Bifunctional chemical probes inducing protein-protein interactions.

Chiara Maniaci, Alessio Ciulli

Institutions: University of Dundee

Published on: 01 Oct 2019 - Current Opinion in Chemical Biology (Newcastle University)

Topics: Protein degradation and Chemical biology

Related papers:

- Structural basis of PROTAC cooperative recognition for selective protein degradation.
- Catalytic in vivo protein knockdown by small-molecule PROTACs
- Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4
- Phthalimide conjugation as a strategy for in vivo target protein degradation
- PROteolysis TAargeting Chimeras (PROTACs) - Past, Present and Future

Share this paper:

View more about this paper here: https://typeset.io/papers/bifunctional-chemical-probes-inducing-protein-protein-1zolbcho1p
Bifunctional chemical probes inducing protein-protein interactions

Chiara Maniaci‡ and Alessio Ciulli*

Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, Scotland, UK

‡ Current address: University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom

Corresponding author: Ciulli, Alessio. E-mail: a.ciulli@dundee.ac.uk

Abstract

Stabilizing biomolecular interactions with synthetic molecules to impact biological function is a concept of enormous appeal. Although much effort has been devoted to disrupting protein-protein interactions (PPIs) using inhibitors, less attention has been directed toward the reverse strategy, that of inducing new PPIs. However recent years have seen a resurgence of interest in designing molecules that bring proteins together. This approach promises to significantly expand the range of tractable targets for chemical biology and therapeutic intervention. Pioneering structural and biophysical investigation of ternary complexes formed by mono- and bifunctional ligands highlight that proximity-induced stabilization or de novo formation of PPIs are a common feature of their molecular recognition. In this review, we illustrate these concepts and advances with representative case studies, and highlight progress over the past three years, with particular focus on recruitment to E3 ubiquitin ligases by “molecular glues” and chimeric dimerizers (PROTACs) for targeted protein degradation.

Keywords:
Protein-protein interactions; molecular glues; chemical inducers of dimerization; chimeric molecules; PROTACs; ternary complexes
Introduction
Protein-protein interactions (PPIs) mediate most intracellular processes, so it is not surprising that modulation of PPIs using small molecules is one of the “holy grails” of pharmacology and chemical biology [1]. Despite the often large and flat interfaces of protein complexes, recent years have witnessed progress in developing small-molecule probes and drugs that disrupt PPIs with high binding affinity and selectivity, and suitable pharmacokinetic properties, reviewed elsewhere [2,3]. An opposite strategy has fascinated scientists for decades: stabilizing or forming de novo PPIs with interfacial molecules, also called “molecular glues” [4,5]. By bringing together two proteins that would not normally interact, control can be gained in principle over protein fate, localization and function, impacting cellular signalling [6]. Bifunctional chimeric molecules, composed of two binding units often referred to as chemical inducers of dimerization (CIDs) or chemical inducers of proximity (CIPs), enable recruitment of two targets simultaneously [7,8]. Dimerization can be for molecules of the same protein (homo-dimerizer) or different proteins (hetero-dimerizer). Formation of the desired ternary complex is more productive when the dimerizer binds one protein more tightly in the presence of the other protein rather than its absence – a thermodynamic characteristics of ternary equilibria known as cooperativity [9-12].

Chemical inducers of dimerization
Molecules that function as CIDs are found in Nature. Amongst natural CIDs are complex natural products that have macrocyclic structures, such as rapamycin, cyclosporine A, and the immunosuppressive drug FK506 (tacrolimus) (Figure 1a). These molecules exert their immunosuppressant activity by recruiting immunophilins, such as the FK506 binding protein FKBP12, to form a ternary complex with a second target protein. In the case of rapamycin and cyclosporine/FK506 the recruited proteins are mTOR and calcineurin, respectively, and as a result of the induced dimerization the activity of the target is inhibited [13]. Crystal structures of ternary complexes FKBP12:rapamycin:mTOR (FRB domain) [14], and FKBP12:FK506:calcineurin [15] elucidated the structural basis for the molecular recognition (Figure 1b). Biophysical investigation of the thermodynamics of the ternary equilibria revealed that rapamycin binds to mTOR with 2000-fold enhanced binding affinity when pre-bound to FKBP12, hence exhibits high cooperativity [16]. These discoveries were taken a step further by developing synthetic
bifunctional ligands that can be used to control the intracellular oligomerization of specific proteins. Early work on a dimer of FK506, called FK1012 (Figure 1a), artificially promoted FKBP12 homodimerization [17]. More recently, Shokat and colleagues developed bifunctional molecules that recruit the cancer target Ras in a tripartite complex with FKBP12 and cyclophilin A as a strategy to interfere with Ras activity and block its downstream signaling pathway [18].

