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Abstract 

Young barley leaf extract (YBL) contains beneficial substances such as fructans, minerals, and vitamins. The effects 
of YBL administration on the human colonic microbiota and its production of metabolites were evaluated using an 
in vitro model culture system. Fermentations were started by inoculating fecal samples from nine healthy subjects, 
with or without 1.5% YBL. Bacterial 16S rRNA sequencing results confirmed that YBL administration significantly 
increased the relative abundances of bacteria related to the genus Bifidobacterium (p = 0.001, paired t-test) and 
those of the genera Faecalibacterium, Roseburia, Unclassified Ruminococcaceae, and Lachnospira (p = 0.013, p = 0.019, 
p = 0.028, and p = 0.034, respectively, paired t-test). Increased abundances of the latter genera corresponded to 
increased butyrate production in human colonic microbiota models following fermentation with 1.5% YBL, when 
compared to fermentation without 1.5% YBL (p = 0.006, Dunnett’s test). In addition, YBL administration significantly 
increased the production levels of amino acids such as lysine, glutamate, serine, threonine, alanine, isoleucine, leucine, 
valine, and phenylalanine. Therefore, our results showed the health-promoting bifidogenic and butyrogenic effects of 
YBL.
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Introduction
Barley (Hordeum vulgare L.) is a cereal crop that it widely 
distributed throughout the world, and barley grass is rich 
in functional ingredients (Zeng et  al. 2018). Young bar-
ley leaf and its extract are components of a green-colored 
drink named “Aojiru” in Japan (Yamaura et  al. 2012; 
Ikeguchi et  al. 2014; Yamaura et  al. 2015). Barley grass 
(including young green leaves and stems) possesses sev-
eral pharmacological activities such as anti-cancer activ-
ity, anti-oxidant activity, and anti-inflammation activity, 
and pharmacological interest exists in using barley grass 
to treat chronic diseases (Lahouar et  al. 2015). Young 
barley leaf extract (YBL) is a natural source of vitamins 
and minerals, and supplementation with YBL decreased 
plasma cholesterol levels in hyperlipidemic patients (Yu 

et al. 2003). In addition, barley leaves temporarily accu-
mulate fructan, sucrose, and starch as stored carbohy-
drates, particularly during nitrogen starvation (Wang 
et al. 2000). Vandeputte et al. (2017) observed that con-
sumption of an inulin-type fructan increased the rela-
tive abundances of Bifidobacterium species in the fecal 
microbiota. To date, the impact of YBL interventions on 
the human colonic microbiota has not yet been investi-
gated in detail.

Recently, we developed an in  vitro human colonic 
microbiota model using a batch fermentation system 
and human fecal inocula (named as the Kobe University 
Human Intestinal Microbiota Model [KUHIMM]), which 
maintained the diversity and overall number of bacte-
rial species in fecal samples (Sasaki et  al. 2018). Thus, 
the KUHIMM served as a convenient model for simu-
lating and evaluating the effect of exogenous functional 
compounds, such as prebiotics, on the human colonic 
microbiota. In addition, the KUHIMM could reproduce 
the production of short-chain fatty acids (SCFAs) in the 
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colon. For example, the KUHIMM was used to detect 
significantly lower butyrogenesis in samples from ulcera-
tive colitis patients (Sasaki et  al. 2019). The aim of this 
study was to assess the impact of YBL administration 
on the human colonic microbiota composition using the 
KUHIMM. To this end, we performed high-throughput, 
next-generation sequencing (NGS) of the bacterial 16S 
rRNA gene and compared the KUHIMM results obtained 
with or without YBL supplementation.

Materials and methods
YBL acquisition and composition

YBL was supplied by JPD Co., Ltd. (Hyogo, Japan). The 
manufacturer collected leaves from young barley plants 
(Hordeum vulgare L. var. nudum Hook; 20–35  cm in 
height) in the Oita Prefecture of Japan and extracted juice 
from the leaves to produce YBL as a spray-dried pow-
der. The YBL contained carbohydrates (46.5%), proteins 
(29.0%), minerals (17.5%), water (3.4%), fat (0.6%), fructan 
(9.4 g/100 g), K (4014 mg/100 g), Na (775 mg/100 g), Ca 
(619 mg/100 g), P (523 mg/100 g), Mg (237 mg/100 g), Fe 
(15.9 mg/100 g), Mn (4.72 mg/100 g), Zn (2.41 mg/100 g), 
chlorophyll (938  mg/100  g), and superoxide dismutase 
(SOD; 7716 U/g).

