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Abstract

Under certain conditions during take-off and landing, pilots may sometimes experience vibrations in the
cockpit. Since the cockpit is located right above the nose landing gear – which is known to potentially
be prone to self-excited vibrations at certain velocities – an explanation for those vibrations might be
oscillations of the landing gear feeding into the fuselage. However, the fuselage dynamics itself may also
influence the dynamics of the landing gear, meaning that the coupling must be considered as bi-directional.
A mathematical model is developed to study a coupled nose landing gear-fuselage system, which allows to
assess the overall influence of the coupling on the system dynamics. Bifurcation analysis reveals that this
interaction may be significant in both directions, and that the system behaviour depends strongly on the
modal characteristics of the fuselage.

1 Introduction

At the design and testing stage of an aircraft, vibrations during take-off and landing, especially in the cockpit,
must be considered to ensure that they remain small. A potential source of such oscillations is via the dynamic
interaction between the fuselage rigid-body and/or flexible modes and the nose landing gear system when the
aircraft is in motion on the ground.

It is well known that wheeled vehicles can experience self-excited wheel vibrations under certain conditions.
The phenomenon, referred to as shimmy, has interested researchers since the late 1940s when von Schlippe and
Dietrich [1] published the first results on the dynamics of elastic tyres and gave the first explanation for shimmy
by the so called “stretched string tyre model”. In that model the tyre-ground interface is considered as a contact
line that becomes deformed due to the lateral displacement of the tyre; the contact line is modeled as a straight
line between the leading and trailing points. Pacejka [2, 3, 4] extended the stretched string tyre model by
approximating the contact line with various stationary shape functions, and incorporated it into various vehicle
models. He showed both theoretically and experimentally that periodic and quasi-periodic shimmy oscillations
may occur in flexible wheeled structures. As another approach, the“exact stretched string tyre model” of Segel
[5] models the contact line without any restrictions to the shape and so considers the actual and dynamically
varying shape of the contact region. Stépán [6] used the exact stretched string tyre model and studied a single
degree-of-freedom pulled trailer by means of nonlinear techniques. In that study the mathematical model is given
as a coupled partial differential – integro-differential equation system, where the partial differential part has a
travelling wave-like solution, which introduces time delay into the system. This model was further extended
and experimentally tested by Takács et al. [7, 8].

A nose landing gear (referred to as NLG), fitted with an elastic tyre and having structural flexibilities, can
also experience shimmy oscillations, and these have been of interest since aircrafts exist. Smiley [9] used linear
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techniques to study three different landing gear configurations and to correlate different tyre models. More
recently Somieski [10] introduced nonlinearities into the existing landing gear models and found supercritical
Hopf bifurcations and stable limit cycles and, hence, gave an explanation for the onset of shimmy. Recent
results on the topic were published by Thota et al.[11, 12]. In those studies, not only is a non-zero rake angle
considered, but also a lateral degree-of-freedom is introduced to the landing gear model; the torsional and lateral
degrees-of-freedom are coupled via the lateral deformation of the tyre. The body of the aircraft is considered as a
block of mass that exerts a fixed vertical force Fz on the gear while the aircraft is moving at a forward velocity V
[11, 12]. This approach allows one to determine the occurrence of (different types of) shimmy oscillations in the
(V, Fz)-plane. The analysis showed that, beyond stable torsional shimmy oscillations, stable lateral vibrations
can also be triggered. Furthermore, a large region of bistability, where both types of shimmy oscillations are
possible, was found, as well as quasi-periodic shimmy oscillations [11, 12]. The term shimmy, which historically
only referred to the torsional vibrations of wheels and wheeled structures, is, therefore, used here to describe
more general mechanical vibrations in aircraft landing gears or other tyred systems.