![Figure 1. Chemical Inducers of Dimerization (CIDs). a) Chemical structures of natural and synthetic CIDs. b) Crystal structures of cooperative ternary complexes formed by rapamycin (top, PDB code 1FAP [14]) and FK-506 (bottom, PDB code 1TCO [15]).](image)

Monovalent PPI stabilisers

Nature also exploits endogenous ligands and cofactors to stabilize native interactions with physiological consequences. Serendipitous discoveries have unveiled surprisingly simple natural compounds, conceptually monovalent, that form *de novo* protein-protein complexes. Plant hormones auxin and jasmonate bind to specific E3 Cullin RING ligases (CRLs) and promote recruitment of neo-substrates via a ligand-dependent degron mechanism [19,20]. The PPI-stabilizing feature of small molecules is however not limited to natural ones: it is critical to the pharmacological activity of synthetic molecules too. For example, the immunomodulatory drugs (ImIDs) thalidomide and its analogues pomalidomide, lenalidomide and CC-885 (Figure 2a-c) exert their anti-cancer and immunosuppressant activity by binding to cereblon (CRBN), the substrate-
recognition subunit of the CRL4ACRBN E3 ligase complex \textit{[21-23]}. ImiDs act as CRBN modulators to aid recruitment of ‘neo-substrate’ proteins including the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3), CK1α, and GSPT1. These neo-substrates form tight complexes with varying specificities for different CRBN:ligand complexes, ultimately leading to neo-substrate degradation \textit{[21,22,24,25]}. More recently, neo-substrate SALL4 has been identified as the target responsible for the infamous theratogenicity of thalidomide \textit{[26,27]}. Pioneering structural studies by the groups of Thoma and Chamberlain have elucidated the structural basis of the ImiID-induced recruitment of neo-substrates to CRBN \textit{[28,29]}. The ImiD-dependent degron was revealed to be a tight hairpin loop present in many zinc finger proteins, that has exquisite structurally-conserved features despite low-sequence conservation across the neo-substrates \textit{[30]} (Figure 2a-c).

Plant hormones and ImiDs are notable examples of small molecules that bind to an E3 ligase and “hijack” its activity toward a new protein. However, a small molecule may also increase ligase:substrate binding affinity that may have been weakened, for example as a result of mutations, by stabilizing PPIs between the E3 and its natural substrate. If these mutations are involved in disease, rescuing weakened interactions with such “molecular glues” could open up new therapeutic opportunities. This strategy was recently applied by a team at Nurix Inc. to stabilize the interaction between the E3 ligase SCFβ-TRCP and its natural substrate β-catenin \textit{[31]}. This PPI is weakened as a result of cancer-driving mutations on the phospho-degron of β-catenin, that prevent phosphorylation events crucial to formation of the native PPI. Crystal structure of β-TRCP in complex with NRX-103094 and a β-catenin-degron mutant peptide revealed the compound bound snugly at the protein-peptide interface, with its trifluoromethylpyridone group occupying a pocket revealed by the β-catenin mutation and forming tight hydrophobic interactions with both proteins to stabilize the ternary complex \textit{[31]} (Figure 2d).
Figure 2. Molecular glues of E3 ubiquitin ligases. a-c) Co-crystal structures of ternary complexes CRBN:pomalidomide:Ikars (a, PDB code 6H0F [30]), CRBN: lenalidomide:CK1α (b, PDB code 5FQD [28]), and CRBN:CC-885:GSPT1 (c, PDB code 5HXB [29]) illustrate the range of binding modes for neo-substrate recruitment accommodated by the different ImID compounds. The structurally-conserved β-hairpin loop that function as ligand-dependent neo-substrate degron is highlighted. d) Co-crystal structure of ternary complex β-TRCP:NRX-103094:β-catenin (PDB code 6M91 [31]).

