the items to be zero in the second-
order model significantly worsens the fit. In the restricted bi-
factor model, the three highest modification indexes were due
to (a) the restriction that uninsightful and somatizing group
factors be uncorrelated, which suggests a model misspecifica-
tion in the form of correlated group factors even after control-
ling for the general factor; (b) Item 20 needed a cross-loading
path to humorless group factor; and (c) Item 13 requires a cross-
loading on the rigid group factor. These needed cross-loadings
undermine our confidence in the parameter estimates; if these
paths were freed, the magnitude of the loadings could change
meaningfully.

Bifactor Compared to Correlated Traits and
Second-Order Models

When a measure contains multiple subdomains of item
content (i.e., multidimensionality reflecting the heterogeneous

manifestations of the trait), the second-order and the bifactor
models are alternative structural representations. Chen et al.
(2006), for example, referred to the bifactor and second-
order factor analytic models as ‘“alternative approaches for
representing general constructs comprised of several highly re-
lated domains” (p. 189). Historically, second-order confirma-
tory factor models frequently are used in noncognitive domains,
whereas bifactor models seldom are used. Of late, however,
psychopathology and personality researchers also have been
making good use of these models (Brouwer et al., 2008;
Chernyshenko, Stark, & Chan, 2001; Simms, Gros, Watson,
& O’hara, 2007; Steer, Clark, Beck, & Ranieri, 1995; Zinbarg
& Barlow, 1996).

Despite these publications, there remains a great deal of con-
fusion in the literature regarding the bifactor approach and when
and how it differs from the second-order method; thus, in this
section, we explain some of the consequential differences. For
lengthier summaries, see Yung et al. (1999); Gustafsson and
Balke (1993); Chen et al. (2006); and Rindskopf and Rose
(1988). To begin, from the exploratory section, it should be
clear that there are no real differences between a second-order
model and an SL orthogonalization due to the fact that the latter
simply is a transformation of the former. In the case of target
bifactor rotations, there is no meaningful comparison to an anal-
ogous second-order model because there is no such thing as a
rotation to a second-order solution.
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TABLE 5.—Unidimensional and correlated-traits solutions of the Observer Alex-
ithymia Scale.

Correlated Traits

Item Unidimensional Gl G2 G3 G4 G5
1 0.73 0.84
2 0.53 0.79
3 0.41 0.79
4 0.76 0.86
5 0.46 0.67
6 0.65 0.79
7 0.73 0.78
8 0.40 0.73
9 0.39 0.81
10 0.62 0.77
11 0.29 0.54
12 0.55 0.71
13 0.48 0.72
14 0.29 0.70
15 0.75 0.82
16 0.71 0.83
17 0.63 0.71
18 0.45 0.53
19 0.39 0.61
20 0.62 0.61
21 0.50 0.61
22 0.47 0.75
23 0.68 0.72
24 0.73 0.67
25 0.63 0.67
26 0.63 0.63
27 0.38 0.68
28 0.71 0.73
29 0.56 0.60
30 0.37 0.47
31 0.51 0.61
32 0.57 0.55
33 0.46 0.58

Correlations Among Factors

Gl G2 G3 G4 G5
Gl 1
G2 0.52 1
G3 0.29 0.63 1
G4 0.76 0.53 0.39 1
G5 0.61 0.52 0.45 0.70 1

Note. Gen = general factor; G = group factor; G1 = distant; G2 = uninsightful; G3 =
somatizing; G4 = humorless; G5 = rigid.

Although as detailed previously, we believe that the second-
order model and the bifactor are distinct ways of representing
a single construct (i.e., item variance explained by a weighted
combination of primary traits as opposed to item variance ex-
plained by a general factor and group factors), Gustafsson and
Balke (1993) argued that the differences between second-order
and bifactor models rest more in appearance than in substance.
Gustafsson and Balke asserted that, whereas in the second-order
model, it may appear that the second-order factor is further re-
moved from the items and at a “higher level” of abstraction, this
really is not the case. Gustafsson and Balke believed that the only
real difference between second-order and primary factors is the
range of variables they affect. This perspective suggests that the
difference between partitioning the general and group factors
in the bifactor and partitioning the second-order and primary
dimensions in the second-order model is minor. Gustafsson and
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Balke did point out differences in the models, however, and in
fact, they favored use of the bifactor in their studies of human
abilities.