During ground manoeuvres the aircraft is supported by the landing gears. Therefore, oscillations of the
landing gears are potential sources of excitation for the aircraft body. In particular, the oscillation of the
NLG, which is attached to the fuselage and located right below the cockpit may feed directly into the fuselage
and excite vibrations in the cockpit. On the other hand, an oscillating aircraft body can also influence the
behaviour of the NLG. In order to clarify this mutual interaction, a coupled NLG-fuselage system is developed
and analysed here.

A second motivation for the coupling is the wish to evaluate the feasibilty of the application of real-
timedynamic substructuring (RTDS) [13, 14] to the NLG-fuselage system. Real-time dynamic substructuring is
an effective way of testing complicated systems, where complete numerical modelling or experimental testing is
difficult. In an RTDS-test, a part of the physical system is experimentally tested and the remainder is modelled
numerically. Advanced real-time control techniques are used to effectively ‘glue together’ the test specimen and
the numerical model of the remainder of the system, via a transfer system (ie. actuators). Through displace-
ment control of the actuators and force feedback to the numerical model the physical-numerical interface can
be matched, so that the dynamics of the overall system is replicated [13, 14]. A natural choice for the test
component in the present context is the entire nose landing gear, which is coupled to a numerical model of the
fuselage. However, for an RTDS-test to be reasonable, sufficient force or displacement feedback is essential. In
our case this means significant interaction between the fuselage and the landing gear. Therefore, in order to
study the feasibilty of an RTDS-test on a landing gear-fuselage system, not only do we need to examine the
interaction itself, but we also have to study when it is significant to provide sufficient feedback.

The coupled model considers the same landing gear configuration as that of [12]. However, beside being
coupled via the tyre only, the landing gear modes here considered are coupled directly as well via the geometry
of the strucure. Part of this extended NLG model is the dynamic model of the fuselage, which is – for simplicity
– represented by a second-order linear mass-spring-damper unit (referred to as MSD) attached to the top of
the landing gear strut. The MSD is characterized by its natural frequency, relative damping and an effective
(modal) mass. Further, the effective fuselage weight acting on the NLG, when the system is in equlibrium, and
the weight of the NLG are represented by static, vertical forces. The exact stretched string tyre model completes
the system; however, only the leading point of the contact region is considered to calculate the tyre force and,
hence, the time delay is not taken into account. The potential mutual interaction between the landing gear and
the fuselage is then studied for this coupled model, with special interest in the effect of different modal masses;
to this end numerical bifurcation analysis is used, specifically the continuation software AUTO [15].

The analysis reveals that, when the forward velocity is varied, the straight rolling solution loses its stabilty
via Hopf-bifurcations; the system can experience stable periodic oscillations dominated by either lateral or
torsional oscillations of the NLG. It is also shown that, in general, the lower the modal mass, the higher the
amplitude of the emerging fuselage vibrations, hence, the more energy is fed into the fuselage from the NLG.
On the other hand, a change in the modal mass not only changes the fuselage amplitudes, but also influences
the regions of stability and, at certain velocities, the type of oscillation; i.e. a dominantly torsional oscillation
can change to lateral- or even quasi-periodic oscillations. However, this effect is strongly influenced by the load
as well. To show these results in detail, one- and two-parameter bifurcation diagrams are presented.
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Figure 1: Illustrations of the considered fuselage dynamics. Panel (a) and (b) show modes with exagerrated lateral
deformation of the fuselage, and rigid body oscillation about the vertical body axis, respectively.

2 The Model

2.1 A low-order fuselage model

Due to the nature of the NLG-fuselage system, a coupled, constrained model is required, that incorporates
separate models for both the NLG and the fuselage, and is completed by the tyre model. Both the NLG model
of [12] – the configuration of which is used here –, and the tyre model are highly nonlinear. Owing to low fuselage
amplitudes, a low order, linear model is used to represent the fuselage dynamics. Out of the many considerable
modes of a fuselage, only those with lateral displacement component at the attachment point are considered in
this study. That displacement can be the result of either a modal oscillation leading to deformation at the front
of the fuselage or, alternatively, a rigid body mode corresponding to the torsional oscillation of the fuselage
about its vertical body axis; see Figure 1.

