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BIFOCAL DUAL REFLECTOR ANTENNA

B. L. J. Rao

Abstract - A bifocal dual reflector antenna is similar to and has better

scan capability than classical cassegrain reflector antenna. The method used

in determining the reflector surfaces is a modification of a design method for

the dielectric bifocal lens. The three dimensional dual reflector is obtained by

first designing an exact (in geometrical optics sense) two-point corrected two

dimensional reflector and then rotating it around its axis of symmetry. A point

by point technique is used in computing the reflector surfaces. Computed

radiation characteristics of the dual reflector are compared with those of a

cassegrain reflector. The results confirm that the bifocal antenna has superior

performance.
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BIFOCAL DUAL REFLECTOR ANTENNA

INTRODUCTION

It is well known that a bifocal dielectric lens [1], [2] has a wider angle

scan capability than a dielectric lens with a single focus. We propose a bifocal

dual reflector antenna which has a better scan capability than a classical

cassegrain reflector.

The three dimensional reflector is obtained by first designing an exact (in

geometrical optics sense) two point corrected two dimensional dual reflector and

then rotating it around its axis of symmetry. Figure 1 shows a cross section of

a cylindrical bifocal dual reflector antenna configuration. The focal points A and

B are displaced from the reflector axis of symmetry by an amount d, and the

sub-reflector intersects the x-axis at x = P. The two dimensional reflector

surfaces are designed so that a feed placed at A produces a beam emerging at a

design scan angle a (corresponding to the phase front A), and a feed placed at B

produces a beam emerging at a scan angle of -a (corresponding to the phase

front B) as shown in Figure 1. In other words, when plane waves impinge on the

reflector system at an angle a or -a, they are focussed on to the focal points A

and B respectively. However, the three dimensional reflector (obtained by ro-

tating two dimensional reflector around its axis) does not have two perfect focal

points. This is also true for a bifocal dielectric lens. The results of this study,

however, show that the points A and B are still the best focal points for a three

1
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Figure 1. Two Dimensional Bifocal Dual Reflector.
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dimensional bifocal reflector. A ray tracing technique will be used to determine

the reflector surfaces.

Applying the ray tracing design procedure gives a series of discrete points

on both the sub-reflector and the main reflector. These series of points on the

reflector surfaces are then approximated by best fit (in the least squares sense)

polynomials. These polynomial representations for the reflector surfaces are

then used to find the radiation patterns of the proposed antenna for several scan

angles using numerical methods. The computed radiation patterns are then

compared with those of classical cassegrain reflector antenna. The results

confirm that the bifocal reflector has a better scan capability.

DESIGN PROCEDURE

Figure 1 shows the configuration of a bifocal reflector with the y-axis of

the coordinate system passes through the two foci; the origin of the coordinate

system is midway between the two foci. The sub-reflector is normal to the

x-axis at x = P. The design scan angle a and the path length L from each focus

to its respective phasefront are assumed known. Thus we know the parameters

d, P, a, L (we will discuss later how to choose these parameters in any specific

design) and a single point (P, 0) (hereafter referred to as the initial point) and

the slope at that point on the sub-reflector. Refer to Figure 2 for a qualitative

discussion of how the ray tracing method is applied to find a series of points on

the two reflectors. Ray 1 is an outgoing ray from point A passing through the

initial point (x 1 , y ) on the sub-reflector and the yet unknown point (x'1 , y11) on

3



ly

A , PHASE FRONT B

I RAY 1
Sxy / --- RAY 2

N,;~ Y;

(x;, (x,) 
k+1 Yk+1

A\

PHASE FRONT A

(x, 2. Rytring Method: nitial Point is (P,

4

/'0

Fig re . R ytrcin ~ et od: IniialPoit i (P 0)



the main reflector and emerging finally at an angle a to the positive x-axis.