The main difference between the bifactor and second-order
models emerges in confirmatory models that compare Models C
and D. First, the traditional second-order model is nested within
the bifactor model; and thus, the more general bifactor can be
used to evaluate the decrement in fit resulting from placing the
restrictions inherent in the correlated traits, second-order, and
unidimensional models. Consider the OAS with 33 items and
five group factors in a restricted bifactor model. After fixing all
factor variances to 1, factor correlations to 1, and factor intercor-
relations to 0, 99 parameters are estimated for the bifactor—33
loadings on the general factor, 33 loadings on the group factors,
and 33 error variances—Ileaving 462 df (561 — 99 = 462 df).

For the second-order model, with one second-order and five
primary factors, fixing the factor variances to 1, 24 parameters
are estimated—>5 loadings of primary on secondary, 33 loadings
of items on primary, 33 error variances, and five disturbance
terms—Ileaving 490 df (561 — 71 = 490 df). Notice, however,
that in the traditional second-order model, there are no direct
effects specified between the second-order factor and the items
(i.e., the only effects are indirect). If in the OAS data, one
were to specify the 28 possible direct paths (33 items minus
five primary factors), then the second-order and bifactor are
equivalent models (see Chen et al., 2006, for a demonstration).

Finally, in terms of application, Chen et al. (2006) listed six
advantages of the confirmatory bifactor relative to the second-
order model:

1. Because it is the most general model, the bifactor can be used
as a foundational model for testing more constricted models.

2. The bifactor model allows the correct separation of gen-
eral and domain specific factors, whereas the second-order
model “forces” a primary trait to be a domain-specific fac-
tor. In other words, even if a researcher mistakenly specifies
a content parcel that ostensibly is unique in regard to the
general trait, this easily would be identified in the bifactor
model (group factor loadings would be zero, and the items
would load only on the general) but difficult to identify in the
second-order model (where an artificial separation between
the primary trait and the general is forced on the model).

3. The relation between items and group factors can be directly
modeled by the bifactor.

4. In the bifactor, the contribution of the group factors to pre-
diction of an external variable can be studied independently
of the general factor. This would be difficult to do with the
second-order model because it is difficult to estimate paths
between disturbances and external variables.

5. The bifactor model allows for tests of measurement invari-
ance at both the general and group factor levels. In the
second-order model, measurement invariance is studied at
the general factor level only.

6. In the bifactor model, group mean differences can be studied
at both general and group factor levels.

APPLICATIONS

In this section, we demonstrate how the bifactor can be
used to address important issues that routinely arise in psy-
chometric analysis of personality and psychopathology mea-
sures. Specifically, using the OAS data, we demonstrate the
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TABLE 6.—Second-order and bifactor solutions of the Observer Alexithymia Scale.

Second-Order Model

Bifactor Model

Item F1 F2 F3 F4 F5 Gen F1 F2 F3 F4 F5
1 .85 .70 .50
2 78 45 .68
3 .80 33 .73
4 .86 74 A7
5 .66 44 .61
6 .79 .60 .62
7 78 71 31
8 71 31 75
9 .81 31 75
10 77 58 70
11 .53 .26 .65
12 71 A48 .70
13 71 .39 .63
14 .70 20 70
15 .81 .76 .35
16 .84 70 .38
17 71 .66 21
18 52 47 22
19 .60 33 51
20 .60 .63 .09
21 .61 A7 37
22 .76 43 .63
23 73 .69 .14
24 .67 71 .08
25 .67 .65 15
26 .65 .62 .26
27 .67 31 .58
28 73 71 .09
29 .59 58 11
30 A48 .35 31
31 .61 49 34
32 .58 58 .20
33 .57 A5 37
2nd-order loadings 81 .67 49 .89 79
Sum of A squared 292.07 8.94 13.76 11.49 3.06 5.52

Note. Bold shows a general factor loading greater than .50. F = factor; Gen = general factor; F1 = Distant; F2 = Uninsightful; F3 = Somatizing; F4 = Humorless; F5 = Rigid.

utility of bifactor analyses for: a) evaluating the plausibility
of subscales, b) determining the degree to which sum scores
reflect a single factor, and c) evaluating the feasibility of ap-
plying a unidimensional IRT measurement model. Finally, in
the conclusion, we review the strengths and limits of bifactor
modeling.

