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We investigate the chaotic oscillations in a fractional order model of a portal frame with nonideal loading. �e bifurcation of the
fractional order portal frame system for parameters and fractional orders are investigated. Bicoherence analysis shows the existence
of quadratic nonlinearities. Fractional order adaptive slidingmode controllers are designed to suppress the chaotic oscillations with
uncertain parameters. Power e	ciency analysis of the FPGA implemented control scheme shows the maximum power utilization
in the fractional order showing the largest Lyapunov exponent.

1. Introduction

Many recent researches have been dealing with the study
of nonideal vibration systems when the excitation has an
in
uence from the system response. �ese kind of nonideal
vibrations systems are considered as major challenge in
engineering research [1, 2]. Chaotic vibrations of a portal
frame system with nonideal loading and its control are
presented by Tusset et al. [3]. Early researches on nonlinear
vibration of frames under support motion do not consider
the nonlinear elastic forces [4]. A�er two decades Brasil and
Mazzilli studied the framed machine foundation considering
both initial and elastic nonlinear eects including stiness
of columns and elastic deformations of the frames [5]. A
simple portal frame structure with its nonlinear behavior
under internal resonance conditions is analyzed for several
energy levels [6].

Optimal linear feedback control for suppression chaotic
oscillations was proposed by Ra�kov et al., [7]. Nonlinear
oscillations of a portal frame excited by a nonidealmotorwith
limited power output are considered and, with slow increase
of power levels, the possibilities of occurrence of Sommerfeld
eect are investigated [8]. Dynamical behavior of an elastic

nonideal portal frame with fractional nonlinearities taken
into account the full interactions of the vibration systems
with an energy source of limited supply is investigated [9].
A nonlinear control method based on the saturation phe-
nomenon of systems coupled with quadratic nonlinearities in
a shear building portal frame is studied [10]. A portal frame
structure based on energy harvesters with piezo electric
coupling exhibiting chaotic behavior is investigated and an
optimal control scheme to regulate the energy captured to a
designed operating frequency is preferred [11].

Recently many researchers have discussed fractional
order calculus and its applications [12–14]. Fractional order
nonlinear systems with dierent control approaches are
investigated [15–17]. Numerical analysis and methods for
simulating fractional order nonlinear system are proposed
by Petras [18] and MATLAB solutions for fractional order
chaotic systems, discussed by Trzaska Zdzislaw [19]. A frac-
tional order control based approach is proposed for piezo-
actuated nanopositioning stage to suppress the vibration
of the low-damped resonant mode and also to minimize
the tracking error for nanopositioning applications and it
is proposed [20]. A fractional order proportional-integral
(FOPI) controller for a mass-spring-damper system which
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is poorly damped is proposed and it is proved that FOPI
controllers are eective compared to the classical PI con-
trollers [21]. A fractional order (FO) controller is proposed for
solving the vibration suppression problem in civil structures
experimented on a laboratory scaled steel structure, with
one 
oor, modeled as a single degree-of-freedom system
proposed and investigated [22]. �e comparisons of the step
responses of the integer order and the three types of fractional
order damping systems are studied and it is shown that
the optimal fractional order damping systems achieve much
better step responses than optimal integer order systems
[23].�e stability of fractional order systems using Lyapunov
stability theory has been investigated in the literature [24,
25]. A fractional order controller to stabilize the unstable
�xed points of an unstable open-loop system was proposed
by Tavazoei and Haeri [26]. A bifurcation diagram shows
the long term qualitative changes (equilibria or periodic
orbits) of a system as a function of a bifurcation parameters
of the system. �e complete dynamics of the system with
the variation of the parameters can be studied with the
help of bifurcation diagram [27–29]. Nonlinear dynamical
system undergoes abrupt qualitative changes when crossing
bifurcation points [30]. For a more exhaustive qualitative
analysis of a nonlinear dynamic system, it is compulsory
to identify both singularities of the parameter plane and
singularities of the phase plane [31].

