Bifurcation Analysis in Geomechanics

I. VARDOULAKIS

Department of Engineering Science National Technical University of Athens Greece

and

J. SULEM

Centre d'Enseignement et de Recherche en Mécanique des Sols Ecole Nationale des Ponts et Chaussées/LCPC France

BLACKIE ACADEMIC & PROFESSIONAL

An Imprint of Chapman & Hall

London · Glasgow · Weinheim · New York · Tokyo · Melbourne · Madras

Contents

1	Int	roduction	1
	1.1		1
		Observational background	3 7
		The frame of geomaterials constitutive modeling Considered topics	11
		erature	12
	Lite		12
2	Bas	sic concepts from continuum mechanics	14
	2.1	Kinematic and static considerations	14
		2.1.1 Lagrangian description of the deformation	14
		2.1.2 Eulerian description of the deformation	17
		2.1.3 Deformation of surface and volume elements	19
		2.1.4 Static considerations	20
	2.2		22
		2.2.1 Material time derivative and velocity	22
		2.2.2 Relative deformation gradient and its rate	24
		2.2.3 Rigid-body or Jaumann derivative	26
		2.2.4 Convective time derivative	27 29
	2.2	2.2.5 Material derivative of volume integrals	29 31
	2.3	Balance equations 2.3.1 Mass balance	31
		2.3.1 Mass balance 2.3.2 Balance of linear momentum	31
		2.3.2 Balance of infeat momentum 2.3.3 Balance of angular momentum	33
		2.3.4 Energy balance	35
		2.3.5 Entropy inequalities and balance	37
	24	Discontinuous fields and wave fronts	39
		2.4.1 Geometric compatibility conditions	39
		2.4.2 Kinematic compatibility conditions	41
		2.4.3 Dynamic compatibility conditions	43
		2.4.4 Weak discontinuities	46
	Lite	erature	47
3	Inc	remental continuum mechanics	51
	1110	Administration incomments	31
	3.1	Updated Lagrangian description	51
		3.1.1 Kinematical considerations	51
		3.1.2 Plane-strain deformations	52
		3.1.3 Deformation of line, surface and volume elements	54
		3.1.4 Stresses and stress increments	56
	3.2		62
		3.2.1 Plane rectilinear deformations	62
		3.2.2 Superposition of rectilinear deformations	63
		3.2.3 Superposition of pure shear	64
		3.2.4 Hypoelastic constitutive equations	67

X CONTENTS

	3.3	Equilibrium oliurcation	/3
		3.3.1 The principle of virtual work	73
		3.3.2 The zero moment condition	77
		3.3.3 Configuration-dependent loading	80
		3.3.4 The linear bifurcation problem	83 85
	2.4	3.3.5 Uniqueness theorems under dead loading	88
	3.4	Acceleration waves and stationary discontinuities	91
	Lite	rature	91
4	Bu	ckling of layered elastic media	92
	4.1	Folding of elastic and viscoelastic media as a bifurcation problem	92
	4.2	Surface and interfacial instabilities in elastic media	93
		4.2.1 Buckling of a single layer under initial stress	93
		4.2.2 Buckling of a system of layers—the transfer matrix technique	99
		4.2.3 Surface instability of a homogeneous half-space	101
		4.2.4 The problem of wavelength selection	105
		4.2.5 Interfacial instability	109
	4.3	Periodic elastic multilayered media 4.3.1 The asymptotic averaging method	111 112
		4.3.1 The asymptotic averaging method4.3.2 Example: Surface instabilities in a multilayered periodic half-space	117
		4.3.3 Limitations of the asymptotic averaging method	120
	4.4		120
	7.7	4.4.1 Basic concepts	120
		4.4.2 The Cosserat model of a multilayered medium	121
		4.4.3 Example: Buckling of an homogeneous Cosserat half-space	122
	4.5	The effect of surface parallel Griffith cracks	124
		4.5.1 Analytical solution for a single crack	124
		4.5.2 Buckling of a half-space with a periodic array of coplanar cracks	129
		4.5.3 A Cosserat continuum representation	132
		4.5.4 Influence of the initial stress field on crack propagation	136
		Concluding remarks and discussion	138
	Lite	rature	139
5	Me	echanics of water-saturated granular materials	142
	5.1	Definitions	142
		Mass balance equations	145
	5.3	Static considerations: partial and 'effective' stresses	148
	5.4	The influence of grain and fluid compressibility	150
	5.5	· · ·	154
	5.6	Laws governing fluid flow in porous media	156
		5.6.1 Darcy's law	156
		5.6.2 Biot's modification of viscous and inertial drag	160
		5.6.3 Forchheimer's extension of Darcy's law	163
		5.6.4 Brinkman's and Aifantis' modification of Darcy's law	165
	5.7		169
		5.7.1 Governing equations	169
		5.7.2 The incremental problem	171
		5.7.3 Linear stability analysis	172
	5.8	Compaction instabilities	177
		5.8.1 Grain crushing	177 180
	T it.	5.8.2 Stability of non-uniform compaction	182
	Litt	erature	104