In the first case we assume an elastic fuselage and allow modal dynamics, whereas in the second case we
assume that, while moving forward on the runway, the aircraft oscillates torsionally about its centre of mass as
a rigid body. In either case, the amplitudes of oscillations are assumed to be small compared to the wheelbase
of the aircraft. Therefore, the motion of the attachment point is taken as linear translation and, hence, its
dynamics is modelled by a linear mass-spring-damper system (MSD). It is characterized by its natural frequency
fn, relative damping q and modal mass µ corresponding to the considered mode, and also by the lateral fuselage
displacement y. Moreover, the mass is allowed to move up and down introducing a vertical displacement z;
however, this motion is constrained to follow the vertical component of translation of the top of the landing
gear system, which leaves y as the only fuselage degree-of-freedom; see Section 2.3 for details of the vertical
constraint. Further, the proportion of the weight M of the aircraft, that is supported by the NLG, when the
aircraft is on the ground, and the weight m of the NLG are considered by the corresponding gravitational forces.

2.2 The landing gear model

The coupled NLG-fuselage model is shown in a non-equlibrium state in Figure 2. The landing gear model
consists of the wheel/tyre, the caster and the strut with a combined centre of gravity at B, assumed to lie on
the axis of the strut. The MSD is attached to the top of the strut at its centre of gravity A. The gravitational
forces GA and GB correspond to the weights M and m acting at points A and B, respectively.

In order to describe the geometric and kinematic properties of the system, three frames of reference are
used. One is a moving frame (referred to as the body frame), which is fixed to the landing gear with the origin
at the attachment point A. Its axes are denoted ξ, η and ζ. Here, the axis ζ is in line with the strut at all
times and points from point A to the centre of gravity B of the NLG. The axis ξ is parallel with the caster –
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Figure 2: Schematic representation of a nose landing gear with a lateral mass-spring-damper system
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Figure 3: Tyre deformation according to the stretched string tyre model. The turning angle θ is between the direction
of motion X and the intersection of the ground and the wheel plane

defined as being at 90◦ to the strut – pointing out of the NLG, and η completes the right-handed coordinate
system. The strut is inclined to the vertical at a fixed rake angle φ and allowed to rotate about the body axis ζ
with the torsion angle ψ. Moreover, it may rotate in the lateral direction around the body axis ξ as described
by the bending angle δ. Hence, ψ and δ are the two NLG degrees-of-freedom. Further, the strut is modelled
as having torsional and lateral stiffnesses and dampings at the attachment point A. Another frame (referred
to as the global frame) is fixed to the ground with origin O and axes X,Y and Z. Here, Z is the vertical axis
pointing downwards, X points in the direction of aircraft motion and Y completes the right-handed coordinate
system.When ψ = δ = y = 0, that is, in the undisturbed condition, the X-axis is aligned with the central line
of the tyre and A lies in the (X,Z)-plane. The third frame (referred to as the tyre frame) is a local frame used
to describe the tyre deflection; see Figure 3. Its origin is at point C, which is determined as the intersection of
three intersecting planes. They are the wheel plane, the ground and the plane, that is normal to the ground and
includes the wheel centre point. The axes of the tyre frame are x and λ, where λ is the perpendicular deflection
of the points of the contact line with respect to the wheel plane-ground intersection.

2.3 Kinematics of the coupled system

Rolling without sliding results in a kinematic constraint on the system. In order to derive this constraint the
wheel-ground interface is to be considered. It is derived from the assumed condition of the tyre fully adhering
to the ground at all times. This means that the absolute velocities of points along the contact line and, in
particular, that of the leading contact point is zero. In order to derive that velocity in terms of the states, the
kinematics of the entire system must be analysed.