Human fecal sample collection from volunteers

Fecal samples were obtained from nine healthy Japanese 
human volunteers, who had not been treated with anti-
biotics for more than 2 months prior to the experiment. 
All participants were recruited according to the inclusion 
criteria, which comprised an age of the early twenties to 
the middle forties, being Japanese, a non-smoking status, 
and good health and physical condition. The exclusion 
criteria included significant clinical deviation from nor-
mal as determined by the investigators; a history or sus-
picion of having diabetes, liver disease, kidney disease, or 
a food allergy; or currently taking prebiotics, probiotics, 
or lipid-lowering medications.

Fecal samples were immediately collected with an 
anaerobic culture swab (212550 BD BBL Culture Swab; 
Becton, Dickinson and Company, Franklin Lakes, NJ, 
USA) and used within 24 h.

Operation of the KUHIMM, with and without YBL

The KUHIMM was operated with or without added 
YBL, using a multi-channel fermenter (Bio Jr.8; ABLE, 
Tokyo, Japan), as described in detail previously (Takagi 
et al. 2016; Sasaki et al. 2018). The cultivations were ini-
tiated by inoculating a single fecal suspension (100 µL) 
into each vessel. During cultivation at 37 °C, the culture 
broth was stirred at 300  rpm with a magnetic stirrer 
and continuously purged with a filter-sterilized mixture 
of gas to maintain anaerobic conditions. To evaluate 

the effect of YBL, YBL powder was added into one of 
the vessels at a final concentration of 15 g/L (1.5% per 
100  mL medium) prior to cultivation. A control ves-
sel without YBL powder was also prepared. Aliquots 
(1 mL) of culture broth were sampled from the vessels 
at 48  h after initiating cultivation. Fecal and culture 
broth samples were stored at − 20 °C until use.

Extraction of microbial genomic DNA

Microbial genomic DNA was extracted from suspended 
feces and culture broth from the KUHIMM at 48 h, as 
described previously (Takagi et al. 2016). Purified DNA 
was eluted into TE buffer (10 mM Tris HCl containing 
1.0 mM ethylenediaminetetraacetic acid) and stored at 
− 20 °C until use.

Illumina library generation

Bacterial 16S rRNA genes (V3–V4 region) were ampli-
fied using genomic DNA as the template and the prim-
ers S-D-Bact-0341-b-S-17 (5′-CCT ACG GGNGGC 
WGC AG-3′) and S-D-Bact-0785-a-A-21 (5′-GAC TAC 
HVGGG TAT CTA ATC C-3′) (Klindworth et al. 2013), as 
described previously (Sasaki et al. 2017). Index primers 
(Nextera XT Index  Kit; Illumina Inc., San Diego, CA, 
USA) overhanging the amplified sequences were added 
to the gene-specific sequences. Each polymerase chain 
reaction (PCR) was performed according to the manu-
facturer’s instructions. Amplicons were purified with 
AMPure XP DNA purification beads (Beckman Coul-
ter, Brea, CA, USA) and eluted in 25 µL of 10 mM Tris 
(pH 8.5). Purified amplicons were quantified using an 
Agilent Bioanalyzer 2100 with DNA 1000 chips (Agi-
lent Technology, Santa Clara, CA, USA) and a Qubit 
2.0 instrument (Thermo Fisher Inc., Waltham, MA, 
USA), and pooled at equimolar concentrations (5 nM). 
The 16S rRNA genes and an internal control (PhiX 
control v3; Illumina) were subjected to paired-end 
sequencing using a MiSeq instrument (Illumina) and 
the MiSeq Reagent Kit, v3 (600 cycles; Illumina). The 
PhiX sequences were removed, and paired-end reads 
with Q scores ≥ 20 were joined using the MacQIIME 
software package, version 1.9.1 (Caporaso et  al. 2010). 
The UCLUST algorithm (Edgar 2010) was used to clus-
ter the filtered sequences into operational taxonomic 
unit (OTUs) based on a ≥ 97% similarity threshold. 
Chimeric sequences were checked and removed from 
the library using ChimeraSlayer (Haas et al. 2011). Rep-
resentative sequences from each OTU were taxonomi-
cally classified via the GreenGenes taxonomic database, 
using the Ribosomal Database Project Classifier (Wang 
et al. 2007).
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Real‑time PCR analysis

