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Abstract. Based on the relation between Leray–Schauder degree and a pair of strict lower and
upper solutions, we focus on the bifurcation analysis for a singular differential system with two
parameters, explicit bifurcation points for relative parameters are obtained by using the property of
solution for the akin systems and topological degree theory.
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1 Introduction

Bifurcation theory is the mathematical study of changes in the qualitative or topological
structure of a given family, such as the integral curves of a family of vector fields, and the
solutions of a family of differential equations. Bifurcations can occur in either continuous
systems described by ODEs, DDEs, PDEs or discrete systems described by maps. Gen-
erally, a bifurcation often occurs when a small smooth change made to the bifurcation
parameter values of a system causes a sudden ‘qualitative’ or topological change in its
behaviour [2].

There is considerable interest in understanding bifurcation phenomena because it
answers important questions like how many solutions (or steady-states) exist in different
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operating regions, and how the system behaves with changes in various parameters. In
fact, a bifurcation study helps provide insights about the physics by classifying the param-
eter space into different regions and aids further numerical explorations. For example, by
using a two-mode lumped model, Alam et al. [1] presented theory and comprehensive
bifurcation analysis of thermally coupled homogeneous-heterogeneous combustion of
propane and methane in short monolith. Mann et al. [19] stated the bifurcations and limit
cycle behavior in milling process can be predicted from a nonlinear time finite element
analysis.

In mathematics framework, several interesting theoretical results on bifurcation phe-
nomena of system have been obtained. Among them, João et al. [9] studied a local
superlinearity for elliptic systems involving parameters

−∆u = h
(
|x|, u, v

)
in A(r1, r2),

−∆v = k
(
|x|, u, v

)
in A(r1, r2),

(u, v) = (0, 0) on |x| = r1,

(u, v) = (a, b) on |x| = r2,

(1)

where a, b are non-negative parameters, A(r1, r2) = {x ∈ RN | r1 < |x| < r2} with
N > 3 is an annulus. Perform the change of variable

t = Ar2−N +B, A =
(r1r2)N−2

rN−2
2 − rN−2

1

, B =
rN−2
2

rN−2
2 − rN−2

1

,

system (1) reduce to the following second-order ordinary differential system:

−u′′(t) = f(t, u, v, a, b), t ∈ (0, 1),

−v′′(t) = g(t, u, v, a, b), t ∈ (0, 1),

u(0) = v(0) = u(1) = v(1) = 0,

(2)

where the nonlinearities f and g are given by

f(t, u, v, a, b) = (1−N)2 A2/(N−2)

(B−t)2(N−1)/(N−2)
h

((
A

B−t

)1/(N−2)

, u+ ta, v + tb

)
,

g(t, u, v, a, b) = (1−N)2 A2/(N−2)

(B−t)2(N−1)/(N−2)
k

((
A

B−t

)1/(N−2)

, u+ ta, v + tb

)
.

Under the conditions where the nonlinearities f and g are superlinear at the origin as
well as at infinity, by using the fixed-point theorem together with the upper-lower solu-
tions method and degree arguments, bifurcation arcs of parameters, which guarantee the
existence, non-existence, and multiplicity of positive solutions, were obtained, that is,
there exists a simple arc Γ , which splits the positive quadrant of the (a, b)-plane into two
disjoint sets S and R such that (2) has at least two positive solutions when (a, b) ∈ S ,
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Bifurcation analysis for a singular differential system 33

has at least one positive solution when (a, b) is on the boundary of S, and has no positive
solutions when (a, b) ∈ R. Then Liu et al. [17] studied the following singular nonlinear
systems on the half-line:

−
(
p1(t)u′(t)

)′
= λφ1(t)f1

(
t, u(t), v(t), a, b

)
, 0 < t < +∞,

−
(
p2(t)v′(t)

)′
= λφ2(t)f2

(
t, u(t), v(t), a, b

)
, 0 < t < +∞,

α11u(0)− β11 lim
t→0+

p1(t)u′(t) = 0,

α12 lim
t→+∞

u(t) + β12 lim
t→+∞

p1(t)u′(t) = 0,

α21v(0)− β21 lim
t→0+

p2(t)v′(t) = 0,

α22 lim
t→+∞

v(t) + β22 lim
t→+∞

p2(t)v′(t) = 0,

(3)

where λ > 0 is a parameter, a, b > 0 are constants and f1, f2 ∈ C((R+)5,R+) are
superlinear at infinity. By using the upper-lower solutions method and the fixed-point
theorem on cone in a special space, some results for the existence, nonexistence and
multiplicity of positive solutions for the problem are obtained. For other works on the
existence of positive solutions, we refer the reader to [3–8, 11–16, 18, 21–24].

Coupled boundary value problems (1)–(3) arise naturally in the research of Sturm–
Liouville problems, reaction-diffusion equations, mathematical biology, and so on. Of
course, the investigation of the model of abstract dynamics systems for coupled boundary
value problems plays important role for getting an in-depth understanding of the systems
oneself. Moreover, these theoretical results will then shed light on the development of the
related sciences and technologies, further improve the efficiency and reliability of these
systems. In view to this aim, in this paper, we are firstly concerned with the multiplicity
of positive solutions for the following singular differential system with coupled boundary
conditions:

u′′(t) + a1(t)u′(t) + b1(t)u(t) + c1(t)f1

(
t, u(t), v(t)

)
= 0, t ∈ (0, 1),

v′′(t) + a2(t)v′(t) + b2(t)v(t) + c2(t)f2

(
t, v(t), u(t)

)
= 0, t ∈ (0, 1),

u(0) =

1∫
0

g1(s)u(s) ds, u(1) =

1∫
0

h1(s)u(s) ds,

v(0) =

1∫
0

g2(s)v(s) ds, v(1) =

1∫
0

h2(s)v(s) ds,

(4)

where ai ∈ C[0, 1], bi ∈ C([0, 1], (−∞, 0)), fi ∈ C([0, 1] × R+ × R+,R+
0 ), ci ∈

C((0, 1),R+), ci(t) 6≡ 0, gi, hi ∈ L1(0, 1) are nonnegative, i = 1, 2. Then, by using
the property of solution for the akin systems (4) as well as topology degree theory,
we establish the bifurcation analysis for the corresponding differential system with two