The Plausibility of Subscales and General Factor
Dominance

Arguments whether a measure should be scored as reflecting
a single construct or broken down into subscales are very com-
mon in both cognitive and noncognitive measurement contexts.
Typically, the technical details of this argument are sidestepped
in the applied literature in favor of simply reporting scores (and
sometimes standard errors) for both subscales and the total ag-
gregate. Yet, this apparently pleasing compromise is problem-
atic in several ways.

First, if the OAS (and like scales) were broken down into (cor-
related) subscales, multicollinearity would interfere with our
ability to judge the unique contribution of each of the subscales
in predicting some important outcome. In turn, if a heteroge-
neous aggregate score were formed to represent alexithymia, we
would not be confident that any external correlates truly reflect
the common trait of alexithymia rather than the effect of one

or more components of alexithymia. Second, and related to the
first, a common argument for breaking a measure into subscales
is that the subscales may have differential correlates with ex-
ternal variables. This is technically true but weak justification
for “cutting up” a measure. Indeed, any two items that are not
perfectly correlated potentially have different correlations with
external variables, yet it would be silly to argue that one should
investigate external correlates for each item separately. Why,
for example, would one break apart two correlated parcels to
create two unreliable specific measures that, when combined,
can provide a reliable measure of one thing?

Third, a seldom recognized problem with computing sub-
scales is that from a bifactor perspective, subscale scores reflect
variation on both a general trait (alexithymia) and a more spe-
cific trait (rigidity). The effect of this is that the subscale may
appear to be reliable, but in fact, that reliability is a function of
the general trait, not the specific subdomain. Finally, as argued
in Sinharay and Puhan (2007), subscales often are so unreli-
able compared to the composite score that the composite score
actually is a better predictor of an individual’s true score on a
subscale than is the subscale score. For this reason, Sinharay and
Puhan developed the argument that subscale scores are seldom,
if ever, empirically justified (although they may be necessary
for political/policy reasons).
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Given that traditional psychometric practices fail to truly in-
form on the general score versus subscale score issue, we argue
that the bifactor model gives some guidance to argue for one ap-
proach over the other (see also Gustafsson & Aberg-Bengtsson,
2010). At the most simple level of analysis, because the general
and group factors are uncorrelated in a bifactor model, a sim-
ple inspection of the factor loadings on the general and group
is informative. To the degree that the items reflect primarily
the general factor and have low loadings on the group factors,
subscales make little sense. In the case that the items have sub-
stantial loadings on both group and general factors, a researcher
should consider the computation of factor scores for all factors.
In either case, at the very least, the bifactor representation poten-
tially provides one with a clear view of the extent to which the
items truly reflect a general construct (free of the multidimen-
sionality) and to what extent they reflect a more conceptually
narrow construct (controlling for the general).

In this case, inspection of the loadings in Table 6 reveals that
under the second-order model, one could easily be fooled into
thinking that there are five well defined and scoreable subscales.
Inspection of the bifactor results, on the other hand, clearly
shows that after controlling for the general factor, the group
factor loadings generally are lower. As a consequence, it would
be difficult to squeeze out meaningful variation for some of
these subscales. For group Factors 1, 2, 3, and 5 in Table 6, for
example, it would be hard to argue that the number of items
with high loadings supports computation of a factor score (or
creation of a subscale). Factor 1, for example, is defined by
only two items with loadings > .50. On the other hand, group
Factor 2 (uninsightful) has four items with loadings greater than
.50. Although some researchers may find this acceptable, our
general advice for use of the OAS in practice/research is to not
estimate group factor scores or form subscale scores.