Real-time PCR was performed to quantify total bacterial 
growth during cultivation, using a LightCycler 96 system 
(Roche, Basel, Switzerland) with a primer set targeting all 
eubacteria (Matsuki et al. 2004; Rinttila et al. 2004). PCR 
amplification was performed as described previously 
(Takagi et al. 2016).

Measurement of SCFA concentrations

Concentrations of SCFAs such as acetate, propionate, 
butyrate, lactate, and succinate were measured using a 
high-performance liquid chromatography (HPLC) instru-
ment (Shimadzu Corporation, Kyoto, Japan) equipped 
with an Aminex HPX-87H column (Bio-Rad Labora-
tories, Inc., Hercules, CA, USA) and a RID-10A refrac-
tive index detector (Shimadzu Corporation). The HPLC 
instrument was operated at 65 °C using 5 mM  H2SO4 as 
the mobile phase with a flow rate of 0.6 mL/min.

Measurement of amino acid concentrations

Free amino acids were extracted from supernatants col-
lected from culture broths after 48  h of fermentation, 
using a modified cold chloroform–methanol method 
(Putri et al. 2013). The water phase of the extract (700 µL) 
was dried under vacuum and stored at − 80 °C until fur-
ther analysis (Bennett et al. 2008).

The dried extract samples were thawed on ice and deri-
vatized at 30  °C for 90  min with 100  µL of 20  mg/mL 
methoxyamine hydrochloride in pyridine, after which 
50  µL N-methyl-N-(trimethylsilyl) trifluoroacetamide 
(GL Sciences, Tokyo, Japan) (Lisec et al. 2006) was added, 
followed by incubation at 37 °C for 30 min. The derivat-
ized samples (1  µL) were subjected to gas chromatog-
raphy–quadrupole–mass spectrometry (GC–Q–MS) 
using a GCMSQP-2010 system (Shimadzu). The details 
of the GC–Q–MS operating conditions and procedures 
were described previously (Kato et al. 2012; Sasaki et al. 
2014). Free amino acid concentrations were measured in 
triplicate.

Bioinformatics and statistical analyses

The α-diversity value (Shannon–Wiener index) was cal-
culated from OTU numbers using the MacQIIME soft-
ware package (Caporaso et al. 2010). Principal coordinate 
analysis (PCoA) was conducted using the OTU informa-
tion for each sample and calculated based on unweighted 
UniFrac distances (Lozupone and Knight 2005) using 
MacQIIME. A nonparametric paired t-test (the Kruskal–
Wallis test) and Dunnett’s test were performed using 
Prism 8 (GraphPad Software, Inc., San Diego, CA) and/
or JMP 13 software (SAS Institute Inc., Cary, NC, USA). 
p < 0.05 was considered to reflect a statistically significant 
difference.

Data availability

All raw sequence data generated in this study were 
deposited on the MG-RAST server (Meyer et  al. 2008) 
(http://metag enomi cs.anl.gov) in a file named “Single 
Batch Fermentation System Simulating Human Colonic 
Microbiota_Young Barley Leaf Extract” under Accession 
Numbers mgm4854581.3–mgm4854607.3. The datasets 
supporting the conclusions of this article are included 
within the article (and its additional file).