Other notable examples of PPI stabilizers, beyond E3 ligases, are small molecules that strengthen the interaction between 14-3-3 proteins and their cognate substrate partners, reviewed elsewhere [5,32]. In a recent study, Sijbesma et al. applied cysteine-targeting site-directed fragment screening to discover orthosteric stabilizers of the 14-3-3:ERα interaction [33].

While prominent examples, the compounds described so far either bind preferentially to only one of the two proteins in the complex, or bind weakly to the individual components, and show measurable binding affinity only as part of a fully formed complex. This means that even when a first protein-ligand pair is identified, there is little control on which second target can be recruited. The target scope can be expanded conceptually by designing bifunctional molecules.

Bivalent inhibitors

Bivalent inhibitors can engage two molecules of target protein simultaneously, thereby potentially aiding pharmacological potency due to an avidity effect. Illendula et al. developed compound AI-10-49, a bivalent inhibitor of the PPI between transcription factors CBFβ-SMMHC (fusion of core binding factor b and smooth-muscle myosin heavy chain) and RUNX1, which sustains acute
myeloid leukemia (AML) growth. AI-10-49 was significantly more potent that the parent monovalent compound, displayed favourable pharmacokinetics, and delayed leukemia progression in mice [34].

Two groups at Dana-Farber [35] and AstraZeneca [36] reported bivalent inhibitors of the bromo and extraterminal domain (BET) proteins Brd2, Brd3 and Brd4 (Figure 3). Most BET inhibitors such as the archetypical JQ1 and IBET-762, bind to BET proteins monovalently by targeting their bromodomain. A bivalent approach to small-molecule inhibition stood as an attractive opportunity for this target class, because all BET proteins contain two distinct bromodomains at their N-terminal region, termed BD1 and BD2 [37][38]. Both MT1 [35] and biBETs [36,39] were found to bind intramolecularly two domains of a single BET protein. Co-crystal structures and allied biophysical studies evidenced the inhibitors bridging across two molecules of bromodomains and inducing extensive intermolecular PPIs [35,36] (Figure 3). In MT1, two molecules of JQ1 are joined together using a linker length of 7 ethylene glycol units (PEG-7 linker) (Figure 3a). MT1 was found to be 100-fold more potent than the corresponding monovalent inhibitor JQ1 at blocking Brd4 from binding to chromatin in cells [35]. BiBET, initially developed to downregulate androgen receptor signalling, was revealed to engage simultaneously two bromodomains of a BET protein [36] (Figure 3b). Cells treated with these bivalent compounds
showed inhibition of cell growth in a manner consistent with sensitivity to BET inhibition, and with a remarkable enhancement in potency, consistent with strong avidity effects [35,36].

Bifunctional degraders: Proteolysis-targeting chimeras (PROTACs)

Conventional genetic techniques to knockdown or knockout the expression level of proteins have been based on nucleic acids, for example antisense oligonucleotides, RNAi and siRNA, and more recently CRISPR-Cas9 [40]. A small-molecule approach to induce intracellular protein degradation combines the desired output of knockdown techniques with favourable pharmacological properties of small molecules as well as acute, fast, selective and reversible effects. Such “chemical degraders” recruit target proteins to an E3 ubiquitin ligase, thereby inducing selective target ubiquitination and degradation [41,42]. One prominent class of bifunctional chemical degraders are known as proteolysis-targeting chimeras (PROTACs) [43]. PROTACs contains two ligands, one for a target protein of interest and one for an E3 ligase, connected via a linker. The historical backdrop and latest developments of PROTACs have been extensively reviewed elsewhere [43-46]. Here we briefly outline prominent and well-characterized PROTAC molecules described in 2015 [47] and review recent structural work that have evidenced how PROTACs induce protein-protein interactions within their ternary complexes.