Nonlinear Anal. Model. Control, 22(1):31–50



34 L. Liu et al.

parameters

u′′(t) + a1(t)u′(t) + b1(t)u(t) + λc1(t)f1

(
t, u(t), v(t)

)
= 0, t ∈ (0, 1),

v′′(t) + a2(t)v′(t) + b2(t)v(t) + µc2(t)f2

(
t, v(t), u(t)

)
= 0, t ∈ (0, 1),

u(0) =

1∫
0

g1(s)u(s) ds, u(1) =

1∫
0

h1(s)u(s) ds,

v(0) =

1∫
0

g2(s)v(s) ds, v(1) =

1∫
0

h2(s)v(s) ds,

(5)

where λ, µ > 0 are parameters, ai ∈ C[0, 1], bi ∈ C([0, 1], (−∞, 0)), fi ∈ C([0, 1] ×
R+ × R+,R+

0 ), ci ∈ C((0, 1),R+), ci(t) 6≡ 0, gi, hi ∈ L1(0, 1) (i = 1, 2). In the above
two systems (4) and (5), ci(t) (i = 1, 2) is allowed to be singular at t = 0, 1.

The paper is organized as follows. In Section 2, we give some preliminaries and
establish several lemmas. In Section 3, we establish the relation between Leray–Schauder
degree and a pair of strict lower and upper solutions for a second-order differential system
with integral boundary conditions. The main results shall be established in Sections 4
and 5.

2 Preliminaries and lemmas

Let E = C[0, 1] = {u | u : [0, 1] → R is continuous} be a Banach space with the
norm ‖u‖ = maxt∈[0,1] |u(t)|. Throughout the paper, R+ = [0,+∞), R+

0 = (0,+∞)
and the symbol of the form C(M,N) is denoted as the set of all continuous mappings
u : M → N , where M and N are two arbitrary set. In the following, we shall work in
Banach space E × E, which is endowed with the norm ‖(u, v)‖ = max{‖u‖, ‖v‖} for
any (u, v) ∈ E × E. We also define a cone on E as follows:

P =
{
u ∈ C[0, 1]

∣∣ u(t) > 0 and u(t) is concave on [0, 1]
}
.

In order to establish the bifurcation structure of the coupled boundary value prob-
lem (4), we firstly introduce the following lemmas.

Lemma 1. (See [18].) Suppose that ai ∈ C[0, 1], bi ∈ C([0, 1], (−∞, 0)). Let ϕ1,i and
ϕ2,i be the unique solution of the following problems:

ϕ′′1,i(t) + ai(t)ϕ
′
1,i(t) + bi(t)ϕ1,i(t) = 0,

ϕ1,i(0) = 0, ϕ1,i(1) = 1

and
ϕ′′2,i(t) + ai(t)ϕ

′
2,i(t) + bi(t)ϕ2,i(t) = 0,

ϕ2,i(0) = 1, ϕ2,i(1) = 0,

respectively. Then ϕ1,i are strictly increasing on [0, 1], while ϕ2,i are strictly decreasing
on [0, 1], where i = 1, 2.
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Bifurcation analysis for a singular differential system 35

For convenience, we now list some assumptions to be used in the rest of the paper:

(H1) ai ∈ C[0, 1], bi ∈ C([0, 1], (−∞, 0)), i = 1, 2.
(H2) gi, hi ∈ L1(0, 1) are nonnegative with k1,i > 0, k4,i > 0, ki > 0, where

k1,i = 1−
1∫

0

ϕ2,i(s)gi(s) ds, k2,i =

1∫
0

ϕ1,i(s)gi(s) ds,

k3,i =

1∫
0

ϕ2,i(s)hi(s) ds, k4,i = 1−
1∫

0

ϕ1,i(s)hi(s) ds,

ki = k1,ik4,i − k2,ik3,i, i = 1, 2.

(H3) fi ∈ C([0, 1]× R+ × R+,R+), ci ∈ C((0, 1),R+), ci(t) 6≡ 0 and

1∫
0

Hi(s)ci(s) ds < +∞, i = 1, 2,

where Hi(s) is defined in Lemma 3.

Lemma 2. (See [16].) Assume that (H1) and (H2) hold. Then, for any yi ∈ C(0, 1) ∩
L1(0, 1), the BVP

u′′i (t) + ai(t)u
′(t) + bi(t)u(t) + yi(t) = 0, t ∈ (0, 1),

ui(0) =

1∫
0

gi(s)ui(s) ds, ui(1) =

1∫
0

hi(s)ui(s) ds
(6)

has a unique solution

ui(t) =

1∫
0

Hi(t, s)yi(s) ds, t ∈ [0, 1], (7)

where

Hi(t, s) = Gi(t, s)pi(s) +
ϕ1,i(t)k3,i + ϕ2,i(t)k4,i

ki

1∫
0

Gi(τ, s)pi(s)gi(τ) dτ

+
ϕ1,i(t)k1,i + ϕ2,i(t)k2,i

ki

1∫
0

Gi(τ, s)pi(s)hi(τ) dτ, (8)

pi(t) = exp

( t∫
0

ai(s) ds

)
,

Gi(t, s) =
1

ρi

{
ϕ1,i(t)ϕ2,i(s), 0 6 t 6 s 6 1,

ϕ1,i(s)ϕ2,i(t), 0 6 s 6 t 6 1,
ρi = ϕ′1,i(0), i = 1, 2.
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Clearly, ui(t) > 0 on [0, 1] if yi(t) > 0 on (0, 1) (i = 1, 2).

Lemma 3. (See [16].) Suppose that (H1) and (H2) hold, then, for any t, s ∈ [0, 1], we
have

0 6 Gi(t, s) 6 Gi(s, s), 0 6 Hi(t, s) 6 Hi(s), (9)
where

Hi(s) = Gi(s, s)pi(s) +
k3,i + k4,i

ki

1∫
0

Gi(τ, s)pi(s)gi(τ) dτ

+
k1,i + k2,i

ki

1∫
0

Gi(τ, s)pi(s)hi(τ) dτ

and

Hi(t, s) > γi(t)Hi(s), (10)

where γi(t) = min{φ1,i(t), φ2,i(t)}, t ∈ [0, 1] (i = 1, 2).