Relatedly, a second important issue that arises in psychomet-
rics is the question, despite the heterogeneity of item content,
to what degree do scores reflect a single construct? When data
are perfectly unidimensional (Model A), coefficient alpha pro-
vides a direct index of general factor saturation. In other words,
under unidimensionality, coefficient alpha reflects the percent
of variance in sum scores explained by a single factor. When
data are multidimensional, Cronbach’s alpha can be very mis-
leading in regard to interpreting how well a measure reflects
a single construct (Cortina, 1993). This is simple to under-
stand if one recognizes that in classical test theory, the true
score reflects all reliable sources of variance (including general,
group, and item specific sources). In short, under multidimen-
sionality, coefficient alpha can lead a researcher into a false
sense of security as to how well a single construct is being
measured.

Coefficient omega hierarchical (Zinbarg et al., 1997; Zinbarg,
Revelle, Yovel, & Li, 2005), on the other hand, is a statistic based
on a bifactor model representation that estimates the proportion
of variance in raw scores attributable to a single general target
trait. In this framework, variation in scores attributable to group
and specific factors are treated as nuisance variance or error
in measurement. Specifically, given the results of a bifactor
solution, coefficient omega can be calculated as

_ (Z )"Gen)z
= VRGO W
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where A are the “unstandardized” loadings of the items on
the general factor in a bifactor model, and VAR(X) is simply
the variance of (unweighted) raw scores. Note that some debate
exists in regard to whether VAR(X) should be based on the
estimated covariance matrix or model reproduced covariance
matrix (Bentler, 2009).

Coefficient omega hierarchical is not a pure unidimension-
ality index per se (see following). Nevertheless, the difference
between the coefficients alpha and omega hierarchical is the
extent to which the reliability estimate is influenced by allow-
ing group factors to figure into true score variation. Moreover,
Gustafsson and Aberg-Bengtsson (2010) demonstrated how in-
dexes such as omega hierarchical can be used to argue that scores
on achievement tests, despite being clearly multidimensional in
content, still reflect primarily a single dimension. Gustafsson
and Aberg-Bengtsson also argued that the effect of a factor on
raw score variance is related to the square of the number of
items loading on a factor.

If aresearcher were interested in a cleaner index of unidimen-
sionality, defined as the percent of common variance attributable
to the general factor, then Equation 2 is appropriate (explained
common variance [EVC]; ten Berge & Sokan, 2004; Bentler,
2009).

(22 *%Gen)
(Z )\zGen) + (Z )\201) + (Z )»202) ..... (Z AZGK)
@)

ECV =

In Equation 2, the factors are assumed uncorrelated, and the
denominator contains the sum of the (unstandardized) squared
loadings, for all the K common factors including both general
and group. This is a superior unidimensionality index because
it represents how much common variance is attributable to a
single general factor.

Given the preceding, researchers now can see how the
bifactor model guides them in interpreting the OAS as an index
of a single score. First, in terms of variance explained, in the
confirmatory analysis (Table 6), the general factor explains 30%
total variance, and the five group factors explain 4%, 6%, 7%,
3%, and 3%, with 47% error. Thus, the general factor accounts
for nearly 57% of the common variance extracted. Again, using
the confirmatory bifactor results (Table 6), if a composite were
formed based on summing the OAS items, coefficient omega
hierarchical = .82%3 (see bottom row of Table 6 for bifactor
model); thus, we conclude that 82% of the variance of this
composite could be attributable to variance on the general

2Technically this is standardized coefficient omega hierarchical, and the
previously reported alpha is standardized alpha (i.e., based on polychoric cor-
relations). In this study, we worked exclusively with a polychoric correlation
matrix to conduct the factor analyses, and so our estimated factor loadings are
standardized. The appropriate raw score aggregate for interpretation of coeffi-
cient omega hierarchical in this case is the sum of standardized items.