Results
The bacterial diversity in feces was maintained 

after adding 1.5% YBL

One of nine human fecal samples (designated as FEC in 
Fig. 1) was used as the inoculum, and the in vitro human 
colonic microbiota model, KUHIMM, was constructed 
with the addition of 1.5% YBL (designated as YBL in 
Fig.  1). Control cultures without added YBL were also 
prepared (designated as CUL in Fig.  1). Whole DNA 
was extracted from the original fecal samples and cor-
responding culture broths from the KUHIMM, with and 
without YBL, after 48 h of fermentation. The eubacterial 
copy numbers reached 0.83–4.73 × 1010 copies/mL using 
the KUHIMM at 48 h (Fig. 1a), which were comparable to 
the reported cell densities in human feces (approximately 
 1011 copies/g wet feces) (Sender et al. 2016). YBL admin-
istration did not affect the eubacterial copy numbers. 
In addition, bacterial 16S rRNA gene sequences were 
comprehensively analyzed by NGS. A total of 6977,688 
quality-controlled reads were obtained (Fig. 1b). In terms 
of the OTU numbers (which define the sequence simi-
larities among 16S rRNA gene-sequence clusters) and the 
Shannon–Wiener indexes of species diversity, no signifi-
cant differences were observed between the FEC, CUL, 
and YBL samples (p > 0.05, Kruskal–Wallis test; Fig. 1b–
d). Therefore, the bacterial diversity in the KUHIMM did 
not change following the addition of 1.5% YBL.

YBL administration changed the microbiota composition

PCoA of the fecal 16S rRNA gene sequences revealed 
that most KUHIMMs with 1.5% YBL had microbiota 
compositions closer to the original fecal samples, when 
compared to the control KUHIMMs without YBL 
(Fig.  2 and Additional file  1: Figure S1). These results 
suggest that YBL administration affected the microbi-
ota composition in the KUHIMM. This possibility was 
confirmed by performing detailed genus-level compo-
sitional analysis of the microbiota for each KUHIMM 
(Fig. 3). Almost all bacterial genera in the original fecal 
sample (designated as FEC in Fig.  3) were observed 
in the KUHIMM without YBL (designated as CUL in 
Fig.  3). Statistical analyses were carried out to com-
pare the relative abundances of bacterial genera to all 

http://metagenomics.anl.gov
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bacteria detected in the CUL and YBL samples. The 
most remarkable increase was observed in the YBL 
sample in terms of the relative abundance of com-
mensal bacteria in the genus Bifidobacterium, which 
belongs to the phylum Actinobacteria (Fukuda et  al. 
2012), when compared to the CUL sample (Fig. 4a). In 
addition, increases in the proportion of other commen-
sal bacteria in the genera Faecalibacterium, Roseburia, 
Unclassified Ruminococcaceae, and Lachnospira, which 
belong to the phylum Firmicutes (Lopetuso et al. 2013), 
were observed in the YBL sample, when compared 
to the CUL sample (Fig.  4b). In contrast, significant 
decreases in the proportions of Unclassified Peptostrep-

tococcaceae and the genus Fusobacterium (Shang and 
Liu 2018) were detected in the YBL sample (compared 
to the CUL sample). Importantly, Peptoclostridium dif-

ficile (Clostridium difficile) and Peptostreptococcus spp. 
(Bourgault et al. 1980; Rupnik et al. 2009) in the family 

Peptostreptococcaceae and Fusobacterium spp. were 
previously reported as pathogens (Additional file 1: Fig-
ure S2).  

YBL administration enhanced butyrate production

The SCFA concentrations in the KUHIMM after 48  h 
of fermentation were measured, and the relative ratios 
were calculated by dividing each concentration meas-
ured using the KUHIMM with 1.5% YBL by the cor-
responding concentration measured with the control 
KUHIMM without 1.5% YBL (Fig.  5). Although no 
significant changes in acetate and propionate produc-
tion were detected between KUHIMMs with or without 
YBL, butyrate production significantly increased after 
YBL administration. In addition, the concentrations 
of 19 free amino acids were measured in the superna-
tants of KUHIMM cultures, with or without added YBL 
(Fig. 6). The concentrations of hydrophilic amino acids 