The motion of the lumped mass is three dimensional translation. It is a combination of the steady-state
forward motion along the X-axis at constant velocity Vx, the harmonic oscillation in the Y -direction and a
constrained vertical motion in the Z-direction; the tyre is assumed to be rigid in radial direction and, hence,
as the NLG and the tyre move, the attachment point A must move vertically to maintain ground contact. The
motion of the NLG is genuinely three dimensional. However, since the NLG is suspended by the lumped mass,
and the motion relative to the attachment point A is a rotation about a fixed point, the absolute motion can be
described by means of relative kinematics. First, the absolute kinematics of the lumped mass and the relative
kinematics of the NLG – with respect to the lumped mass – are derived. Then the absolute kinematics of the
NLG and, hence, that of the centre of the wheel, can be obtained. Further, by deriving the relative motion
of the leading contact point with respect to the wheel plane-ground intersection, the absolute velocity of the
leading point and, hence, the required constraint, can be given.

Since the natural frame for the MSD is the global frame, this frame is chosen for the derivations and, therefore,
the NLG states must be transformed into the global frame from the moving frame. The instantaneous position
of the NLG and, hence, of the centre of the wheel, with respect to the global frame can be described as the
result of three sequential rotations: a rotation about the Y -axis due to the non-zero but time-independent rake
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angle φ, followed by a rotation of δ about the rotated X-axis and, finally, a rotation of ψ about the strut axis.
The Euler-transformation that gives the transformation from the body frame to the global frame, considering
this particular order of rotations (φ, δ, ψ), in matrix form is given by

T =









cosφ cosψ + sinφ sin δ sinψ − cosφ sinψ + sinφ sin δ cosψ cos δ sinφ

cos δ sinψ cos δ cosψ − sin δ

− sinφ cosψ + cosφ sin δ sinψ sinφ sinψ + cosφ sin δ cosψ cos δ cosφ









.

For the kinematic constraint to be derived, the position of a contact point P along the contact line, in the
global frame, is to be derived first. It is given by

rOP = rOA + rAC + rCP . (1)

That is, the position vector of P in the global frame is the superposition of the vectors pointing from the origin
O to the attachment point A, from the attachment point A to the intersection point C, and from the intersection
point C to the contact point P .

The position of the attachment point A is given by

rOA =





Vx t
y

−L+ z



 , (2)

where L = lcw+R is the distance of the attachment point A from the ground in the equilibrium position. Here,
R is the wheel radius and lcw is the distance from the wheel centre to the attachment point. The vector rAC in
the body frame is given by

rb
AC

=









− (e+R sinφ)

0

lcw +R cosφ









, (3)

which, when transformed to the global frame, becomes

rAC = Trb
AC

=









− (cosφ cosψ + sinφ sin δ sinψ) (e+R sinφ) + cos δ sinφ (lcw +R cosφ)

− cos δ sinψ (e+R sinφ)− sin δ (lcw +R cosφ)

(sinφ cos ψ − cosφ sin δ sinψ) (e+R sinφ) + cos δ cosφ (lcw +R cosφ)









. (4)

In order to determine the vector rCP , the tyre model needs to be considered.

2.3.1 Tyre kinematics and global constraints

According to the exact stretched string model, the actual shape of the contact line is taken into account.
Therefore, in the tyre frame, the deflection λ from the wheel plane-ground intersection of any contact point P
between the leading point P1 and the trailing point P2 is given as a two-variable function λ(x,t), x ∈ [−h,h] of
space and time; see Figure 3. The vector rCP in the global frame is, therefore, given by

rCP = rCP (x,t) =





x cos θ − λ(x,t) sin θ
x sin θ + λ(x,t) cos θ

0



 (5)

for x ∈ [−h,h], where the angle θ is the actual turning angle of the wheel on the ground. Due to the non-zero
rake angle φ and the interacting lateral bending angle δ, it is different from the torsion angle ψ, and is given as
θ = ψ cos δ cosφ.