Implementation of chaotic and hyperchaotic system
using Field Programmable Gate Arrays (FPGA) is widely
investigated [32–34]. Chaotic random number generators
are implemented in FPGA for applications in image cryp-
tography [35]. FPGA implemented Du	ng oscillator based
signal detectors are proposed by Rashtchi and Nourazar [36].
Digital implementation of chaotic multiscroll attractors is
extensively investigated [32, 37]. Memristor based chaotic
system and its FPGA circuits are proposed by Xu et al. [38].
A FPGA implementation of fractional order chaotic system
using approximation method is investigated by Rajagopal et
al. [39, 40].

Motivated by the above, in this paper we investigate the
fractional order model of a portal frame (FOPF) under a
nonideal excitation. Bifurcation plots of the FOPF system
are investigated. To study the quadratic nonlinearities in the
FOPF system, bicoherence contours along with the higher
dimension power spectrum are presented. An adaptive slid-
ing mode controller is designed to suppress chaotic oscilla-
tions and �nally the proposed controller is implemented in
FPGA for real-time implementation.

2. Preliminaries and Problem Formulation

We consider the horizontal motion of a portal frame with
nonideal excitation [3] as described in Figure 1(a).�e portal
frame shown in Figure 1(a) is approximated with coupled
oscillators [3] as shown in Figure 1(b).

As described in [3], the parameters of this dynamical
system consist of �0, �1, the mass and unbalanced mass,�l, �nl, linear and nonlinear stiness, �l, linear damping, �1, �,
displacement and angular displacement, �, inertial moment,
and �, eccentricity of the unbalanced mass. 	 is related to the

voltage applied across the armature of the DC motor and 
 is
a constant for each model of the DC motor considered. �e
resulting mathematical model of the structure is given by

(�1 + �0) �̈ + ��̇ − �l� + �nl�3
= �0� (�̈ sin� + �̇2 cos�) ,

(� + �2�0) �̈ − ��0�̈ sin� = � (�̇) = 	 − 
�̇.
(1)

Using � = ��, � = �/�∗, and � = �/�∗, the dimensionless
form of (1) can be derived as,

�̇ = �,
̇� = −�� + �� − ��3 + 	�̇ sin � + 	�2 cos �,
�̇ = �,
�̇ = 0.05 ̇� sin � − 100� + 200,

(2)

� = �(�1 + �0) � ,

� = √ �l�1 + �0 ,
� = �l(�1 + �0) �2 ,
� = �nl�∗2(�1 + �0) �2 ,
	 = �0��∗(�1 + �0) �∗ ,
�2 = 	(� + �2�0) �2�∗ = 100,
�2 = �0��∗2(�1 + �0) �∗ ,
�1 = ��0�∗(� + �2�0) �∗ = 0.05,
�3 = 
��∗(� + �2�0) �2�∗ = 200.

(3)

System (2) shows chaotic oscillations when � = 0.1, � =1, � = 2, 	 = 8.473 with initial conditions [0.1, 0.1, 0.1, 0.1].
Figure 2 shows the 3D phase portraits of system (2).

3. Fractional Order Portal Frame (FOPF)

In this section we derive the fractional order model of the
portal frame (FOPF) from the integer order dimensionless
model discussed in (2). �ere are three commonly used de�-
nitions of the fractional order dierential operator, namely,
Grunwald–Letnikov, Riemann–Liouville, and Caputo [12–
14]. We use the fractional order system derived from the
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Figure 1: (a) Portal frame with nonideal excitation. (b) Coupled oscillator approximation.
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Figure 2: 3D phase portraits of the portal frame system (2).

portal frame system (1) with the Grunwald -Letnikov (GL)
de�nition, which is de�ned as

���� � (�) = lim
ℎ→0

{{{
1ℎ�
[(�−�)/ℎ]∑
�=0

(−1)� (%&)� (� − &ℎ)
}}}

= lim
ℎ→0
{ 1ℎ�Δ�ℎ� (�)} ,

(4)

where � and � are limits of the fractional order equation,Δ�ℎ�(�) is generalized dierence, ℎ is the step size, and % is
the fractional order of the dierential equation.