Since ci ∈ C((0, 1),R+) and ci(t) 6≡ 0, there exists t0,i ∈ (0, 1) such that ci(t0,i) > 0
(i = 1, 2). Choose δ ∈ (0, 1/2) such that t0,i ∈ (δ, 1− δ), then we have

Hi(t, s) > γδHi(s), t ∈ [δ, 1− δ], s ∈ [0, 1],

where

0 < γδ = min
i∈{1,2}

min
t∈[δ,1−δ]

{
φ1,i(t), φ2,i(t)

}
= min
i∈{1,2}

min
{
φ1,i(δ), φ2,i(1− δ)

}
< 1.

Let
K =

{
u ∈ P

∣∣ u(t) > γ(t)‖u‖, t ∈ [0, 1]
}
,

where γ(t) = min{γ1(t), γ2(t)}. Then K is a subcone of P . It is easy to verify that, for
any u ∈ K, we have mint∈[δ,1−δ] u(t) > γδ‖u‖. For any r > 0, let Kr = {u ∈ K |
‖u‖ < r}, ∂Kr = {u ∈ K | ‖u‖ = r} and K̄r = {u ∈ K | ‖u‖ 6 r}.

Next, we define several operators Av : K → P , Bu : K → P , T : K ×K → P × P
and Ti : E → E as follows:

Av(u)(t) =

1∫
0

H1(t, s)c1(s)f1

(
s, u(s), v(s)

)
ds, t ∈ [0, 1], (11)

Bu(v)(t) =

1∫
0

H2(t, s)c2(s)f2

(
s, v(s), u(s)

)
ds, t ∈ [0, 1], (12)

T (u, v)(t) =
(
Av(u)(t), Bu(v)(t)

)
, t ∈ [0, 1], (13)

(Tiu)(t) =

1∫
0

Hi(t, s)ci(s)u(s) ds, t ∈ [0, 1]. (14)
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It is well known that if (u, v) ∈ K×K solves the operator equation (u, v) = T (u, v),
then (u, v) is a positive solution of system (4).

For any τ : 0 < τ < δ, we define Tτ,i : E → E by

(Tτ,iu)(t) =

1−τ∫
τ

Hi(t, s)ci(s)u(s) ds, t ∈ [0, 1]. (15)

Lemma 4. (See [16].) Suppose that (H1)–(H3) are satisfied, then, for the operators Ti
defined by (14) and Tτ,i defined by (15), we have

(i) Ti : K → K are completely continuous linear operators.
(ii) The spectral radius r(Ti) 6= 0, Ti has positive eigenfunction corresponding

to its first eigenvalue λ1,i = (r(Ti))
−1, and Tτ,i has positive eigenfunction

corresponding to its first eigenvalue λτ,i = (r(Tτ,i))
−1.

(iii) There exists an eigenvalue λ̃1,i of Ti such that λτ,i → λ̃1,i as τ → 0+.

The first eigenvalue λ1,i and the eigenvalue λ̃1,i (i = 1, 2) will be used in the assump-
tions of nonlinearity of fi (i = 1, 2) in Section 4.

Lemma 5. (See [16].) If (H1)–(H3) hold, then

(i) For any R > r > 0 and v ∈ K, Av : K̄R \Kr → K is completely continuous.
(ii) For any R > r > 0 and u ∈ K, Bu : K̄R \Kr → K is completely continuous.

(iii) T : K ×K → P × P is completely continuous.

Lemma 6. (See [7].) Let X be a Banach space, and let Pi ⊂ X be a closed convex
cone and Wi a bounded open subset of X with boundary ∂Wi (i = 1, 2). Suppose that
Ai : Pi ∩ Wi → Pi is a completely continuous mapping and that Aiui 6= ui for all
ui ∈ Pi ∩ ∂Wi, then

i
(
A, P1 × P2 ∩ (W1 ×W2), P1 × P2

)
= i(A1, P1 ∩W1, P1) · i(A2, P2 ∩W2, P2),

where A(u, v) := (A1u,A2v) for all (u, v) ∈ (P1 × P2) ∩ (W1 ×W2).

Lemma 7. (See [7].) Let X be a Banach space, and let Pi ⊂ X be a closed convex cone
and Wi a bounded open subset of E with boundary ∂Wi (i = 1, 2) and P = P1 × P2,
W = W1 ×W2. Assume that T : P ∩W → P is completely continuous and that there
exists compactly continuous mappingsAi : Pi∩Wi → Pi andH : (P ∩W )× [0, 1]→ P
such that

(i) H(·, 1) = T ,H(·, 0) = A, whereA(u, v) := (A1u,A2v) for all (u, v) ∈ P ∩W .
(ii) Aiui 6= ui for all ui ∈ Pi ∩ ∂Wi.

(iii) H(w, θ) 6= w for all (w, θ) ∈ (P ∩ ∂W )× [0, 1].

Then
i(T, P ∩W, P ) = i(A1, P1 ∩W1, P1) · i(A2, P2 ∩W2, P2).
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Lemma 8. (See [10].) Let P be a cone in Banach space X . For r > 0, denote Pr =
{x ∈ P | ‖x‖ < r}, Pr = {x ∈ P | ‖x‖ 6 r} and ∂Pr = {x ∈ P | ‖x‖ = r}. Suppose
that A : P r → P is a completely continuous operator.

(i) If there exists u0 ∈ P \ θ such that

u−Au 6= µu0, u ∈ ∂Pr, µ > 0,

then the fixed point index i(A,Pr, P ) = 0.
(ii) If

Au 6= µu, u ∈ ∂Pr, µ > 1,

then the fixed point index i(A,Pr, P ) = 1.

Lemma 9. (See [10].) Let P be a cone in Banach space X . For r > 0, denote Pr =
{x ∈ P | ‖x‖ < r}, P r = {x ∈ P | ‖x‖ 6 r} and ∂Pr = {x ∈ P | ‖x‖ = r}. Suppose
that A : P r → P is a completely continuous operator.

(i) If ‖Au‖ 6 ‖u‖ for u ∈ ∂Pr, then the fixed point index i(A,Pr, P ) = 1.
(ii) If ‖Au‖ > ‖u‖ for u ∈ ∂Pr, then the fixed point index i(A,Pr, P ) = 0.