The development of non-peptidic PROTACs with high cellular efficacies and specificities was ushered by the discovery of two low–molecular weight, specific, high-affinity E3 ligands, namely VHL ligand VH032 [48-50] and the cereblon ligands (described above). These new E3 ligands enabled the assembly of potent and selective PROTACs against targeted proteins of interest [51-54]. The first examples of PROTACs recruiting CRL2VHL to induce degradation of a target were reported in mid-2015 by our laboratory [51] and the Crews/GSK laboratories [52]. Both studies used a VHL recruiting moiety of relatively small size (MW = 472 Da) and high binding affinity (Kd = 180 nM) for a compound targeting a PPI site [49]. Zengerle et al. linked the pan-selective BET inhibitor JQ1 to the VHL ligand via solvent-exposed regions using an optimized PEG-3 linker to afford MZ1 [51] (Figure 4a). MZ1 qualified as a potent, fast and well-characterized BET PROTAC exerting preferential degradation of Brd4 [51,55,56]. The same VHL ligand was linked to inhibitors for the serine/threonine kinase RIPK2 via a PEG-4 linker to yield PROTAC_RIPK2 [52].
VHL-based PROTACs have since been deployed successfully against a wide array of target proteins [44,45,57].

The first example of PROTACs recruiting CRL4^{CRBN} were reported around the same time as the VHL recruiting PROTACs by the Bradner laboratory (dBET1 [53]) and Arvinas (ARV-825 [54]). Winter et al. coupled JQ1 to pomalidomide to obtain dBET1 inducing potent degradation of BET proteins [53]. The compounds were later optimized to more potent BET degrader dBET6 [58] (Figure 4b). In a similar fashion, Lu et al. developed ARV825 by coupling BET inhibitor OTX015 (a close analogue of JQ1) to pomalidomide via a short alkyl linker [54]. Both VHL-based and CRBN-based BET degraders potently and rapidly induce selective, reversible, and long-lasting degradation of BET proteins in a proteasome- and E3 ligase-dependent fashion in multiple cancer cell lines and are active in mouse models in vivo [58-61].

VHL and CRBN ligands have also been conjugated to elements recruiting specific tags that can be fused to proteins of interest, leading to degradation of the tagged protein. Buckley et al. developed conjugates of VHL ligands to chloro-alkane moieties (HaloPROTACs) and studied their ability to induce the degradation of transiently expressed proteins fused to HaloTag7 [62]. More recently, Tovell et al. qualified HaloPROTAC-E, a conjugate of potent VHL inhibitor VH298 [50], as their most potent degrader of representative endosomal proteins endogenously Halo-tagged using CRISPR-Cas9 [63]. They showed that HaloPROTAC-E induced rapid (50% protein depletion in 30 minutes) and profound depletion (>95%) of target protein, retained after 48 hours [63]. In a similar fashion, Nabet et al. developed the CRBN-based system dTAG, by conjugating a CRBN ligand to a bumped ligand for a mutant FKBP12^{F36V} variant [64]. Unlike RNAi knockdowns, these inducible-degron technologies are highly specific at post-translational level, can be developed to have little to no off-target effects, and allow for the rapid and reversible knockdown of any gene of interest modified with suitable fusion tags [65].

Structural and biophysical insights on PROTACs ternary complexes

An important step forward in the PROTAC field came in 2017 with the first description of a crystal structure revealing how a PROTAC binds in a ternary complex [55]. Using X-ray crystallography, Gadd et al. showed that MZ1, when anchoring the ternary complex VHL:MZ1:Brd4, induces the
formation of new interactions between VHL and the Brd4 bromodomain (Figure 4a). These two proteins do not interact with any measurable binding affinity in the absence of the compound. The structure revealed that MZ1 is “sandwiched” between the two proteins, inducing extensive de novo protein-protein and protein-ligand contacts of both hydrophobic and electrostatic nature, which together bury >2600 Å² of protein surface area, of which ~700 Å² contributed by the induced PPI [55]. Allied biophysics and mutagenesis swap experiments revealed that the PPI gained in the process contribute extra stabilization energy to the complex (>2 kcal/mol), beyond the sum of the binary binding energies, corresponding to >20-fold increase in binding affinity. This cooperativity greatly increases the potency of the PROTAC, enhancing the stability and population of the ternary complex, driving the preferential degradation of Brd4 [55]. Guided by the crystal structure, degrader AT1 with enhanced selectivity for Brd4 was designed via a novel conjugation vector out of the VHL ligand [55]. More recently, Roy et al. extended biophysical investigation of PROTAC ternary complexes to studying the kinetics of their formation and dissociation using surface plasmon resonance (SPR). By immobilising biotinylated E3 ligase on a chip and flowing over PROTAC in the absence or presence of target protein, they were able to quantify the overall kinetics of the ternary complexes formed and show that the comparatively more stable and long-lived ternary complex formed by MZ1 with VHL and Brd4-BD2 drive faster rates of protein degradation in cell [66].
Figure 4. Bifunctional degraders (PROTACs). a) Crystal structure of the cooperative ternary complex formed by MZ1 with VHL and the second bromodomain of Brd4 (Brd4BD2) (PDB code 5T35 [55]). b) Crystal structure of non-cooperative ternary complex CRBN:dBET6:Brd4BD1 (PDB code 6BOY [67]). c) Crystal structures of the cooperative ternary complexes formed by PROTAC-1 (left) and PROTAC-2 (right) with VHL and the bromodomain of Smarca2 (Smarca2BD) (PDB codes 6HAY and 6HAX, respectively [68]), which guided the design of potent PROTAC degrader ACBI1 via optimization of the linker conformation and introduction and stabilization of a π-π stack with VHL residue Tyr98. Note: ACBI-1 and PROTAC-2 differ by a single oxygen atom in the linker.