Fig. 1 Summary of 16S rRNA gene data. 16S rRNA genes were amplified using DNA extracted from KUHIMM samples fermented for 48 h without 
1.5% YBL (CUL) and with 1.5% YBL (YBL). a Eubacterial copy numbers. b Numbers of quality-controlled sequences obtained by NGS. c Observed 
numbers of OTUs. d Shannon–Wiener index. The data shown are presented as medians and interquartile ranges (25th–75th percentiles)
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such as lysine, glutamate, serine, and threonine and 
hydrophobic amino acids such as alanine, isoleucine, 
leucine, valine, and phenylalanine were significantly 
higher in the KUHIMMs with 1.5% YBL, compared to 
those without 1.5% YBL.

Discussion
We evaluated the relationships between YBL adminis-
tration and the responses of human colonic microbiota. 
YBL exerted a bifidogenic effect by increasing the rela-
tive abundances of bacteria related to the genus Bifido-

bacterium. Previous findings showed a bifidogenic effect 
of barley grain (Martínez et al. 2013), although β-glucan 
in barley grain impacted the growth of Bacteroides spe-
cies, but not Bifidobacterium species (Kristek et al. 2019). 
Here, we discussed which ingredients in YBL exerted a 
bifidogenic effect.

The YBL sample contained a substantial amount of 
fructans (9.4  g/100  g). Fructans consist of fructose-
derived oligosaccharides and polysaccharides, and are 
classified as inulin (β 2 → 1 linkage), levan (β 2 → 6 link-
age), and graminan (β 2 → 1 linkage and β 2 → 6 linkages) 
types based on their structures (Shiomi 2008; Peshev 
and Van den Ende 2014). Inulin-type fructans selectively 
stimulate the growth and/or activity of bifidobacteria 
because bifidobacteria possess β-fructofuranosidase, 
which can break down and utilize inulin-type fructans, 
providing a competitive advantage in a mixed culture 
environment (Kolida and Gibson 2007). In addition, 
levan-type exopolysaccharides from lactobacilli-enriched 
Bifidobacterium spp. (Bello et al. 2001) and Bifidobacte-

rium longum subsp. infantis ATCC 15697 by hydrolyz-
ing levan-type fructooligosaccharides (Ávila-Fernández 

Fig. 2 PCoA of 16S rRNA gene sequences from fecal samples of nine 
healthy subjects (HS-1–HS-9). The large, medium, and small circles in 
the PCoA plot represent the microbiota in feces, the corresponding 
KUHIMM cultures without YBL, and the KUHIMM cultures with 
1.5% YBL, respectively. The cultures were sampled at 48 h after 
fermentation was initiated

Fig. 3 Genus-level compositional views of bacteria. The compositional views of the original fecal samples (designated as FEC), KUHIMM cultures 
without 1.5% YBL (CUL), and KUHIMM cultures with 1.5% YBL (YBL) after 48 h of fermentation are shown. Fecal samples were obtained from nine 
healthy subjects (HS-1–HS-9) and each sample was used as the inoculum to construct the corresponding KUHIMM. Genera with low abundance 
(< 1.0%) and low similarity (< 97%) were included in the “Others” and “Unclassified bacteria” categories, respectively



Page 6 of 9Sasaki et al. AMB Expr           (2019) 9:182 

et al. 2016). Thus, the fructans included in YBL would be 
expected to stimulate bifidobacterial growth.

Administering 1.5% YBL also stimulated the growth 
of bacteria related to the genera Faecalibacterium, Rose-

buria, Unclassified Ruminococcaceae, and Lachnospira. 
These microorganisms belong to those that produce 

butyrate, i.e., Clostridium cluster IV and Clostridium 
cluster XIVa (Duncan 2002, 2006; Ferrario et  al. 2014; 
Vital et  al. 2014). The growth stimulation corresponded 
with increased butyrogenesis in the KUHIMMs treated 
with 1.5% YBL, compared to those that were not treated 
with 1.5% YBL (Additional file 1: Figure S3). Recently, it 
was shown that butyrate producers such as Faecalibacte-