3 Upper-lower solution and Leray–Schauder degree

In the following, we will define the (strict) lower solutions and (strict) upper solutions of
the integral boundary value problem (4). Theorems 1 and 2 are keys to the existence of at
least two positive solutions of systems (4) and (5), see the proof of Theorems 3 and 4.

Definition 1. For αu, αv ∈ C2([0, 1],R), (αu, αv) is said to be a lower (strict lower)
solution of (4) if

α′′u(t) + a1(t)α′u(t) + b1(t)αu(t) + c1(t)f1

(
t, αu(t), αv(t)

)
> (>) 0, t ∈ (0, 1),

α′′v(t) + a2(t)α′v(t) + b2(t)αv(t) + c2(t)f2

(
t, αu(t), αv(t)

)
> (>) 0, t ∈ (0, 1),

αu(0) 6 (<)

1∫
0

g1(s)αu(s) ds, αu(1) 6 (<)

1∫
0

h1(s)αu(s) ds,

αv(0) 6 (<)

1∫
0

g2(s)αv(s) ds, αv(1) 6 (<)

1∫
0

h2(s)αv(s) ds.

An upper (strict upper) solution (βu, βv) ∈ C2([0, 1],R)× C2([0, 1],R) can also be
defined if it satisfies the reverse of the above inequalities.

Definition 2. For a function F : [0, 1]×R2 → R, F (t, u, v) is said to be quasi-monotone
nondecreasing with respect to v (or u) if, for fixed t,

F (t, u, v1) 6 F (t, u, v2) as v1 6 v2

(
or F (t, u1, v) 6 F (t, u2, v) as u1 6 u2

)
.
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Let us consider the fixed point of operator associated with (4), i.e., a compact operator
T : C[0, 1]× C[0, 1]→ C[0, 1]× C[0, 1] defined by T (ϕ,ψ) := (u, v) if

u′′(t) + a1(t)u′(t) + b1(t)u(t) + c1(t)f1

(
t, ϕ(t), ψ(t)

)
= 0, t ∈ (0, 1),

v′′(t) + a2(t)v′(t) + b2(t)v(t) + c2(t)f2

(
t, ϕ(t), ψ(t)

)
= 0, t ∈ (0, 1),

u(0) =

1∫
0

g1(s)ϕ(s) ds, u(1) =

1∫
0

h1(s)ϕ(s) ds,

v(0) =

1∫
0

g2(s)ψ(s) ds, v(1) =

1∫
0

h2(s)ψ(s) ds.

(16)

The following theorem provides the relation between Leray–Schauder degree of com-
pactly continuous field id − T and a pair of strict lower and upper solutions for (4).
Firstly, let us define a set

Ω =
{

(u, v) ∈ C[0, 1]× C[0, 1]→ C[0, 1]× C[0, 1]
∣∣

(αu, αv) < (u, v) < (βu, βv) on [0, 1]
}
.

Theorem 1. Let (αu, αv) and (βu, βv) be a strict lower solution and a strict upper
solution of (4), respectively, and

(i) (αu(t), αv(t)) < (βu(t), βv(t)) for all t ∈ [0, 1];
(ii) E β

α := {(t, u, v) ∈ [0, 1] × R2 | αu(t) < u < βu(t), αv(t) < v < βv(t)} ⊂
[0, 1]× R2;

(iii) f1(t, u, v) is quasi-monotone nondecreasing with respect to v, and f2(t, u, v) is
quasi-monotone nondecreasing with respect to u.

Then
deg
(
id−T , Ω, (θ, θ)

)
= 1,

furthermore, problem (4) has at least one solution (u, v) such that(
αu(t), αv(t)

)
<
(
u(t), v(t)

)
<
(
βu(t), βv(t)

)
∀t ∈ [0, 1].

Proof. The proof of this theorem is similar to the proof of Theorem 2.4 in [3].

In the similar way, we can prove the following theorem.

Theorem 2. Let (αu, αv) and (βu, βv) be a lower solution and an upper solution of (4),
respectively, and

(i) (αu(t), αv(t)) 6 (βu(t), βv(t)) for all t ∈ [0, 1];
(ii) Dβ

α := {(t, u, v) ∈ [0, 1] × R2 | αu(t) 6 u 6 βu(t), αv(t) 6 v 6 βv(t)} ⊂
[0, 1]× R2;

(iii) f1(t, u, v) is quasi-monotone nondecreasing with respect to v, and f2(t, u, v) is
quasi-monotone nondecreasing with respect to u.
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Then problem (4) has at least one solution (u, v) such that(
αu(t), αv(t)

)
6
(
u(t), v(t)

)
6
(
βu(t), βv(t)

)
∀t ∈ [0, 1]. (17)

4 Positive solutions of system (4)

For any y > 0, we denote

f1,0(y) = lim inf
x→0+

min
t∈[0,1]

f1(t, x, y)

x
, f1,∞(y) = lim inf

x→+∞
min
t∈[0,1]

f1(t, x, y)

x
,

f0
1 (y) = lim sup

x→0+

max
t∈[0,1]

f1(t, x, y)

x
, f∞1 (y) = lim sup

x→+∞
max
t∈[0,1]

f1(t, x, y)

x
.

For any x > 0, we denote

f2,0(x) = lim inf
y→0+

min
t∈[0,1]

f1(t, x, y)

y
, f2,∞(x) = lim inf

y→+∞
min
t∈[0,1]

f1(t, x, y)

y
,

f0
2 (x) = lim sup

y→0+

max
t∈[0,1]

f1(t, x, y)

y
, f∞2 (x) = lim sup

y→+∞
max
t∈[0,1]

f1(t, x, y)

y
.

Lemma 10. (See [20].) Suppose conditions (H1)–(H3) are satisfied.

(i) If
inf
y∈R+

f1,0(y) > λ1,1, (18)

then, for any v ∈ K, there exists r1 > 0 such that

i(Av,Kr,K) = 0, 0 < r < r1.

(ii) If
inf
x∈R+

f2,0(x) > λ1,2, (19)

then, for any u ∈ K, there exists r2 > 0 such that

i(Bu,Kr,K) = 0, 0 < r < r2.

Lemma 11. (See [20].) Suppose conditions (H1)–(H3) are satisfied.