Using the parameters d, P, a, L and the initial point and the slope at that point

on the sub-reflector, it is possible to find the point (x'1 , y'I) and the slope at that

point on the main reflector by applying the equal path length condition for ray 1

and Snell's law at the two reflector surfaces. The bifocal condition requires

that the incoming plane wave (ray 2) incident at an angle - a be focussed at

point B after it gets reflected at (xx, yk ) and some point (Xk+ 1 Yk 1) on the

sub-reflector. Applying the equal path length condition for ray 2, for k = 1,

and Snell's law at the two reflector surfaces, it is possible to solve for the point

(x 2 , y 2 ) and the slope at that point on the sub-reflector by knowing the point

(x'1 , y'l) and the slope at that point on the main reflector. This criss-cross

procedure of finding a point and a slope on the main reflector knowing a point and

a slope on the sub-reflector and vice versa is continued until a predetermined

main reflector diameter is reached. This procedure gives a series of points

and slopes at those points on the bifocal reflector surfaces.

It should be noted that an outgoing ray is used to find a point and a slope

on the main reflector when a point and a slope on the sub-reflector are known.

The incoming ray is used to find a point and a slope on the sub-reflector when

a point and a slope on the main reflector are known. The tracing of all outgoing

rays is described by one set of formulas and the tracing of all incoming rays is

described by another set of formulas. These two sets of formulas are obtained

next.

5



Figure 3 is utilized to determine the coordinates of a point (x k' Yk) and the

slope on the main reflector when a point (xk, Yk) and the slope on the sub-reflector

are known. The equal path length condition for the outgoing ray shown in Fig-

ure 3 gives

L = R 2 + R2  , (1)

where

R1 = (d + yk )2 + X,

R2 = /(k - Xk) 2 + (yk - Yk) 2

R3 = - (x'k/cos a) - (yk - Xk tan a) sin a.

Applying Snell's law at the sub-reflector, the surface normal at (Xk' Yk) is

given by (see Figures 3 and 4)

(dx) k k k)
S t \ 2 = tan 2 /

From this relation it is noted that yk is given by

k-/k ' k +  k' (2)

where k = tan' + d, and the values of 'k and 0k are already known

from the knowledge of the slope at (xk, yk) and are given in (9) and (14) except

for the initial values given by

' = ' = - tan (d/P). (3)

6
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Having found yk, the following relation is obtained from Figure 3:

tan k (Yk - Yk)/(Xk - Xk) (4)

There are only two unknowns x k and yk in the two equations (1) and (4). Solving

these equations gives

R 1 - L + XkW -Yk sin a

Xk W + cos a (5)

where

1 - sin yk sin a
w-

cos Yk

Once xk is known, equation (4) can be used to solve for yk as

Yk k (Xk - Xk) tan k(6)

The surface normal at the point (xk, yk) is determined from the following

relation obtained from Figure 3:

k - a (7)

Equations (2), (3), (5), (6) and (7) form the first set of formulas used to find

the point (xk, yk) and the slope at that point on the main reflector when a point

(xk, Yk ) and the slope at that point on the sub-reflector are known. For the

first ray, k = 1, the initial value of y7 and 8 is given by equation (3) and the

initial point (x I , y ) on the sub-reflector is given by (P, 0) as was noted earlier.

8



In a similar manner a second point (x , y 2) and a slope on the sub-reflector

can be found knowing the point (x-, y') and the slope at that point on the main

reflector by tracing the incoming ray shown in Figure 4 (for k = 1). The set of

formulas for the incoming rays are derived using Figure 4 and are used to find

a point (xk+ 1, yk+ 1) and the slope at that point on the sub-reflector when a point

(xk, y ) and the slope at that point on the main reflector are known. Applying

the equal path length condition for the incoming ray shown in Figure 4 gives

L = R + R + R, (8)

where

R1 (yk+1 d 2 + Xk+ 1

R2 (yk Yk+l)/sin '+l'

R = - (xk/cos a) + (yk + xk tan a) sin a.

Applying Snell's law at the main reflector, the surface normal at (xk, yI) is

given by (see equation (7) and Figure 4)

dy tan ta 2

This relation gives the value of y +1 in terms of the known values of yk given by

equation (2) and a as

k + 1 k- 2a. (9)

9
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Having found -Y+ , the following relation is obtained from Figure 4:

tan y, (y - Yk+l)/(k+l x). (10)

There are only two unknowns Xk+ 1 and Yk+ 1 in the two equations (8) and (10).

Solving these equations gives

yR + .5 sin y'+I [d 2 + - (L-R 3 )2 - 2
(11)

Yk+l R + (d - yk) sin yk+l

where

R = L - R 3 
+ x k cos yk+1 .