3In theory, we could calculate omega based on the Schmid-Leiman results
or the target bifactor rotation. In fact, the R psych package omega command
cited earlier makes this easy. In this data, omega hierarchical drops to around
.65 in the exploratory analysis. On the other hand, as described previously,
one cannot fully trust the exploratory results, especially the Schmid-Leiman
parameters. For this reason, we argue that omega is most wisely calculated only
after a confirmatory model has been established.
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factor. The group factors would account for 3%, 4%, 3%, 1%,
and 2% (5% error in the aggregate), respectively. Thus, in
our view, despite the empirical fact that the data are multidi-
mensional, scores derived from the OAS primarily reflect a
single common source, alexithymia (depending, of course, on
further construct validity work). We recommend continuing the
practice of using total, not subscale, scores. We also recommend
reporting a reliability of approximately .80 as opposed to the
somewhat deceptive reported alphas, which generally are
>.90.

Judging the Feasibility of an IRT Model

Dimensionality issues are of paramount concern to re-
searchers who wish to apply unidimensional IRT (Embretson
& Reise, 2000) measurement models. These models assume
unidimensionality (i.e., one and only one common factor
underlies item responses) and local independence (i.e., no cor-
related residuals—after extracting a single common factor, item
responses are uncorrelated). Because (a) most IRT models used
today assume unidimensionality, and (b) data are never truly
unidimensional, there is constant debate in the psychometric
literature about how best to respond. Researchers have ex-
plored the robustness of unidimensional IRT model parameter
estimates to multidimensionality violations (e.g., Drasgow &
Parsons, 1983; Reckase, 1979), and one conclusion is that if the
data have a strong common factor or multiple highly correlated
factors, then IRT item parameter estimates are not seriously
distorted.

Accordingly, over the years, researchers have developed a va-
riety of schemes and rules of thumb for judging whether a data
set is unidimensional enough for IRT model application, includ-
ing use of SEM fit statistics, inspection of residuals after fitting
a one-factor model, and comparing the ratio of first to second
eigenvalues. This is not the place to point out the strengths and
weaknesses of these “unidimensional enough” indexes. Rather,
suffice it say that the ultimate goal of measurement is to assess
individuals on the common construct underlying the items. If
data truly are multidimensional, then the general trait in the
bifactor model is the most reasonable approximation to that
common construct. In turn, the ultimate goal of a unidimen-
sional IRT analysis is to correctly estimate the item parame-
ters (e.g., item discrimination) linking items with this common
latent variable, even in the presence of violations of perfect
unidimensionality.

One method of exploring this issue is as follows: if one fit a
unidimensional factor model and a bifactor model to the same
dataset, any discrepancy among the general factor loadings in
the bifactor model and the loadings in the unidimensional model
are, by definition, an indicator of problems with the unidimen-
sional model parameter estimates. That is, if the two sets of load-
ings are different, the loadings in the unidimensional model are
ipso facto distorted by virtue of forcing inherently multidimen-
sional data into a unidimensional framework. Thus, given that
the factor analytic model easily can be transformed into an IRT
model, Reise, Morizot, and Hays (2007) and Reise, Cook, and
Moore (2010) proposed that in any application of a unidimen-
sional IRT model, a corresponding bifactor IRT model should be
reported so that reviewers can more readily tell whether multi-
dimensionality seriously distorts the parameter estimates in the
unidimensional model.
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Although not demonstrated here, note that it is quite possible
that a unidimensional IRT model may well be adequate even in
the presence of multidimensional data. One needs to be mindful
that the most important issue in applying an IRT model is not
absolute fit of a unidimensional model or whether a multidimen-
sional model provides a superior relative fit. Rather, the most
important considerations are (a) is there a common factor run-
ning among the items; (b) is the common latent trait identified
correctly, that is, does it reflect what is in common among all
the items or distorted by multidimensionality; and (c) to what
degree do the item parameters reflect the relation between the
common latent trait (purified of multidimensionality) and the
item responses. When items load highly on the general factor in
a bifactor model, and content (group) factors are roughly sim-
ilar in size and item intercorrelation, it may well be the case
that multidimensionality, indeed, is mere nuisance in terms of
fitting a unidimensional IRT model. In this case, for example,
notice that the loadings in the unidimensional model (Table 5)
are very similar to those on the general factor in the bifactor
model (Table 6).