(i) If
inf
y∈R+

f1,∞(y) > λ̃1,1, (20)

then, for any u ∈ K \ {0}, there exists R1 > 0 such that

i(Av,KR,K) = 0 ∀R > R1.
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(ii) If
inf
x∈R+

f2,∞(x) > λ̃1,2, (21)

then, for any v ∈ K \ {0}, there exists R2 > 0 such that

i(Bu,KR,K) = 0 ∀R > R2.

Now let us finish our presentation to announce our main results that can be stated as
follows:

Theorem 3. Suppose that (H1)–(H3) and the following conditions hold:

(H4) f1(t, x, y) (resp. f2(t, x, y)) is quasi-monotone nondecreasing w.r.t. x (resp. y);
(H5) infy∈R+ f1,0(y) > λ1,1, infx∈R+ f2,0(x) > λ1,2;
(H6) infy∈R+ f1,∞(y) > λ̃1,1, infx∈R+ f2,∞(x) > λ̃1,2;
(H7) fi ∈ C([0, 1]× R+ × R+,R+

0 ), where R+
0 = (0,+∞), i = 1, 2.

If system (4) has a strict upper solution (βu, βv), then system (4) has at least two positive
solutions.

Proof. From Lemma 10 and (H5), we can find r1, r2 > 0 such that

i(Av,Kr,K) = 0 ∀v ∈ K, r ∈ (0, r1];

i(Bu,Kr,K) = 0 ∀u ∈ K, r ∈ (0, r2].

Denote r0 = min{r1, r2}. Since Av : K → K, Bu : K → K, T : K ×K → K ×K
are completely continuous, from Theorem 6, we get

(T, Kr ×Kr, K ×K) = i(Av,Kr,K)× i(Bu,Kr,K) = 0 ∀r ∈ (0, r0].

Similarly, from Lemma 11 and (H6), we can find R0 > 0 such that

(T, KR ×KR, K ×K) = i(Av,KR,K)× i(Bu,KR,K) = 0 ∀R ∈ [R0,+∞).

Since fi ∈ C([0, 1]× R+ × R+,R+
0 ) (i = 1, 2), we can expand fi as

fi(t, x, y) =

{
fi(t, x, y), x > 0 and y > 0, t ∈ [0, 1],

fi(t, |x|, |y|), x < 0 or y < 0, t ∈ [0, 1],
(22)

then fi (i = 1, 2) is even with respect to u and v. Let ε > 0 small enough and (αu, αv) =
(−εβu,−εβv), then we can prove that (αu, αv) is a strict lower solution to system (4).
Denote

Ω =
{

(u, v) ∈ C[0, 1]× C[0, 1]
∣∣ (αu, αv) < (u, v) < (βu, βv)

}
,

then from Theorem 1 we have

i
(
T, (K ×K) ∩Ω, K ×K

)
= deg

(
id− T,Ω, (θ, θ)

)
= 1. (23)
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Now select 0 < r < min{r0,mint∈[0,1]{βu(t), βv(t)}} and R > max{R0, ‖(βu, βv)‖},
in view of Lemmas 10 and 11, we get

i(T, Kr ×Kr, K ×K) = i(T, KR ×KR, K ×K) = 0. (24)

Combining with (23)–(24) and by the additivity of fixed point index, we obtain

i
(
T,
[
(K ×K) ∩Ω

]
\Kr ×Kr, K ×K

)
= 1,

i
(
T, (KR ×KR) \ (Kr ×Kr) ∩Ω, K ×K

)
= −1,

(25)

which means that system (4) has at least two positive solutions.

5 Bifurcation analysis for singular differential system with two pa-
rameters

In this section, we shall apply the property of solution for the akin systems (4) and
topology degree theory to study explicit bifurcation points for relative parameters to
system (5).

Theorem 4. If (H1)–(H4), (H7) and the condition

(H6′) lim inf
x→∞

min
t∈[0,1]

f1(t, x, 0)

x
= +∞, lim inf

y→∞
min
t∈[0,1]

f1(t, 0, y)

y
= +∞

hold, then the following conclusions are valid:

(i) There exist λ∗, µ∗ ∈ R+
0 and a simple arc Γ0, excluding both end points (λ∗, 0)

and (0, µ∗), such that Γ0 ⊂ R+
0 × R+

0 separates R+
0 × R+

0 into two disjoint
subset O1 and O2 such that system (5) has no solutions, at least one or at least
two nontrivial positive solutions according to (λ, µ) ∈ O2, Γ0 or O1, respectively.

(ii) There exist λ∗ > λ∗ and µ∗ > µ∗ such that system (5) has no solutions for
(λ, µ) ∈ {(λ, 0) | λ > λ∗} ∪ {(0, µ) | µ > µ∗}, at least one semi-trivial
positive solution for (λ, µ) ∈ {(λ∗, 0), (0, µ∗)} and at least two semi-trivial
positive solutions for (λ, µ) ∈ {(λ, 0) | λ ∈ (0, λ∗)} ∪ {(0, µ) | µ ∈ (0, µ∗)}.

Now, for any given τ ∈ [0, 1], we define

g1,τ

(
t, u(t), v(t)

)
= τf1

(
t, u(t), v(t)

)
+ (1− τ)f1

(
t, u(t), 0

)
,

g2,τ

(
t, u(t), v(t)

)
= τf2

(
t, u(t), v(t)

)
+ (1− τ)f2

(
t, 0, v(t)

)
.

(26)

For any (λ, µ) ∈ R+ × R+, we define the mappings Aλ,v, Bµ,u and Tλ,µ by

(
Aτλ,vu

)
(t) = λ

1∫
0

H1(t, s)c1(s)g1,τ

(
s, u(s), v(s)

)
ds, (27)

(
Bτµ,uv

)
(t) = µ

1∫
0

H2(t, s)c2(s)g2,τ

(
s, v(s), u(s)

)
ds (28)

http://www.mii.lt/NA



Bifurcation analysis for a singular differential system 43

and
T τλ,µ(u, v)(t) =

((
Aτλ,vu

)
(t),
(
Bτµ,uv

)
(t)
)
. (29)

By Lemma 5, we know that, for any u, v ∈ K and λ, µ > 0, τ ∈ [0, 1], the operators
Aτλ,v, B

τ
µ,u : K → K, T τλ,µ : K ×K → K ×K are well defined and T τλ,µ : K ×K →

K ×K are completely continuous.
It is obvious that the existence of positive solutions of system (5) is equivalent to the

existence of nontrivial fixed points of T 1
λ,µ in K ×K.