For numerical calculations the above equation is modi-
�ed as

(�−	)��� � (�) = lim
ℎ→0

{{{
ℎ−�
(�)∑
�=0
��� (� − &ℎ)}}}

. (5)

�eoretically fractional order dierential equations use in�-
nite memory. Hence when we want to numerically calculate
or simulate the fractional order equationswe have to use �nite
memory principal, where � is the memory length and ℎ is the
time sampling.

<(�) = min {[ �ℎ] , [�ℎ]} . (6)

�e binomial coe	cients required for the numerical simula-
tion are calculated as

�� = (1 − � + %& ) ��−1. (7)

Using the relations (4) and (5), the fractional order portal
frame dimensionless model can be derived as

���� = �,
���� = −�� + �� − ��3 + 	 (����) sin � + 	�2 cos �,
���� = �,
���� = 0.05 (����) sin � − 100� + 200.

(8)

�e parameter values are � = 0.1, � = 1, � = 2, 	 =8.473 and the initial conditions are [0.1, 0.1, 0.1, 0.1]. �e
system shows its largest Lyapunov exponent (0.08138) when% = 0.998 against its integer order Lyapunov exponent of
0.075 [3], con�rming that the chaotic oscillations are more
in fractional order close to 1 compared to the integer order.
Figure 3 shows the 3D phase portraits of the FOPF system.

4. Dynamic Analysis of FOPF System

4.1. Bifurcation Analysis with Parameters. �e FOPF system
described in (8) has four parameters �, �, �, 	 and to study the
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Figure 3: 3D phase portraits of the FOPF system.
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Figure 4: Bifurcation of FOPF system with �.

impact of these parameters of the FOPF system, we derive
the bifurcation plots. Figure 4 shows the bifurcation plots
of FOPF system for the parameter �. As can be seen from
Figure 4, the FOPF system showsmultiple chaotic regions for�. �ere exists a wide band chaotic region for 0 ≤ � ≤ 0.12
and the systems maximum Lyapunov exponent (0.08138) is
shown when � = 0.1. �e system shows quasi-periodic state
when positive Lyapunov exponent becomes zero for 0.12 ≤� ≤ 0.14. �e second chaotic region of the FOPF system is

seen for 0.14 ≤ � ≤ 0.18 and the Lyapunov exponent of the
system lies between [0.0317, 0.0453]. For a narrow band of0.18 ≤ � ≤ 0.19 the FOPF systems show multiple stable limit
cycles attracting the neighboring trajectories exhibiting self-
sustained oscillations.�ere exists the third chaotic region for0.21 ≤ � ≤ 0.25 and the FOPF system takes period halving
route for 0.25 ≤ � ≤ 0.27 to exit chaotic oscillations.

Figure 5 shows the bifurcation of the FOPF system for�. �e FOPF system takes a routine period doubling route
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Figure 5: Bifurcation plots of FOPF system for �.

to chaos and shows multiple period doubling for 0.15 ≤� ≤ 0.25. Figure 6 shows the bifurcation of FOPF system
with parameter �. �e FOPF system shows multiple chaotic
regions for �. For 0.2 ≤ � ≤ 0.3 the FOPF systems show
a chaotic region. Stable and unstable limit cycles are seen
for 0.41 ≤ � ≤ 0.63 and 0.63 ≤ � ≤ 1.27, respectively.
�e system takes a routine period doubling rote to chaos for1.35 ≤ � ≤ 1.57 and 1.63 ≤ � ≤ 1.94. A narrow band of quasi-
chaotic state exists for 1.94 ≤ � ≤ 1.97where the systems only
positive Lyapunov exponent becomes zero. �e third chaotic
region is seen for 1.97 ≤ � ≤ 2.4 and the systems maximum
Lyapunov exponent (0.08138) exists when � = 2.