STRENGTHS AND LIMITS OF THE BIFACTOR MODEL

We believe that a fair reading of the personality assessment
literature supports the following: When a scale is subjected to
confirmatory factor analyses, the conclusion is, almost without
exception, that the data are multidimensional (or at the least,
correlated residuals need to be specified to achieve acceptable
fit). In fact, authors of almost all the CFA articles cited in the
beginning of this article have reached this conclusion. On the
other hand, when a scale is being considered for IRT modeling,
the conclusion almost always is that the item responses are “uni-
dimensional enough” (see Reise & Waller, 2009, for a review
of IRT applications). Perhaps the mostly frequently encoun-
tered phrase in published IRT applications is “Some evidence
of multidimensionality was found, but we concluded there was
a strong single common factor, and thus, the data are unidimen-
sional enough for an IRT model.”

How the assessment community arrived at this point and why
scale developers, critics, and users remain somewhat at odds
is beyond the scope of this article. Suffice it to say, given the
challenges inherent in writing a set of scale items that (a) mea-
sure a single target construct but are not entirely redundant (i.e.,
the same question asked over and over), (b) are heterogeneous
enough to validly represent the diverse manifestations of the
construct, and (c) provide acceptable reliability, it is not sur-
prising that psychological test data often are consistent with
multiple models. Thus, by judicious selection of fit statistics
and rules of thumb, and by deciding whether to parcel items or
allow correlated residuals, informed researchers basically can
conclude whatever they wish regarding dimensionality, the ap-
plicability of latent variable models such as unidimensional IRT
models, and the ultimate interpretability of scale scores.

How, then, are instruments best scored in real-world clinical
and research settings, and what guidance can we offer clini-
cians and applied researchers? Clearly, a central question we
have raised is whether more frequent and better use of a bifactor
model can help resolve these issues. In this regard, part of the
problem in the traditional psychometric evaluation of scales is
that the wrong default model is used. That is, Model A (the
unidimensional) not only is the model required for application
of unidimensional IRT models; it also is used as an “ideal” in
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exploratory and confirmatory factor analytic investigations. Yet,
item response data drawn from substantively complex measures
never will be strictly unidimensional. Moreover, it has long
been recognized (e.g., Humphreys, 1970) that even if achiev-
able, Model A is not necessarily desirable. To achieve Model A,
one essentially has to write a set of items with very narrow con-
ceptual bandwidth (i.e., the same item written over and over in
slightly different ways), which results in poor predictive power
or theoretical usefulness.

Given that the goal of measurement almost always is to scale
individuals on a single common dimension, perhaps the use of
Model A as the default standard has been a mistake. Maybe the
bifactor model—which contains a single common trait but also
allows for multidimensionality due to item content diversity—
provides a better foundational model for conceptualizing di-
mensionality and for understanding what factors are influenc-
ing scores derived from a psychological measure. Of course, we
have not provided conclusive evidence for this assertion; how-
ever, as argued previously, among the advantages of adopting
the bifactor model are that it

1. Allows researchers to scale individuals on a single trait but
at the same time control for the distorting effects of multidi-
mensionality caused by item content clusters.

2. Provides a framework for the computation of informative
statistics such as coefficient omega. These statistics reflect
the interpretability of scale scores as insular constructs.

3. Assists in the study of the distorting effects of forcing multi-
dimensional data into a unidimensional model by comparing
the results of a bifactor model with a unidimensional model.

4. Makes it possible for one to study the unique contribution
of the general and group factors to the prediction of external
variables.

Outside of cognitive testing, however, the bifactor model
mostly has been poorly received by personality, psychopathol-
ogy, and health outcomes researchers. One obvious reason is that
there has never been a bifactor command on standard statistical
software packages (but see Wolff & Preising, 2005; Jennrich &
Bentler, 2010). Beyond this convenience factor, however, our
experience tells us that researchers view bifactor structures with
great suspicion. In what follows, we consider three broad rea-
sons: (a) interpretation, (b) specification, and (c) restrictions.