Unlike in the case of monovalent molecular glues, formation of positively cooperative ternary complexes is not a strict requirement for productive targeted protein degradation. Already in 2017, Chan et al. reported another series of VHL-based BET degraders that were designed using IBET-726, a more potent BET inhibitor than JQ1, via a different conjugation vector than JQ1 [69].
This strategy led to negatively-cooperative degraders, that form ternary complexes that dissociate comparatively much more rapidly than MZ1 [66]. In spite of these unfavourable thermodynamics and kinetics features of ternary complex formation, Chan et al. showed that PROTACs based on IBET-726 were nevertheless active as BET degraders [69]. However, interestingly, they exhibited different BET isoform degradation profiles, and were found to behave more as inhibitors than degraders at higher concentrations, consistent with their greater binary binding affinities, negative cooperativities and more pronounced hook effects [69]. Similarly, active PROTAC degraders for the protein kinase BTK were developed that were also shown to exhibit negative cooperativity [70]. In 2018, Nowak et al. described the co-crystal structure of CRBN-based BET degrader dBET6 in complex with CRBN and Brd4-BD1 [67] (Figure 4b). In contrast to the structure by Gadd et al., in the ternary complex structure of CRBN:dBET6:Brd4-BD1 no obvious additional hydrogen bonds were observed from the PROTAC, and a lesser buried surface area was observed [71,72]. The structural features were consistent with negative cooperativity for dBET6 and related analogues observed in biophysical assays [67]. Despite the negative cooperativity of these systems, favorable PPI were induced by the PROTAC. This suggests other unfavorable energetic contributions, likely strain of the PROTAC linker conformation forced in the ternary complex, must compensate and overcome these PPIs to result in an overall negative cooperativity. More recently, a team at the University and Dundee and Boehringer Ingelheim developed potent degraders for the BAF complex ATPase subunits SMARCA 2 and SMARCA4 using structure-based PROTAC design [68]. Farnaby et al. used a high-resolution crystal structure of a weak and partial, yet cooperative, PROTAC bound to VHL and the SMARCA2 bromodomain to guide further stabilization of the complex, achieving PROTAC AC-BI1 which potently impacted cancer cells rendered vulnerable to SMARCA2 knockdown [68].

Together, these pioneering structural and biophysical studies highlight the importance of the ternary complex and its relevance as key intermediate species in the PROTAC mechanism of action [55,66-68]. They also underscore the advantage of the catalytic, sub-stoichiometric mode of action of PROTAC degraders, that can achieve efficient target ubiquitination and proteasomal degradation formation even in cases where suboptimal ternary complex formation equilibria are involved [56,67,69,70,73]. Increasing evidence suggests that improving ternary complex formation parameters is an important strategy for optimizing the cellular activity and desired properties of PROTACs. This can contribute to achieving single-target selectivity beyond binary
target engagement, and is likely to be required in cases where ligand binary binding affinities are relatively weak [55,69,74-77]. Similarly, reliance on favorable ternary complex equilibria is expected to be important in designing occupancy-based bifunctional probes that, unlike PROTACs, must rely on stoichiometric formation of ternary complexes to trigger a cellular response.