Lemma 12. Assume that (H1)–(H4) and (H7) hold, then, for any r > 0 there exists
a (λr, µr) ∈ R+

0 × R+
0 such that, for any (λ, µ) ∈ ([0, λr]× [0, µr]) \ {(0, 0)}, T 1

λ,µ has
a nontrivial fixed point in Kr ×Kr.

Proof. By (H3) and (H7), for any given r > 0, we can denote

α = sup
u∈∂Kr

‖Avu‖, β = sup
v∈∂Kr

‖Buv‖.

It is easy to see that α and β are both positive. Set (λr, µr) = (r/(2α), r/(2β)), then, for
any (λ, µ) ∈ [0, λr]× [0, µr], we have∥∥A1

λ,v(u)
∥∥ 6 λα < r = ‖u‖ ∀(u, v) ∈ ∂Kr ×K

and ∥∥B1
µ,u(v)

∥∥ 6 µβ < r = ‖v‖ ∀(u, v) ∈ K × ∂Kr.

It follows from Theorem 6 and Lemma 9 that

i
(
T 1
λ,µ, Kr ×Kr, K ×K

)
= i
(
A1
λ,v,Kr,K

)
× i
(
B1
µ,u,Kr,K

)
= 1,

together with (H7), which implies that T 1
λ,µ has a nontrivial fixed point in Kr × Kr for

all (λ, µ) ∈ ([0, λr]× [0, µr]) \ {(0, 0)}.

Lemma 13. Assume that (H1)–(H4), (H6′) and (H7) hold. Denote

Su ≡
{
u
∣∣ Aτλ,v(u) = u, λ ∈ I, τ ∈ [0, 1] and (u, v) ∈ K ×K

}
and

Sv ≡
{
v
∣∣ Bτµ,u(v) = v, µ ∈ I, τ ∈ [0, 1] and (u, v) ∈ K ×K

}
,

where I ⊂ [p,+∞) for some constant p > 0. Then there exists a constant CI such that
‖u‖ 6 CI for all u ∈ Su and ‖v‖ 6 CI for all v ∈ Sv .

Proof. First, we prove that there exists a constant C ′I such that ‖u‖ 6 C ′I for all u ∈ Su.
Suppose, by the contradiction, that there exist sequences {(λn, τn)} ⊂ I × [0, 1] and
{(un, vn)} ⊂ K ×K such that Aτnλn,vn

(un) = un and limn→∞ ‖un‖ = +∞. By (H6′),
for

k >

(
pγδ

1−δ∫
δ

H1

(
1

2
, s

)
c1(s) ds

)−1

,
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there exists an R > 0 such that

f1(t, u, 0) > ku ∀(t, u) ∈ [0, 1]× [R,+∞).

Now choose uN ∈ {un} such that uN (t) > γδ‖uN‖ > R for all t ∈ [δ, 1 − δ], by (H4),
(H7) and the above inequality, we obtain that

‖uN‖ > AτNλN ,vN
uN

(
1

2

)
> λN

1∫
0

H1

(
1

2
, s

)
c1(s)f1

(
s, uN (s), 0

)
ds

> kλN

1−δ∫
δ

H1

(
1

2
, s

)
c1(s)uN (s) ds

> kpγδ

1−δ∫
δ

H1

(
1

2
, s

)
c1(s) ds · ‖uN‖ > ‖uN‖,

which is a contradiction.
Similarly, we can show that there exists a constant C ′′I such that ‖v‖ 6 C ′′I for all

v ∈ Sv . Let CI = max{C ′I , C ′′I }, then the proof is completed.

Lemma 14. Assume that (H1)–(H4), (H6′) and (H7) hold and T 1
λ̄,µ̄

has a nontrivial fixed
point (ū, v̄) ∈ K×K for some (λ̄, µ̄) ∈ (R+×R+)\{(0, 0)}, then T 1

λ,µ has a nontrivial
fixed point in K ×K for any (λ, µ) ∈ ([0, λ̄]× [0, µ̄]) \ {(0, 0)}.

Proof. For any given (λ, µ) ∈ ([0, λ̄]×[0, µ̄])\{(0, 0)}, it is easy to verify that (αu, αv) =
(0, 0) and (βu, βv) = (ū, v̄) are a pair of lower and upper solutions to system (5). From
Theorem 2 and conditions (H4), (H7), we know that system (5) has at least one positive
solution for (λ, µ) ∈ ([0, λ̄] × [0, µ̄]) \ {(0, 0)}, that is, T 1

λ,µ has a nontrivial fixed point
in K ×K for any (λ, µ) ∈ ([0, λ̄]× [0, µ̄]) \ {(0, 0)}.

In what follows, denote

S =
{

(λ, µ) ∈ R+ × R+
∣∣ T 1

λ,µ has a fixed point in K ×K
}
,

int S = {the interior of S }.
(30)

We will discuss the properties and the structures of sets S and int S in the subsequent
lemmas.

Lemma 15. Assume that (H1)–(H4), (H6′) and (H7) hold, then

(i) {(0, 0)} 6⊆ S ;
(ii) S is closed and bounded;

(iii) int S is nonempty, open and bounded.
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Proof. (i) Clearly, (0, 0) ∈ S . By Lemma 12, S \ {(0, 0)} is nonempty.
(ii) From Lemmas 13 and 14, the compactness of T 1

λ,µ and Lebesgue dominated
convergence theorem, S is closed.

Next, we prove that S is bounded. If S is bounded, then there exist sequences
{(un, vn)}∞n=1 ⊂ K ×K and {(λn, µn)}∞n=1 ⊂ R+ × R+ such that T 1

λn,µn
(un, vn) =

(un, vn) and limn→∞ λn = +∞ or limn→∞ µn = +∞.
Without loss of generality, suppose that limn→∞ λn = +∞. From Lemma 13, we

know that there exists a constant M > 0 such that ‖un‖ 6 M , n = 1, 2, . . . . Let
q = min{f1(t, u, 0) | (t, u) ∈ [0, 1]× [0,M ]}, then q is positive and

‖un‖ > A1
λn,vnun

(
1

2

)
> λn

1∫
0

H1

(
1

2
, s

)
c1(s)f1

(
s, u(s), 0

)
ds

> qλn

1−δ∫
δ

H1

(
1

2
, s

)
c1(s) ds→∞ as n→ +∞,

which is a contradiction. Here S is bounded.
(iii) From Lemma 12, it is easy to see that int S is nonempty. It is clear that int S is

open and bounded.