When superimposing the vectors (2),(4) and (5), the global position of P becomes
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rOP =





Vxt+ rX

AC
+ x cos θ − λ (x,t) sin θ

y + rY

AC
+ x sin θ + λ (x,t) cos θ
−L+ z + rZ

AC



 , (6)

where rX

AC
, rY

AC
and rZ

AC
denote the respective coordinates of (4); they are given by

ṙX

AC
= (cosφ sinψ − sinφ sin δ cosψ) (e+R sinφ) ψ̇ − (sinφ cos δ sinψ (e+R sinφ)

+ sin δ sinφ (lg +R cosφ)) δ̇ (7)

ṙY

AC
= − cos δ cosψψ̇ (e+R sinφ) + (sin δ sinψ (e+R sinφ)− cos δ (lg +R cosφ)) δ̇

ṙZ

AC
= − (sinφ sinφ+ cosφ sin δ cosφ) (e+R sinφ) ψ̇ − (cosφ cos δ sinφ (e+R sinφ)

+ sin δ cosφ (lg +R cosφ)) δ̇ (8)

When differentiated with respect to time, this leads to the velocity of P , that is,

vP = ṙOP =





Vx + ṙX

AC
+ ẋ cos θ − x θ̇ sin θ − d

dt
λ (x,t) sin θ − λ (x,t) θ̇ cos θ

ẏ + ṙY

AC
+ ẋ sin θ + x θ̇ cos θ + d

dt
λ (x,t) cos θ − λ (x,t) θ̇ sin θ

ż + ṙZ

AC



 . (9)

Here, d
dt
λ (x,t) is the total derivative of λ (x,t) with respect to time, given by

d

dt
λ (x,t) = λ̇ (x,t) + λ′ (x,t) ẋ, (10)

where λ̇ (x,t) and λ′ (x,t) are the partial derivatives with respect to t and x, respectively.
The starting point of the derivation was the condition of full tyre adhesion, that is, vP = 0, which leads to

the following scalar constraint equations:

Vx + ṙX

AC
+ ẋ cos θ − x θ̇ sin θ −

(

λ̇ (x,t) + λ′ (x,t) ẋ
)

sin θ − λ (x,t) θ̇ cos θ = 0 (11)

ẏ + ṙY

AC
+ ẋ sin θ + x θ̇ cos θ +

(

λ̇ (x,t) + λ′ (x,t) ẋ
)

cos θ − λ (x,t) θ̇ sin θ = 0 (12)

ż + ṙZ

AC
= 0 (13)

Equation (13) is uncoupled from equations (11) and (12) and it reveals the constraint that governs the vertical
displacement z of the fuselage. On the other hand, the coupled set of equations (11) and (12) – when solved
for λ̇ (x,t) – corresponds to the constraint of the lateral displacement of P on the contact line. The solution is
a partial differential equation and is given by

λ̇ (x,t) = (Vx + ṙX

AC
) sin θ − (ẏ + ṙY

AC
) cos θ − x θ̇ + λ′ (x,t)

(

λ (x,t) θ̇ − (Vx + ṙX

AC
) cos θ − (ẏ + ṙY

AC
) sin θ

)

. (14)

However, we are only interested in the lateral displacement of the leading point P1, that is, when x = h. In
that case, equation (14) can be simplified by the application of the boundary condition

λ′ (x,t)|x=h = −
λ1(t)

L
. (15)

Therefore, after substitutions, the final form of the constraint equation that describes the kinematics of the tyre
becomes an ordinary differential equation, and is given by

λ̇ (x,t)
∣

∣

∣

x=h
= λ̇1 = (Vx + ṙX

AC
)

(

sin θ −
λ1
L

cos θ

)

− (ẏ + ṙY

AC
)

(

cos θ +
λ1
L

sin θ

)

−

(

h−
λ1

2

L

)

θ̇, (16)

where, for simplicity, λ1 denotes λ1(t). With equations (13) and (16) both constraints are identified.
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2.4 Equations of motion

During the derivation of the equations of motion, beside the real degrees-of-freedom y, δ and ψ, the vertical
lumped mass displacement z is taken as a degree-of-freedom too, and the constraint condition (13) is only
applied at the final stage. This is done only for more convenient handling of the expressions and has no effect
on the final outcome. The different parameters and their values can be found in Table 1.