rium prausnitzii and Roseburia spp. can consume inulin-
type fructans (Falony et al. 2009; Moens et al. 2016). The 
consumption of inulin-type fructans by bifidobacteria 
provides butyrate-producing bacteria with exogenous 
acetate for use as a co-substrate to synthesize butyrate 
when growing on inulin-type fructan (Rivière et al. 2016). 
Another type of cross-feeding takes place between bifi-
dobacteria that consume inulin-type fructans and pro-
duce acetate, and acetate-consuming butyrate-producing 
bacteria that do not degrade inulin-type fructans (Riv-
ière et  al. 2016). The occurrence of such cross-feedings 
between Bifidobacterium spp. and species of butyrate-
producing bacteria was supported by our findings 
that increased acetate production was not detected 
in KUHIMM cultures with added YBL and that only 
butyrate production was enhanced. Therefore, our study 
established the bifidogenic and butyrogenic effects of 
YBL. Reduced bifidobacterial levels and/or butyrate pro-
ducers are associated with inflammatory bowel disease 
and colorectal cancer (Rivière et al. 2016). YBL consump-
tion seems to be a viable approach for counteracting such 
disorders.

Fig. 4 Increases in the bacterial relative abundances. The relative 
abundances of a the genus Bifidobacterium and b the genera 
Faecalibacterium, Roseburia, Unclassified Ruminococcaceae, and 
Lachnospira in the KUHIMMs with 1.5% YBL (designated as YBL) or 
without YBL (designated as CUL) are shown. *p < 0.05, **p < 0.01, 
n = 9, paired t-test

Fig. 5 Changes in the production of SCFAs. The ratio of SCFAs 
concentrations in the KUHIMM cultures with 1.5% YBL to those 
without 1.5% YBL are shown. **p < 0.01, n = 9, using Dunnett’s test. 
The data shown are presented as medians and interquartile ranges 
(25th–75th percentiles). ns not significant
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The pH values of the culture broths with or without 
1.5% YBL were 6.38 ± 0.30 or 6.70 ± 0.11, respectively, 
after 48 h of fermentation. The decrease in pH following 
YBL administration could explain the growth inhibition 
of bacteria related to Peptostreptococcus and Fusobacte-

rium, considering that Peptostreptococcus and Fusobac-

terium nucleatum were detected at a relative higher pH 
(Zilm et al. 2010; Wang et al. 2012). YBL administration 
also increased the production of certain amino acids. 
Threonine is necessary for synthesis of the intestinal 
mucin protein backbone (Ma and Ma 2019). Branched-
chain amino acids such as leucine and valine not only are 
essential for protein biosynthesis, but also are involved 
in maintaining intestinal barrier function (Ma and Ma 
2019). The increased supply of such amino acids from 
YBL would have beneficial effects in terms of supplying 
nutrients and regulating the gut immune system.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1356 8-019-0911-5.

Additional file 1: Figure S1. A distance matrix was calculated by PCoA of 
unweighted UniFrac distances. The distances of the PCoA plots between 
FEC and CUL and between FEC and YBL are referred to as “without YBL” 
and “with YBL”, respectively. Among the nine healthy subjects, seven PCoA 
plots of the KUHIMMs with 1.5% YBL were closer to those of the original 
fecal samples than those of the KUHIMMs without 1.5% YBL. Figure S2. 

Relative decreases in the abundances of bacteria related to Unclassified 
Peptostreptococcaceae and the genus Fusobacterium in KUHIMMs, cultured 
with 1.5% YBL (designated as YBL) or without 1.5% YBL (designated as 
CUL). **p < 0.01, n = 9, paired t-test. ns: not significant. Figure S3. Relation-
ship between the sum of the relative abundance (%) of bacteria related 
to the genera Faecalibacterium, Roseburia, Unclassified Ruminococcaceae, 
and Lachnospira and the butyrate concentration (mM) in KUHIMM 
cultures with (colored circles) or without (colored triangles) 1.5% YBL, as 
determined after 48 h of fermentation. The different colors are related to 
each of the nine healthy subjects (HS-1–HS-9). The solid line and the cor-
responding line equation indicate the best-fit linear relationship.
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