Figure 7 shows the bifurcation of FOPF system with 	.
�e system enters in to chaos with period doubling for 6.50 ≤	 ≤ 6.92. �e �rst chaotic region exists for 6.92 ≤ 	 ≤ 7.4.
�en the system enters in to the second chaotic region (7.6 ≤	 ≤ 8.37) through period doubling (7.4 ≤ 	 ≤ 7.6). �ere
exists a small band of quasi-chaotic region for 8.37 ≤ 	 ≤ 8.39
when the Lyapunov exponent goes to zero. �e third chaotic

region exists for 8.39 ≤ 	 ≤ 9 and the FOPF systems largest
Lyapunov exponent (0.08138) is seen when 	 = 8.473.
4.2. Bifurcation Analysis with Fractional Order. �e bifurca-
tion of the FOPF system with fractional orders is another
important topic of investigation. Figure 8 shows the bifurca-
tion plots of the FOPF system for various fractional orders.
�e FOPF system shows chaotic oscillations for the commen-
surate orders %� > 0.99 and the largest positive Lyapunov
exponent (0.08138) of the nonideal portal frame system exists
in the fractional order % = 0.998 against the integer order
Lyapunov exponent of 0.075 [3]. �is clearly con�rms that
fractional order chaos control is eective compared to the
integer order control as discussed in [23].

4.3. Bicoherence. Higher order spectra have been used to
study the nonlinear interactions between frequency modes
[41]. Let �(�) be a stationary random process de�ned as

� (�) = 
∑
�=1
F�G��� + F∗�G−���, (9)
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Figure 6: Bifurcation of FOPF system for �.
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Figure 7: Bifurcation of FOPF system with 	.

where � is the angular frequency, H is the frequency modal
index, andF� are the complex Fourier coe	cients.�epower
spectrum can be de�ned as

I (��) = J [F�F∗�] (10)

and discrete bispectrum can be de�ned as

M (��, ��) = J [F�F�F∗�+�] . (11)

If the modes are independent then the average triple
products of Fourier components are zero resulting in a zero
bispectrum [41]. �e study of bicoherence is to give an
indication of the relative degree of phase coupling between
triads of frequency components. �e motivation to study the
bicoherence is twofold. First, the bicoherence can be used
to extract information due to deviations from Gaussianity
and suppress additive (colored) Gaussian noise. Second, the
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Figure 8: Bifurcation of FOPF system with fractional order %.

bicoherence can be used to detect and characterize asymmet-
ric nonlinearity in signals via quadratic phase coupling or
identify systemswith quadratic nonlinearity.�ebicoherence
is the third-order spectrum. Whereas the power spectrum is
second-order statistics, formed from P�(�) ∗ P(�), whereP(�) is the Fourier transform of �(�), the bispectrum is
third-order statistics formed from P(��) ∗ P(��) ∗ P�(�� +��). �e bispectrum is therefore a function of a pair of
frequencies (��, ��). It is also a complex-valued function.
�e (normalized) square amplitude is called the bicoherence
(by analogy with the coherence from the cross-spectrum).
�e bispectrum is calculated by dividing the time series
into R segments of length <_seg, calculating their Fourier
transforms and biperiodogram and then averaging over the
ensemble. Although the bicoherence is a function of two
frequencies the default output of this function is a one-
dimensional output, the bicoherence re�ned as a function of
only the sum of the two frequencies. �e autobispectrum of
a chaotic system is given by Pezeshki [42]. He derived the
autobispectrum with the Fourier coe	cients.