For each degree-of-freedom the Lagrangian equation

∂

∂t

∂T

∂q̇i
−
∂T

∂qi
+
∂V

∂qi
+
∂D

∂q̇i
= Qi (17)

holds, where T is the kinetic energy, V is the potential energy, D is the dissipative energy, Qi is the generalized
force and qi is the generalized coordinate.

The kinetic energy of the system is

T =
1

2
µ (vY

A
)2 +

1

2
M

(

(vX

A
)2 + (vZ

A
)2
)

+
1

2
m |vB|

2
+

1

2
ωB

TJB ωB, (18)

where, vX

A
, vY

A
and vZ

A
are the respective global coordinates of the absolute velocity vA of A, vB is the absolute

velocity of B, ωB is the absolute angular velocity of the landing gear and JB is the mass moment of inertia
tensor of the NLG at B, in the global frame. Equation (18) is based on the modal mass µ being active only in
the lateral direction, whereas the mass M is active in the forward and vertical directions. Note, that the inertia
effect of the tyre is not considered and, therefore, the corresponding kinetic energy is zero.

The vector vA is the derivative of (2); it is given by

ṙOA = vA =









Vx

ẏ

ż









. (19)

The absolute velocity of B is the superposition of the absolute velocity of A and the relative velocity of B with
respect to A, that is,

vB = vA + vAB, (20)

where
vAB = ωAB × rAB. (21)

Here, rAB is the relative position of B with respect to A; in the body frame it is given by

rb
AB

=









0

0

lζ









, (22)

where lζ is the distance from the attachment point A to the centre of gravity B. When transformed to the
global frame, equation (22) becomes

rAB = Trb
AB

=









lζ cos δ sinφ

−lζ sin δ

lζ cos δ cosφ









. (23)

The vector ωAB in (21) is the relative angular velocity of the NLG with respect to the lumped mass. Since
there is a sequence of rotations taking place in sequentally rotated body frames, the individual rotation vectors
do not form an orthogonal set, and so ωAB can only be expressed by superimposing the individual rotations
transformed separately to one of the reference frames. Consequently, the relative angular velocity in the global
frame is given by
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ωAB =









δ̇ cosφ+ ψ̇ cos δ sinφ

−ψ̇ sin δ

−δ̇ sinφ+ ψ̇ cos δ cosφ









. (24)

Therefore, after substitutions into (20), the absolute velocity of B becomes

vB =









Vx − δ̇lζ sin δ sinφ

ẏ − δ̇lζ cos δ

ż − δ̇lζ sin δ cosφ









. (25)

The angular velocity of the MSD is zero; hence, the absolute angular velocity of the landing gear is

ωB = ωAB =









δ̇ cosφ+ ψ̇ cos δ sinφ

−ψ̇ sin δ

−δ̇ sinφ+ ψ̇ cos δ cosφ









, (26)

and so all terms in equation (18) are determined. The potential energy is

V =
1

2
kδδ

2 +
1

2
kψψ

2 +
1

2
kyy

2, (27)

where kδ, kψ and ky are the respective stiffnesses. The Rayleigh-function for the dissipated energy is given by

D =
1

2
cδ δ̇

2 +
1

2
cψψ̇

2 +
1

2
cy ẏ

2, (28)

where cδ, cψ and cy are the respective dampings of the system. After obtaining the equations of motion, the
parameters ky and cy are replaced by the natural frequency fn and relative damping q, respectively and, hence,
their values are not given.