Interpretation

One issue with the bifactor structure is the conceptualization
itself, that is, the view that there is a general common trait, plus
additional traits, and that all of these are orthogonal. One col-
league asked recently, what does it mean to say a task is mostly
accounted for by intelligence (general) but also accounted for
by working memory that is “independent of” intelligence? In
what sense can there be a working memory that is independent
of general intelligence? Cast in present terms, what does it mean
to propose a group factor of “rigidity” or “humorless” that par-
tially reflects alexithymia but also has a specific component that
is independent of alexithymia? In short, some researchers are
skeptical that the model itself makes any sense. Clearly one is
free to ask such a question, but a perfectly reasonable response
is to ask, in what sense is the correlated traits model a more plau-
sible or valid reflection of the nature of psychological traits and
behavior? In our view, the next generation of neuro-biological
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based personality research may well provide insights into these
issues.

Model Specification

Imagine a researcher considering the application of bifactor
models to his/her item response data as in this study. The first
questions that would need to be addressed are how many group
factors should the model have, and once this is known, how and
how well can the model’s parameters be estimated? The “num-
ber of factors to extract” always has been a vexing problem in
traditional factor analysis, and it can become even more com-
plicated in bifactor analysis. One reason is that, for a bifactor
model, it would be wise to have at least three group factors,
for the group factors to be balanced in terms of the numbers
of items, and for each group factor to have at least three items
loading simply.

What should a researcher do when the construct suggests
only two conceptually meaningful clusters, such as dispositional
hope (see Brouwer et al., 2008)? What should be done in the
analysis of an existing measure when one content domain is
represented by 12 items, a second is represented by four, and a
third appears to only have two potential marker items? Can the
bifactor still recover the “true” common latent dimension under
these conditions? Moreover, in applied data analysis, often it
is very challenging to tell whether there is a group factor or
if a cluster of items is more a doublet or triplet (same item
content stated in slightly different ways). In the presence of such
doublets and triplets, McDonald (1999) concluded a data set
cannot have any identifiable dimensionality and most certainly
cannot have even an IC basis. Finally, being the most general
model, the bifactor contains the most paths to estimate and
thus the fewest degrees of freedom. Some would argue such a
solution represents an overdetermination of the data and is too
clumsy for routine use in structural modeling.

Restrictions

Beyond the major assumption of orthogonality, the bifactor
model also has restrictive assumptions that need to be met for
group factors to be identified, substantively interpreted, and have
parameters that are properly estimated. For a group factor to be
identified, for example, there must be at least three items that
load on the general and only one group factor. More important,
although items displaying cross-loadings on the group factors
are allowable in exploratory solutions, such items lead to dis-
torted and untrustworthy item parameter estimates in restricted
bifactor solutions. (This also is true of second-order models,
but this has not adequately been addressed/acknowledged in
the literature.) Stated differently, a restricted bifactor model
demands not only that the data be multidimensional but also
that the multidimensionality be well structured (i.e., each item
measures a general trait and one and only one subtrait). Lest
one claim the second-order model provides relief on this front,
Wolff and Preising (2005) noted, “When a variable is factori-
ally complex—that is, it loads on several factors—problems of
interpretation are aggravated. In this case, higher order FA does
not yield total effects” (p. 49).

CONCLUSION

We have already concluded that one possible approach that could be
used to deal with the problem of representing aspects of constructs
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with different degrees of generality is hierarchical factor-analytic mod-
eling. ... Still, the impact on practical applications has been limited.
(Gustafsson & Aberg-Bengtsson, 2010, p. 104)

The preceding quotation illustrates the point that many re-
searchers over the years have made; that is, models such as
the bifactor provide an excellent framework for studying how
measures containing heterogeneous item content still can be un-
derstood as primarily measuring one construct. We agree with
Gustafsson and Aberg-Bengtsson (2010) that the bifactor model
is poorly understood and seldom used by applied researchers.
This is unfortunate because when working with substantively
complex constructs, a bifactor model can serve as an informa-
tive psychometric tool, as we have demonstrated throughout this
article. Despite a promising future, we believe that research is
needed to further explore (a) the strengths and weaknesses of
target (Browne, 2001) and direct (Jennrich & Bentler, 2010) bi-
factor rotation methods; (b) the issue of cross-loadings and their
potentially distorting effects on restricted models; (c) the robust-
ness of the model to differential group factor strength; and (d)
how this model can best be used to inform scale development,
interpretations, and revisions.
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