M (�1, �2) = J [F (�1) F (�2) F∗ (�1 + �2)] , (12)

where�� is the radian frequency andF are the Fourier coe	-
cients of the time series.�enormalizedmagnitude spectrum
of the bispectrum known as the squared bicoherence is given
by

� (�1, �2) =
UUUUM (�1, �2)UUUU2I (�1) I (�2) I (�1 + �2) , (13)

where I(�1) and I(�2) are the power spectra at �1 and �2.
Figures 9(a) and 9(b) show the bicoherence contours

of the FOPF system for state � and all states together,
respectively. Shades in yellow represent the multifrequency

components contributing to the power spectrum. From
Figures 9(a) and 9(b) the cross-bicoherence is signi�cantly
nonzero and nonconstant, indicating a nonlinear relationship
between the states. As can be seen from Figure 9(a), the
spectral power is very low as compared to the spectral
power of all states together (Figure 9(b)) indicating the
existence of multifrequency nodes. Also Figure 9(b) shows
the nonlinear coupling (straight lines connecting multiple
frequency terms) between the states. �e yellow shades/lines
and nonsharpness of the peaks, as well as the presence of
structure around the origin in �gures (cross-bicoherence),
indicate that the nonlinearity between the states �, �, �, � is
not of the quadratic nonlinearity and hencemay be because of
nonlinearity of higher dimensions. �e most two dominant
frequencies (�1, �2) are taken for deriving the contour of
bicoherence. �e sampling frequency (��) is taken as the
reference frequency. Direct FFT is used to derive the power
spectrum for individual frequencies and Hankel operator is
used as the frequency mask. Hanning window is used as the
FIR �lter to separate the frequencies [40].

5. Fractional Order Adaptive Sliding Mode
Control (FOASMC)

In this section we derive the fractional order adaptive sliding
mode controllers for suppressing the chaotic oscillations in
the FOPF system. As discussed in [3], it is su	cient to control
states � and �; hence we include two controllers V� and V�.
To include uncertainties, we assume the system parameters
(�, �, �, 	) are unknown. We rede�ne the FOPF system with
the FOASMC controllers as

�̇ = � + V�,̇� = −�� + �� − ��3 + 	�̇ sin � + 	�2 cos � + V�,
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Figure 9: (a) Bicoherence of state �. (b) Bicoherence of all states of FOPF system.

�̇ = �,
�̇ = 0.05 ̇� sin � − 100� + 200,

(14)

where V� is the adaptive sliding mode controller with W = �, �
�e sliding surfaces [39, 40, 43] are de�ned as


� = � + �� ∫�
0
� (�) 	�,


� = � + �� ∫�
0
� (�) 	�. (15)

�e Fractional derivative of sliding surfaces (15) is given by

���
� = ���� + ���,���
� = ���� + ���. (16)

To include uncertainties in the FOPF system, the parameters�, �, �, 	 are assumed unknown and hence the parameter
estimation errors are de�ned as

G� = �̂ − �,
G� = �̂ − �,G� = �̂ − �,
G� = 	̂ − 	.

(17)

�e fractional derivative of the parameter estimation errors
(17) is

���G� = ��� �̂,
���G� = ��� �̂,
���G� = ��� �̂,
���G� = ��� 	̂.

(18)

We de�ne the Lyapunov candidate function

Z = 12 [
2� + 
2� + G2� + G2� + G2� + G2�] . (19)

�e �rst derivative of (19) is

Ż = 
� ⋅ ̇
� + 
� ⋅ ̇
� + G� ⋅ ̇G� + G� ⋅ ̇G� + G� ⋅ ̇G� + G�
⋅ ̇G�. (20)

By de�nition of fractional calculus [12–14],

�̇ (�) = �1−�� ⋅ ���� (�) . (21)

Using (21) in (20),

Ż = 
� ⋅ �1−�� ⋅ ��� 
� − (� − �̂) (�1−�� ⋅ ��� �̂)
− (� − �̂) (�1−�� ⋅ ��� �̂) − (� − �̂) (�1−�� ⋅ ��� �̂)
− (	 − 	̂) (�1−�� ⋅ ��� 	̂) ,