The generalized forces Qi are calculated from the powers generated by the external, active forces and
moments acting on the system. Those are the gravitational forces GA and GB, given by

GA =









0

0

Mg









, GB =









0

0

mg









, (29)

respectively, and the self aligning moment MKα
and lateral tyre force Fy due to the elasticity of the tyre, given

by

MKα
=









0

0

−CKα
Fz









, Fy =









−ΛFz sin θ

ΛFz cos θ

0









, (30)

respectively. Here the coefficients CKα
and Λ are given by

CKα
=

{

kα
αm

π
sin

(

α π
αm

)

if |α| ≤ αm,

0 if |α| > αm,
(31)

and
Λ = kλ arctan (7.0 tanα) cos (0.95 arctan (7.0 tanα)) , (32)
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where kλ, kα and αmax are tyre parameters and α=arctan(λ/L) is the slip angle. The original functions of (31)
and (32) are defined by Somieski [10] and are both piecewise continuous functions. Although the coefficient
(31) is used here in the original form, the piecewise continuous function of (32) has been replaced by a fitted
continuous function introduced by Thota et al. [12]. As Equations (30) show, both MKα

and Fy are functions
of the magnitude Fz of the vertical reaction force Fz at the wheel-ground interface, which is the reaction to the
weight and inertia of the system. The vector Fz is given by

Fz =









0

0

−Fz









. (33)

Since the vertical ground constraint (13), is not considered at this stage, the wheel is free to lift off the ground,
which can result in loss of contact and, hence, loss of Fz and, consequently, loss of all tyre forces. To avoid
that, and in order to derive the powers generated by the forces and moments, Fz is taken as an independent
external, active force. This is only necessary due to the derivation method. Once the missing constraint is
established, Fz becomes the required reaction force. Given the active, external loads and the point of action at
C, the powers of Fz, Fy and MKα

are given as

PFz
= Fz · vC , (34)

PFy
= Fy · vC , (35)

PMKα
= MKα

· ωB , (36)

respectively. Here, vC is the velocity of C in the global frame; it is given by

vC = vA + vAC , (37)

where vA is the absolute velocity of A – defined by (19) – and vAC is the relative velocity of C with respect to
A, given as the derivative of the relative position vector (4). The generalized force, therefore, becomes

Qi =
∂PFz

∂q̇i
+
∂PFy

∂q̇i
+
∂PMKα

∂q̇i
, i ∈ {y, z, δ, ψ}. (38)

After substitutions into (17), for i = y,δ,ψ,z respectively, the set of second-order equations of motion is

(µ+m) ÿ + µ
(

2qfnẏ + fn
2y
)

− Cδ δ̈ + Sδ δ̇
2 − FzΛcos θ = 0, (39)

J1δ̈ + cδ δ̇ + kδδ + J2ψ̈ + 2J3ψ̇δ̇ + J4ψ̇
2 − Cδ ÿ + Sδφ (g − z̈) +AδFz = 0, (40)

J5ψ̈ + cψψ̇ + kψψ + J2δ̈ − J3δ̇
2 +AψFz = 0, (41)

(M +m) z̈ − Sδ δ̈ − Cδφδ̇
2 − (M +m) g + Fz = 0, (42)

where
Sδ = mlζ sin δ, Cδ = mlζ cos δ, Sδφ = mlζ sin δ cosφ, Cδφ = mlζ cos δ cosφ,

and the coefficients Aδ and Aψ are given by

Aδ = (− sin δ sinψ (e+R sinφ) + cos δ (lcw +R cosφ)) Λ cos θ − cosφ cos δ sinψ (e+R sinφ)

− sin δ cosφ (lcw +R cosφ)− (sinφ cos δ sinψ (e+R sinφ) + sin δ sinφ (lcw +R cosφ)) Λ sin θ

− CKα
sinφ,

Aψ = (cosφ sinψ − sinφ sin δ cosψ) (e+R sinφ) Λ sin θ + cos δ cosψ (e+R sinφ) Λ cos θ