CONTENTS	xi

6	Pla	sticity theory for granular materials	185
	6.1	Micromechanical considerations	185
		6.1.1 Kinematics	185
		6.1.2 Statics	189
	6.2	Flow theory of plasticity	191
		6.2.1 The Mróz-Mandel non-associative elastoplasticity	191
		6.2.2 Stress-dependent elasticity	197
		6.2.3 Finite strain formulations	200
		6.2.4 The equation of thermoelastoplasticity	202
		6.2.5 Drucker's postulate	203
		6.2.6 Uniqueness theorems for elastoplastic solids	205
	6.3	1	207
		6.3.1 Stress invariants	207
		6.3.2 The Drucker-Prager and Mohr-Coulomb models	213
		6.3.3 Data reduction and model calibration	216 225
	61	6.3.4 Lade's yield surface model	223
	0.4	Extensions of isotropic hardening plasticity 6.4.1 Non-potential flow rules	227
		6.4.2 Yield surface modifications	231
		6.4.3 Modeling of strain softening	232
	6.5		238
	0.5	6.5.1 Model justification	238
		6.5.2 Formulation	241
		6.5.3 Example of model calibration	246
	Lite	rature	251
7	Bif	urcation analysis of element tests	254
	7.1	Observational hackground	254
	7.2	Observational background Bifurcation analysis of the triaxial compression and extension tests	258
	7.2	7.2.1 Problem statement	258
		7.2.2 A deformation theory of plasticity	260
		7.2.3 Governing equations	262
		7.2.4 Bifurcation condition	265
		7.2.5 Example of triaxial compression test on medium dense Karlsruhe sand	265
	7.3	Bifurcation analysis of the biaxial test	266
		7.3.1 Formulation of the diffuse bifurcation problem	268
		7.3.2 Classification of regimes and bifurcation condition	270
		7.3.3 Example: Biaxial compression test on a Dutch sand	274
	Refe	erences	275
8	She	ear-band bifurcation in granular media	277
	8.1	Equilibrium bifurcation and stability	277
	0.1	8.1.1 The Thomas-Hill-Mandel shear-band model	277
		8.1.2 Mandel's dynamic stability analysis	283
	8.2	Shear-band formation in element tests	285
	0.2	8.2.1 Shear-band analysis in plane strain rectilinear deformations	285
		8.2.2 Analysis of a biaxial compression test on sand	289
		8.2.3 Imperfection sensitivity of the biaxial test	292
		8.2.4 Spontaneous versus progressive localization	294
	8.3	Shear banding in sands: experiment versus theory	296
		8.3.1 Influence of porosity	297
		8.3.2 Influence of confining pressure	298
		8.3.3 Influence of anisotropy	303
		8.3.4 Influence of grain size and shape	306

xii CONTENTS

	8.4	Non-coaxial plasticity model	307
	8.5	Localization in inhomogeneous stress field	313
		8.5.1 The cavity inflation test	313
		8.5.2 Global bifurcation analysis of the cavity inflation test	321
		8.5.3 Progressive failure	325
	Lite	rature	330
9	Cos	serat continuum model for granular materials	334
	9.1	Micromechanical considerations	334
		9.1.1 Motivation	334
		9.1.2 Kinematical considerations	337
	0.3	9.1.3 Static considerations	341
	9.2	Basic concepts from Cosserat continuum mechanics	344 344
		9.2.1 Kinematics of 2D Cosserat continuum 9.2.2 Dynamics and statics	344
		9.2.3 Principles of virtual work	351
		9.2.4 The boundary-layer effect	353
	9.3	The Mühlhaus-Vardoulakis Cosserat plasticity model	359
	9.3	9.3.1 Definitions	359
	-	9.3.2 Elastic strains	360
		9.3.3 Plastic strains	361
		9.3.4 Constitutive equations	362
	0.4	Prediction of the shear-band thickness	363
	2.4	9.4.1 Governing equations	365
		9.4.2 Shear-band solution	367
		9.4.3 Analytical and experimental results	370
	9.5	Discussion and numerical implications	373
		rature	379
10	Sec	ond-grade plasticity theory for geomaterials	382
	10.1	Mindlin's formalism of microstructure	382
	10.1	10.1.1 Kinematics	382
		10.1.2 The principle of virtual work	384
		10.1.3 Example: Gradient elasticity theory with surface energy	386
	10.2		390
		10.2.1 Observational background	390
		10.2.2 Constitutive modeling	394
		10.2.3 Constitutive equations	399
		10.2.4 Formulation of the rate-boundary value problem	402
		10.2.5 Well-posedeness of the rate-boundary value problem	406
	10.3	Bifurcation analysis deep boreholes	410
		10.3.1 Problem statement	410
		10.3.2 Bifurcation analysis	411
		10.3.3 The scale effect	413
	10.4	A 2D-gradient model for granular media	416
		10.4.1 Constitutive equations	416
		10.4.2 Shear-band analysis	419
	Lite	rature .	423
11	Sta	bility of undrained deformations	426
	11.1	Monotonic biaxial tests on water-saturated sand	426
		11.1.1 Experimental basis	427
		11.1.2 Simulation and discussion	432
	11.2	Theoretical implications	438

CONTENTS	xiii
Bifurcation and stability	441
11.3.1 Undrained shear banding	441
11.3.2 Linear stability analysis	445
11.3.3 Regularization	448
11.3.4 Globally undrained shear banding	451
Grain size and shape effect	454
ature	458
	461
	Bifurcation and stability 11.3.1 Undrained shear banding 11.3.2 Linear stability analysis 11.3.3 Regularization 11.3.4 Globally undrained shear banding Grain size and shape effect