Homo-PROTACs: dimerizers of E3 ubiquitin ligases

Merging the concepts of CIDs and PROTACs, in 2017 Maniaci et al. first showed that it is possible to dimerize an E3 ubiquitin ligase using double-headed molecules “homo-PROTACs” as a strategy to induce E3 ligase degradation in cells [78]. Bifunctional molecules were constructed of the same VHL ligand (VHO32 or VH298), connected via a PEG linker in both symmetric and asymmetric fashions, to induce CRL2VHL dimerization. The best degrader identified, symmetric homo-PROTAC CM11 (Figure 5a), exhibited high cooperativity (~20) for VHL dimerization in vitro, and induced VHL degradation at concentrations >100-fold lower than the binary \(K_d\), consistent with the sub-stoichiometric mode of action. This work qualified CM11 as a fast, potent PROTAC inducing profound and prolonged degradation of VHL in different cell lines [78]. Subsequently, the same concept was applied by Steinebach et al. to develop homo-PROTACs for the CRL4CRBN ligase, leading to compound 15a as the most active CRBN degrader [79] (Figure 5a). Interestingly, VHL and CRBN could also be productively hijacked against one another. In two parallel studies, Steinebach et al. [80] and Girardini et al. [81] designed and characterized VHL-CRBN heterodimerizers CRBN-6-5-5-VHL and 14a, respectively (Figure 5a). Both PROTACs were found to preferentially induce CRBN degradation in a concentration and time dependent fashion [80,81].
Summary and Prospectus

The past few years have witnessed a renaissance in the enticing concept of bringing proteins together with small molecules, and growing efforts to apply it as a strategy to modulate protein’s intracellular function, stability and levels. In large part fueled by the meteoric resurgence of PROTACs, designing bifunctional molecules to form ternary complexes is now establishing itself as a field on its own. Fundamental structural and biophysical investigation of recent years have revealed that the molecular recognition process is much more sophisticated than previously assumed [9]. In all systems structurally defined so far, highlighted herein, these chimeric molecules do much more than simply bringing two proteins into proximity with each other: they induce extensive protein-protein contacts of varying degrees of buried surface area. In hindsight, this is perhaps not surprising because once two proteins have been brought into proximity there
exists significant inherent potential to aid interactions, as the entropic barrier to complex formation has already been largely overcome. This feature of molecular recognition is therefore likely to be much more fundamental and general than was previously anticipated for this class of molecule. It is also becoming increasingly evident, particularly for PROTACs, how nuances in cooperativity, stability, half-lives and perhaps geometry of ternary complexes can play important roles in defining the concentration-spectrum, target selectivity and time-dependency of compounds’ activities in cells and in vivo. For example, high cooperativity alleviates the hook effect, and can render compound mode of action less dependent on cellular permeability/uptake. We therefore believe that these emerging principles of ternary complex recognition are ripe for guiding rational structure-based design of bifunctional chemical probe and therapeutics.

What is next for the design of molecular dimerizers? Clearly, bi- or multi-functional ligands will inspire creativity for tackling challenging and relevant biological systems that can be bridged via synthetic molecules. Notable are systems where monovalent interactions can be weak on their own, e.g. carbohydrate binding elements and cell surface receptors [82], and where multiple domains are available for multivalent recognition of post-translational modifications, such as chromatin binding proteins [83]. Finding compounds that induce cellular PPIs with functional consequences remains a historic challenge. To tackle this challenge, it will be important to develop relevant screening approaches, and expand the chemical space covered by current compound libraries. For PROTACs and molecular glues, expanding to new E3 ubiquitin ligases beyond VHL and CRBN is an obvious next step. Recent efforts are directed towards identifying and characterizing more E3 CRLs that can be chemically tractable for targeted protein degradation. Complementary approaches involve de-orphanizing E3 ligases with new non-covalent ligands and degron peptides [31,84-86], and modifying covalently nucleophilic residues e.g. cysteines on the E3 protein using electrophilic warheads [87-89] (Figure 5b). Beyond PROTACs and the targeting to E3 ligases, it will be interesting to watch the range of combinations being exploited to recruit proteins on-demand for purposefully modulating cellular signaling. Recent approaches include designing conjugates that recruit nuclease enzymes to RNA (Ribotac) [90] and that bring extracellular proteins to cell surface lysosome targeting receptors to induce the degradation of secreted and membrane proteins [91,92]. As medicinal chemistry navigates chemical space beyond the Rule-of-five, and accepts and addresses the associated challenges, developing bifunctional molecules of suitable PK properties is proving more feasible than previously thought.
The advances and exciting recent developments outlined in this review together suggest generality and outline fresh opportunities that can be achieved by bringing proteins together as powerful means to control or endow new protein function with small molecules.