For convenience, we introduce the following notations:

∂(int S ) := {the boundary of int S },
d(int S ) := {the derived set of int S },

int S := {the closure of int S }.

Based on the work of [3–6], we can easily get the following result.

Lemma 16. (See [3].) Assume that (H1)–(H4), (H6′) and (H7) hold, then there exists
a (λ∗, µ∗) ∈ R+

0 ×R
+
0 such that {(λ, 0) | λ ∈ [0, λ∗]}∪{(0, µ) | µ ∈ [0, µ∗]} ⊂ ∂(int S )

and int S ⊂ [0, λ∗]× [0, µ∗].

Now define a family of straight lines

L(t) =
{

(λ, µ) ∈ R2
∣∣ µ = λ− t, t ∈ [−µ∗, λ∗]

}
. (31)

Moreover, by view of Lemma 16, for all t ∈ [−µ∗, λ∗],

λ(t) = sup
{
λ
∣∣ (λ, µ) ∈ L(t) ∩ int S

}
,

µ(t) = λ(t)− t and Γ (t) =
(
λ(t), µ(t)

) (32)

are well defined. Then we have

Lemma 17. (See [3].) Assume that (H1)–(H4), (H6′) and (H7) hold, then Γ (t) ∈ L(t) ∩
∂(int S ), t ∈ [−µ∗, λ∗].
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Lemma 18. (See [3].) Assume that (H1)–(H4), (H6′) and (H7) hold, then the following
conclusions are valid:

(i) λ(t) is monotone nondecreasing and µ(t) is monotone nondecreasing, which
implies that {Γ (t) | t ∈ [−µ∗, λ∗]} is a simple arc;

(ii) {Γ (t) | t ∈ [−µ∗, λ∗]} ∩ {(λ, µ) | λµ = 0} = {(λ∗, 0), (0, µ∗)};
(iii) ∂(int S ) is a simple closed curve, and ∂(int S ) = {Γ (t) | t ∈ [−µ∗, λ∗]} ∪
{(λ, 0) | λ ∈ [0, λ∗]} ∪ {(0, µ) | µ ∈ [0, µ∗]};

(iv) int S =
⋃
t∈[−µ∗,λ∗]{(λ, µ) ∈ L(t) | 0 6 λ 6 λ(t) and 0 6 µ 6 µ(t)}.

Lemma 19. (See [3].) Assume that (H1)–(H4), (H6′) and (H7) hold, then there exist
λ∗ 6 λ∗ and µ∗ 6 µ∗ such that ∂(int S ) = {Γ (t) | t ∈ [−µ∗, λ∗]} ∪ {(λ, 0) | λ ∈
[0, λ∗]} ∪ {(0, µ) | µ ∈ [0, µ∗]}.

Proof of Theorem 4. (i) From Lemma 18, {Γ (t) | t ∈ [−µ∗, λ∗]} is a simple arc with
both end points (λ∗, 0) and (0, µ∗) and separates R+

0 × R+
0 into two disjoint subsets

int S and R+
0 × R+

0 \ int S . Denote

Γ0 =
{
Γ (t)

∣∣ t ∈ [−µ∗, λ∗]
}
, O1 = int S and O2 = R+

0 × R+
0 \ int S . (33)

From Lemmas 18 and 19 and the fact that system (5) has zero solution iff (λ, µ) = (0, 0),
we obtain that system (5) has no solutions for (λ, µ) ∈ O2 and at least one positive
solution for (λ, µ) ∈ Γ0 ∪ O1. Next, it is sufficient to show that system (5) has at least
two nontrivial positive solutions for (λ, µ) ∈ O1.

By (λ, µ) ∈ O1, there is a (λ̄, µ̄) ∈ O1 with λ < λ̄ and µ < µ̄. First, we show that
there exists an open bounded set W ⊂ C2([0, 1],R)× C2([0, 1],R) such that

i
(
T 1
λ,µ, W ∩ (K ×K), K ×K

)
= 1. (34)

Assume that (ū, v̄) is a nontrivial positive solution to system (5) with (λ, µ) = (λ̄, µ̄).
Let

Φi(t) = k3,iϕ3,i(t) + k4,iϕ2,i(t) + k1,iϕ1,i(t) + k2,iϕ2,i(t), i = 1, 2.

From the uniform continuity of f1, f2 on compact subsets, there exists an ε ∈ (0, 1) such
that, for all ε ∈ (0, ε],

λ
[
f1

(
t, ū(t) + εΦ1(t), v̄(t) + εΦ2(t)

)
− f1

(
t, ū(t), v̄(t)

)]
< (λ̄− λ)q1, t ∈ [0, 1],

µ
[
f2

(
t, ū(t) + εΦ1(t), v̄(t) + εΦ2(t)

)
− f2

(
t, ū(t), v̄(t)

)]
< (µ̄− µ)q2, t ∈ [0, 1],

where q1 = min{f1(t, u, 0) | (t, u) ∈ [0, 1] × [0, ‖ū‖]} > 0, q2 = min{f2(t, 0, v) |
(t, v) ∈ [0, 1]× [0, ‖v̄‖]} > 0. Then

λf1

(
t, ū(t) + εΦ1(t), v̄(t) + εΦ2(t)

)
− λ̄f1

(
t, ū(t), v̄(t)

)
< (λ̄− λ)

[
q1 − f1

(
t, ū(t), 0

)]
6 0, t ∈ [0, 1],

µf2

(
t, ū(t) + εΦ1(t), v̄(t) + εΦ2(t)

)
− µ̄f2

(
t, ū(t), v̄(t)

)
<
(
µ̄− µ)

[
q2 − f2

(
t, 0, v̄(t)

)]
6 0, t ∈ [0, 1].
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By Lemma 1, we have that

−
(
ū(t) + εΦ1(t)

)′′ − a1(t)
(
ū(t) + εΦ1(t)

)′ − b1(t)
(
ū(t) + εΦ1(t)

)
> λc1(t)f1

(
t, ū(t) + εΦ1(t), v̄(t) + εΦ2(t)

)
, t ∈ (0, 1),

−
(
v̄(t) + εΦ2(t)

)′′ − a2(t)
(
v̄(t) + εΦ2(t)

)′ − b2(t)
(
v̄(t) + εΦ2(t)

)
> µc2(t)f2

(
t, ū(t) + εΦ1(t), v̄(t) + εΦ2(t)

)
, t ∈ (0, 1).