Knowing Yk+l, equation (10) can be used to find xk+ 1 as

Xk+ = X + (Yk - Yk+l)/tan k+l (12)

The surface normal at the point (x k +1 + 1 ) is determined from the following

relation obtained from Figure 4:

Idx\ Yk+1- Ok+1
=dy) - tan 2 (13)

k+l' Yk+1

where yk+1 is given by (9) and 8'+ is given as

S1 Yk+1 -

Ok+ = tan- 1  x k+ (14)

Equations (9) and (11) to (14) form the second set of formulas used to find a point

and a slope on the sub-reflector when a point and a slope on the main reflector

are known.

11



Starting with the initial point and its slope and making use of the first and then the

second set of design formulas and continuing this criss-cross procedure, a suc-

cession of points and slopes on each reflector surface is computed. Since the

reflector is symmetric, the points are reflected in the x-axis to obtain points

on the reflector surfaces below the axis.

POLYNOMIAL APPROXIMATION

The design procedure discussed in the previous section gives a finite

number of points and an equal number of slopes on the reflector surfaces. When

specific practical examples were considered, the number of known points were

too few to define the reflector surfaces adequately. In order to define the re-

flector surfaces completely it was necessary to use an approximation. It is

convenient to approximate the reflector surfaces by best fit (in the least squares

sense) polynomials. Since the reflectors are symmetrical, only even powers are

required. The reflector surfaces are represented by the polynomials

s = A1 + A2 y 2 + A3 Y4 ----- , (15)

M= C 1 + C 2
2 + C 3 M4 + (16)

where x s and ys are the sub-reflector coordinates and xM and ym are the main

reflector coordinates.

The degree of the polynomial used to fit the data points depends on the

accuracy requirements. In the example below a 4th degree polynomial was

sufficient. If the number of data points available limits the degree of the poly-

nomial, the known slopes at those points can be used to improve the accuracy.

12



EQUIVALENT CASSEGRAIN REFLECTOR

To compare the radiation characteristics of a bifocal reflector with that of

a cassegrain reflector, it is necessary to choose equivalent reflectors. In this

paper equivalence is established by making the main reflector diameters

of each system and the spacing two reflectors (measured along the reflector

axis) equal. The focal point for an on axis beam is the origin of the coordinate

system. When specific examples are considered, the main reflector in the

bifocal antenna very closely approximates a paraboloid. This means the higher

order coefficients (fourth degree and above) in (16) are very small, and the

equivalent parabola can be defined by the first two terms of (16) as

XP = C 1 + C 2 Yp2  (17)

where xp and yp are the coordinates of the equivalent parabola. The focal length

of the equivalent parabola is found from (17) and is given by

F = 1/4 C2  (18)

From the focal length of the equivalent parabola and the other assumptions made

in establishing equivalence, it can be shown that the equivalent hyperbola is de-

fined by

Eccentricity e = (F + C 1)/(2 A1 - F + C 1), (19)

Semi-major axis a = A - (F - C 1)/2, (20)

Semi-minor axis b = a 2 -1. (21)

13



The equation of the equivalent hyperbola is

XH - Al+ a [ + (YH/b) 2 - 1], (22)

where xH, YH are the coordinates of the equivalent hyperbola.

COMPARISON OF THE REFLECTOR SURFACES

For a specific example, reflector surfaces were computed for the bifocal

and the equivalent cassegrain antennas, and the results are shown in Figure 5.

In this example d = 1.23 ft., P = 3.28 ft., a = 40, L = 12.3 ft. and the main

reflector diameter D = 21.24 ft. (The procedure used to determine the parame-

ters d, P, a, L, and D is given in the Appendix). This results in a sub-reflector

diameter D s = 4.1 ft. and the equivalent paraboloid focal length F = 7.61 ft. The

resulting reflector surfaces are so close it is difficult to differentiate between

the two antennas using the scale of Figure 5A. However, they are shown separate

in Figure 5A for clarity. Figures 5B and 5C show the differences in reflector

surfaces. For this example the maximum deviation in the main reflectors is

.055 ft. and in the sub-reflectors it is .026 ft. These seemingly small differences

in reflector surfaces make a large difference in radiation patterns.