(22)

where W = �, � and % is the commensurate order of the system.
Finding the sign of the Lyapunov �rst derivative using (22)
seemsdi	cult andhenceweuse themodi�ed fractional order
Lyapunov method de�ned by Rajagopal et al. [39, 40, 44] as

12����2 (�) ≤ � (�) 12���� (�) , % ∈ (0, 1) . (23)

Using (14), (16), (18), and (23) in (20)

Ż ≤ 
� [� + V� + ���] + 
� [−�� + �� − ��3
+ 	�̇ sin � + 	�2 cos � + V� + ���] + G���� �̂
+ G���� �̂ + G���� �̂ + G���� 	̂.

(24)

�e adaptive sliding mode controllers are de�ned as

V� = −� − ��� − _� sgn (
�) − ��
�,
V� = �̂� − �̂� + �̂�3 − 	̂�̇ sin � − 	̂�2 cos � − ���

− _� sgn (
�) − ��
�,
(25)
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Figure 10: Time history of FOPF states (controller in action at � =70 s).

where _�, ��, and �� are positive constants for W = �, �. �e
parameter estimation laws are derived as

��� �̂ = −
��,
��� �̂ = 
��,
��� �̂ = 
��3,
��� 	̂ = 
� [�2 cos � + �̇ sin �] .

(26)

Using (25) and (26) in (24), we simplify the Lyapunov
candidate function as

Ż ≤ −_� UUUU
�UUUU − _� UUUUU
�UUUUU − ��
2� − ��
2� (27)

as _� and �� are all positive for W = �, �; Ż is negative de�nite.
Using Barbalat’s lemma [45], we conclude that G�(�) → 0 as� → ∞. Figures 10 and 11 show the time history of the states
(�, �) and parameter estimates, respectively. �e controller is
switched on at time � = 70 s and the initial conditions of the
FOPF system are taken as [0.1, 0.02, 0.3, 0.04] and parameter
estimates as [1, 4, 5, 6].
6. FPGA Implementation of the FOPF System

For numerically simulating the FOPF control scheme, we �rst
implement the FOPFmodel in FPGA [39, 40] using theXilinx
(Vivado) System Generator toolbox in Simulink. Firstly we
con�gure the available built in blocks of the SystemGenerator
toolbox.�eAdd/Sub blocks are con�guredwith zero latency
and 32/16 bit �xed point settings. �e output of the block is
con�gured to rounded quantization in order to reduce the bit
latency. For the multiplier block a latency of 1 is con�gured
and the other settings are same as in Add/Sub block. Next
we will have to design the fractional order integrator which is
not a readily available block in the SystemGenerator [39, 40].
Hence we implement the integrators using the mathematical
relation discussed in Section 3 and the value of ℎ is taken
as 0.001 and the initial conditions are fed in to the forward
register with fractional order taken as % = 0.998 for FOPF
system. Figure 12 shows the Xilinx RTL schematics of the
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Figure 11: Time history of FOPF parameter estimates (controller in
action at � = 70 s).

FOPF system implemented in Kintex 7 (Device = 7k160t
Package = �g484 S) and Figure 13 shows the 3D phase
portraits of the FOPF system implemented in FPGA.Here we
used a sampling period of 0.01 s. Increasing the sampling time
period in some implementationmay lead to a clock frequency
mismatch and hence plays a critical role in implementation.
Also negative time slack may also create problems while
implementing the design and hence choosing constraints
may also be critical in cases where the number of logical
operations ismore. AvoidingDDRclocks help in reducing the
route delays. Table 1 shows the resources consumed and for
analyzing the power consumed by the controllers, we use the
approximation methodology discussed in [39, 40]. Figures
14(a) and 14(b) show the power utilization for fractional order% = 0.998 and power utilization for various fractional orders.
It con�rms that larger power will be consumed by the system
when the FOPF system shows the largest Lyapunov exponents
(FOPF % = 0.998) as shown in Figure 14(b).