By (H2) ad Definition 1, it is easy to see that (βu(t), βv(t)) = (ū(t) + εΦ1(t), v̄(t) +
εΦ2(t)) is a strict upper solution of (5). From Theorem 3, we know that system (5) has at
least two nontrivial positive solutions as (λ, µ) ∈ O1.

(ii) For convenience, denote

L =
{

(λ, 0)
∣∣ λ ∈ [0, λ∗)

}
∪
{

(0, µ)
∣∣ µ ∈ [0, µ∗)

}
,

L′ =
{

(λ, 0)
∣∣ λ > λ∗

}
∪
{

(0, µ)
∣∣ µ > µ∗

}
.

By Lemma 19, we have that{
(λ∗, 0), (0, µ∗)

}
∪ L ⊂ ∂S and L′ ∩S = ∅.

From item (ii) of Lemma 15 and the fact that system (5) has a zero solution iff (λ, µ) =
(0, 0), we obtain that system (5) has no solutions for (λ, µ) ∈ L′ and at least two semi-
trivial positive solution for (λ, µ) ∈ {(λ∗, 0), (0, µ∗)} ∪ L \ {(0, 0)}. Now it is sufficient
to show that system (5) has at least two semi-trivial positive solutions for (λ, µ) ∈ L \
{(0, 0)}.

Without loss of generality, assume that λ ∈ (0, λ∗), µ = 0 and (u∗, 0) is a semi-trivial
positive solution of system (5) with (λ, µ) = (λ∗, 0). Since f1 is uniformly continuous
on closed intervals, then there exists an ε ∈ (0, 1) such that, for all ε ∈ (0, ε],

λ
[
f1

(
t, u∗ + εΦ1(t), 0

)
− f1(t, u∗, 0)

]
< (λ∗ − λ)q, t ∈ [0, 1],

where q = min{f1(t, u, 0) | (t, u) ∈ [0, 1]× [0, ‖u∗‖]} > 0. Thus,

λf1

(
t, u∗ + εΦ1(t), 0

)
− λ∗f1(t, u∗, 0) < (λ∗ − λ)

[
q − f1(t, u∗, 0)

]
6 0, t ∈ [0, 1].

Furthermore, by Lemma 1, we have that

−
(
u∗(t) + εΦ1(t)

)′′ − a1

(
t
(
u∗(t) + εΦ1(t)

)′ − b1(t)
(
u∗(t) + εΦ1(t)

)
> λf1(t, u∗(t) + εΦ1(t), 0), t ∈ (0, 1).

By (H2) and Definition 1, we get that u∗(t)+εϕ2,1(t) is a strict upper solution to the first
equation (with v = 0) of system (5).

Hence, by Theorem 3, the first equation (with v = 0) of system (5) has at least two
positive solutions u1, u2 for λ ∈ (0, λ∗). Thus, system (5) has at least two semi-trivial
positive solutions (u1, 0), (u2, 0) for λ ∈ (0, λ∗) for µ = 0.
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Example 1. Consider the following integral boundary value system:

u′′(t)− u(t) +
λ

t

(
1 + u5(t) + v3(t)

)
= 0, t ∈ (0, 1),

v′′(t)− v(t) +
µ

t

(
1 + eu(t) + ev(t)

)
= 0, t ∈ (0, 1),

u(0) =

1∫
0

u(s) ds, u(1) =

1∫
0

u(s) ds,

v(0) =

1∫
0

v(s) ds, v(1) =

1∫
0

v(s) ds.

(35)

System (35) is a special case of form (5), where a1(t) = a2(t) ≡ 0, b1(t) = b2(t) ≡ −1,
c1(t) = c2(t) = 1/t, h1(t) = h2(t) = g1(t) = g2(t) ≡ 1, f1(t, x, y) = 1 + x5 + y3,
f2(t, x, y) = 1 + ex + ey . Obviously, c1(t), c2(t) are singular at t = 0.

Based on Lemma 1, let ϕ1,i and ϕ2,i be the unique solutions of the following two
boundary value problems, respectively:

ϕ′′1,i(t)− ϕ1,i(t) = 0, t ∈ (0, 1),

ϕ1,i(0) = 0, ϕ1,i(1) = 1, i = 1, 2,

ϕ′′2,i(t)− ϕ2,i(t) = 0, t ∈ (0, 1),

ϕ2,i(0) = 1, ϕ2,i(1) = 0, i = 1, 2.

Then it is easy to verify that

ϕ1,i(t) =
e

e2 − 1

(
et − e−t

)
, ϕ2,i(t) =

1

e2 − 1

(
e2−t − et

)
,

k1,i = k4,i =
2

e + 1
, k2,i = k3,i =

e− 1

e + 1
, ki =

4− (e− 1)2

(e + 1)2
,

ρi = ϕ′1,i(0) =
2e

e2 − 1
, pi(t) = 1,

Gi(t, s) =
1

2(e2 − 1)

{
(et − e−t(e2−s − es), 0 6 t 6 s 6 1,

(es − e−s(e2−t − et), 0 6 s 6 t 6 1.

By computation, we know that 0 6 Gi(t, s) 6 2s, t, s ∈ [0, 1] and

Hi(s) = Gi(s, s) +
1

k

1∫
0

Gi(s, τ) dτ +
1

k

1∫
0

Gi(s, τ)στ 6 2s+
4s

k
6 80s, s ∈ [0, 1],

then
∫ 1

0
Hi(s)ci(s) ds < +∞. It is obvious that f1, f2 satisfy (H4), (H7) and (H6′).

Therefore, the conclusions of Theorem 4 are hold.
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