Acknowledgements
The Ciulli laboratory’s work on PPIs and E3 ligase targeting has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP7/2007-2013) as a Starting Grant to A.C. (grant agreement No. ERC-2012-StG-311460 DrugE3CRLs). C.M. was funded by a PhD Studentship from the Italian Ministry of Education, University and Research (MIUR). The authors apologize to many colleagues whose work could not be included in this review due to space limitation.

Conflict of interest statement
The A.C. laboratory receives or has received sponsored research support from Boehringer Ingelheim, Nurix, Inc. and Ono Pharmaceuticals. A.C. is a scientific founder, director and shareholder of Amphista Therapeutics, a company that is developing targeted protein degradation therapeutic platforms. The remaining author reports no competing interests.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as

• of special interest
•• of outstanding interest

• Insightful review on targeting PPIs covering recent case studies and analysing trends in physicochemical properties of both small-molecule inhibitors and their targeted protein surfaces.

 A seminal bird’s-eyes review on CIDs/CIPs as a chemical strategy to probe biology and medicine. A great place to start for the novices in the field as well as any chemists who aspire to design functional molecules to impact biology.

 Provide important theoretical and computational frameworks to describe and understand equilibria of formation of ternary complexes, including analysing cooperativity.

 See annotation to Ref. 11.

• Succinct yet authoritative overview of the history and current development of thalidomide and its analogues as a novel class of ubiquitin ligase-reprogramming “molecular glues” for targeted protein degradation.

28. Petzold G, Fischer ES, Thomä NH: Structural basis of lenalidomide-induced CK1α

•• A tour-de-force in screening to elucidate the IMiD “zinc finger degrome”. Applies structural and computational approaches to characterize CRBN:IMiD:neo-substrate molecular recognition and elucidate “rules” for this fascinating ligand-dependent degron.

•• Identifies novel small molecules able to enhance the PPI between mutant β-catenin and β-TrCP. Provides a new approach to target cancer singling pathways by promoting cellular degradation of stabilised mutant cancer oncogenes.

•• The pursuit of bifunctional molecules often requires full integration of medicinal chemistry, chemical, structural and cell biology, and in vivo proof of concept. These papers provide two complete stories of how potent bivalent inhibitors were developed.

•• See annotation to Ref. 35.

• Four independent breakthroughs that defined prime time for the PROTAC field.

• See annotation to Ref. 51.

• See annotation to Ref. 51.

• See annotation to Ref. 51.

• An important landmark, as this study describes the first crystal structure of a PROTAC ternary complex and reveals the structural and biophysical basis of cooperative molecular recognition.

• Development of a platform of cellular assays to monitor the profiles of PROTAC-induced degradation kinetics in real-time.

- Developments of bifunctional PROTAC-based inducible degron technologies halo-PROTACs and dTAG for rapid and selective knockdown of any protein of interest.

- See annotation to Ref. 62.

- See annotation to Ref. 62.

- Development of a first SPR assay to monitor kinetics of formation and dissociation of ternary complexes formed by bifunctional molecules. Shows that long-lived PROTAC ternary complexes drive fast rates of target degradation.

- First ternary complexes for CRBN-based PROTACs elucidated crystallographically and
biophysically.

 • First PROTAC degrader for BAF complex subunits SMARCA2 and SMARCA4, designed guided by ternary complex crystal structures, chemically validates and exploits SMARCA2/4 dependencies in cancer.

- First report of homo-PROTACs. Together with the following studies provides proof-of-concept of dimerising E3 ubiquitin ligases to induce their degradation in cells.

- See annotation to Ref. 78.

- See annotation to Ref. 78.

- See annotation to Ref. 78.

- Three independent reports of novel, covalent ligands for previously unliganded E3 ubiquitin ligases (RNF4, RNF114 and DCAF16), shows their incorporation into cell-active bifunctional
degraders.

See annotation to Ref. 87.

See annotation to Ref. 87.