COMPARISON OF RADIATION PATTERNS

The radiation patterns (Fig. 6) were computed using numerical integration

methods developed by Schmidt [3] and an operating frequency of 4 GHz and

various scan angles. Radiation patterns of an equivalent cassegrain reflector

are included for comparison. From Figure 6 it can be seen that for a scanning

14
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range of ±60, the variation in gain for a bifocal antenna is only 1.5 dB as com-

pared to 5.8 dB for the cassegrain antenna. For the same scan range, the

beamwidth for the bifocal antenna varies from 0.80 to 0.90, as opposed to 0.80

to 1.50 for the cassegrain antenna. The sidelobes are lower for the bifocal

antenna except for the radiation patterns which are close to or on axis. For all

the radiation patterns presented in this paper it is assumed that there is no feed

amplitude taper, and the scanned radiation patterns are obtained by moving the

feed along the y-axis.

Figure 7 compares the radiation patterns at 6 GHz for the same example

shown in Figure 5. Again, the gain and beamwidth variations are much smaller

for the bifocal antenna than the cassegrain reflector (2 dB vs. 9.3 dB and 0.60 to

0.70 vs. 0.60 to 1.20). It is evident from Figures 6 and 7 that the bifocal antenna

gives better radiation patterns when the scan angle is equal to the design scan

angle (40 for the given example).

Figure 8 compares the radiation patterns when the scan angle is equal to a.

As expected, the bifocal reflector gives a much better pattern (high gain, smaller

beamwidth and lower sidelobes compared to a cassegrain reflector).

CONCLUSIONS

A bifocal dual reflector antenna which has a better scan capability compared

to a classical cassegrain reflector is described. A design procedure for deter-

mining the reflector surfaces is discussed in detail. For a specific example,

computed radiation characteristics of the bifocal reflector system are compared

17
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with those of a classical cassegrain reflector system. The results confirm that the

bifocal reflector has a better scan capability. Its scanning range is sufficient to

use it as a multiple beam antenna in a communications satellite. It is also very

useful in applications where an off-axis gain should be more than an on axis gain.

20



APPENDIX

Determination of the Parameters P, L, a and d

In the design of bifocal reflector it was assumed that the above parameters

are known. However, in any practical case these parameters should be chosen

judiciously, otherwise the result may be unrealistic spacing between the main

reflector and the sub-reflector and/or unrealistic sub-reflector diameter (may

be too large or too small). Some guidelines are given here to find an initial set

of parameters to satisfy certain design goals. Then, the main effect of changing

these parameters is discussed so that the appropriate parameters can be changed,

if needed, and a new design attempted. Since the bifocal reflector design proce-

dure is very simple (only algebraic equations are to be solved), it is very easy

to repeat the design procedure with several sets of parameters until the required

spacing between the reflectors and the required sub-reflector diameter is obtained.

The design of a dual reflector antenna depends on several requirements,

which can include gain, beamwidth, feed location, spacing between the reflectors

and required scanning range. The gain and beamwidth depend mainly on the

main reflector diameter. Therefore, the gain and beamwidth requirements do

not enter the design procedure directly if all the linear dimensions are normalized

to the diameter of the main reflector. The parameter P is determined from the

requirement on spacing between the two reflectors. The design scan angle a is

determined from the scanning requirement or the off-axis angle where the best

possible pattern is required. Once a is determined, the feed displacement d is

obtained from

d = Ka. (Al)

21



This is similar to the relation, in the case of cassegrain reflector, between the

required feed displacement d for a given scan angle a and is given by (for a

small) [4].

d _ MF a, (A2)

where M is the reflector magnification and F is the focal length of the paraboloid.

Note that changing the value of K has the same effect on the bifocal reflector

as changing the product MF has on the cassegrain reflector. The results of our

investigation indicated that a value of K = 1 (like choosing M = 2.5 and F = .4

in the cassegrain reflector) is a good value to use in finding an initial value of d

(normalized to the main reflector diameter). Note that a is in radians.

The following effects should be kept in mind when changing the initial values

of the parameters P, L, a and d. If P is changed the spacing between the sub-

reflector and the feed is changed. Changing L mainly affects the spacing between

the two reflectors. For a given a, decreasing the value of d requires a larger

sub-reflector diameter and vice versa. Similarly, for a given d, increasing a

requires a larger sub-reflector diameter and vice versa.
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