6.1. FPGA Implementation of FOASMC Synchronisation. For
real-time implementation of the proposed control scheme,
the FOASMC controller can be implemented in FPGA and
the output voltages from the respective control pins can be
con�gured with an active magnetorheological damper. In
this section we implement the proposed fractional order
adaptive sliding mode controllers (FOASMC) derived in (23)
along with the fractional parameter update laws (24) and
sliding surfaces (13). For implementation of the entire control
scheme we use Virtex 7 (Device: xc7vx980t-1g1926). �e
fractional order of the FOPFmaster system, slave system, and
the FOASMC is kept as % = 0.998. For analyzing the power
consumed by the controllers, we use the approximation
methodology discussed in [43]. It con�rms that larger power
will be consumed by the controller when the master and
the slave system show largest Lyapunov exponents. Figure 15
shows the RTL schematics of the fractional order ASMC
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Table 1: Resources utilized by the FOPF system.

Kintex 7 k160t Utilization Available Utilization%
Clock frequency�max Used

LUT 974 101400 0.96 500Mhz 214Mhz

FF 850 202800 0.42 300Mhz 132Mhz

DSP 36 600 6.00 500Mhz 244Mhz

IO 129 285 45.26 250Mhz 129Mhz

BUFG 1 32 3.13 300Mhz 112Mhz

Figure 12: Xilinx RTL schematics of the FOPF system implemented in Kintex 7.
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Figure 13: 3D phase portraits of the FOPF system implemented in FPGA with order % = 0.998.

controllers implemented in Virtex 7 (Device: xc7vx980t-
1g1926). Figures 16(a) and 16(b) show the power utiliza-
tion of the controller and power utilization with change
in fractional orders, respectively. Figures 17 and 18 show

the controlled states and estimated parameters of the FOPF
system, respectively. To utilize the power of FPGA, the
computation needs to be divided into several independent
blocks of threads that can be executed simultaneously. �e
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Figure 14: (a) Power utilized and (b) power utilization versus fractional order of FOPF.

Figure 15: Xilinx RTL schematics of the FOASMC controllers implemented in Virtex 7.
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Figure 17: Controlled states of FOPF system (controller in action at� = 5 s).

performance on FPGA is directly related to the number
of threads and its performances decrease when number
of branching instructions increases. �e fractional order
operators are implemented as building blocks and the so-
called “frame delay” is not noticeable in the FPGA hardware
implementation due to its parallel data structure, unlike a
microprocessor-based implementation. While FPGA imple-
mentation has a reputation for being di	cult to design, with
the help of systematic methodology, a system can be put
together with less work than is required for more traditional
so�ware-based realizations.

7. Conclusion

Most of the literatures have investigated chaotic oscillations
in an integer order portal framewith nonideal loading. In this
paper we investigated the chaotic oscillations of a fractional
order portal frame. Existence of chaotic oscillations in a
fractional order portal frame is investigated with a posi-
tive Lyapunov exponent. Bifurcation plots in the parameter
space are investigated for the regions of chaotic oscillations.
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Figure 18: Estimated parameters of FOPF system (controller in
action at � = 5 s).

Investigation of bicoherence contours shows the quadratic
nonlinearities and its existence because of autocorrelation
and cross correlation. To control the chaotic oscillations
an adaptive sliding mode control scheme is derived and
numerically veri�ed. As can be seen from Figures 9 and 10,
the proposed control scheme is eective even in the presence
of uncertainties in the parameters. For real-time implemen-
tation, the fractional order portal frame system with the
adaptive sliding mode control algorithm is implemented in
FPGA and as can be seen from Figures 16 and 17, the FPGA
implemented controllers are eective in chaos suppression.
For real-time chaos suppression, the output voltages from the
FPGA pins can be connected to MR dampers.
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