− (sinφ sinψ + cosφ sin δ cosψ) (e+R sinφ) + CKα
cos δ cosφ.
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The coefficients J1−J5 are transformed components of the mass moment of inertia tensor of the NLG at B (ξ̂,η̂

and ζ̂ are parallel to their body system counterparts ξ,η and ζ)

J1 =
(

ml2ζ + Jη̂η̂
)

+
(

J
ξ̂ξ̂

− Jη̂η̂

)

cos2 ψ − J
ξ̂η̂

sin (2ψ) , J2 = −J
η̂ζ̂

sinψ + J
ξ̂ζ̂

cosψ

J3 =
(

Jη̂η̂ − J
ξ̂ξ̂

)

cosψ sinψ − J
ξ̂η̂

cos (2ψ) , J4 = −J
ξ̂ζ̂

sinψ − J
η̂ζ̂

cosψ, J5 = J
ζ̂ζ̂
.

From equation (42) the expression for Fz can be obtained. It is given by

Fz = (M +m) (g − z̈) + Sδ δ̈ + Cδφδ̇
2. (43)

When substituting equation (43) into equations (39)-(41), Fz can be eliminated. Note, that due to not taking
the vertical constraint (13) into account so far, the remaining equations still contain second-order terms of z.
However, from the equation (13) z̈ can be obtained as

z̈ = −r̈Z

AC
= Z1δ̈ + Z2δ̇

2 + Z3δ̇ψ̇ + Z4ψ̇
2 + Z5ψ̈, (44)

where Z1−Z5 are given by

Z1 = cosφ cos δ sinψ (e+R sinφ) + sin δ cosφ (lcw +R cosφ)

Z2 = − cosφ sin δ sinψ (e+R sinφ) + cos δ cosφ (lcw +R cosφ)

Z3 = 2 cosφ cos δ cosψ (e+R sinφ)

Z4 = (sinφ cosψ − cosφ sin δ sinψ) (e+R sinφ)

Z5 = (sinφ sinψ + cosφ sin δ cosψ) (e+R sinφ)

Therefore, z is eliminated from equations (39)-(41), resulting in the set of equations for y, δ and ψ given by

(µ+m) ÿ + µ
(

2 q fnẏ + fn
2y
)

− (Cδ + (Sδφ − (m+M)Z1) Λ cos θ) δ̈

+ (Sδ − (Cδφ − (m+M)Z2) Λ cos θ) δ̇2 + (m+M)Z3 Λ cos θδ̇ψ̇

+ (m+M)Z4Λ cos (θ) ψ̇2 + (m+M)Z5Λ cos (θ) ψ̈ − (M +m) gΛ cos θ = 0, (45)

(Aδ (Sδφ − (m+M)Z1) + J1 − SδφZ1) δ̈ + (Aδ (Cδφ − (m+M)Z2)− SδφZ2) δ̇
2

+ (2 J3 −Aδ (m+M)Z3 − SδφZ3) δ̇ψ̇ + (J4 − SδφZ4 −Aδ (m+M)Z4) ψ̇
2

+ (J2 −Aδ (m+M)Z5 − SδφZ5) ψ̈ + (Aδ (M +m) + Sδφ) g + cδ δ̇ + kδδ − Cδ ÿ = 0, (46)

(J5 −Aψ (m+M)Z5) ψ̈ + (−J3 +Aψ (Cδψ − (m+M)Z2)) δ̇
2 −Aψ (m+M)Z4ψ̇

2

+ (Aψ (Sδψ − (m+M)Z1) + J2) δ̈ −Aψ (m+M)Z3δ̇ψ̇ +Aψ (m+M) g + cpψ̇ + kpψ = 0, (47)

which, along with tyre equation (16), give a complete description of the NLG-fuselage system.

3 Bifurcation analysis

The main focus of the analysis is the interacting lateral fuselage and landing gear dynamics during take-off
and landing. In terms of the model this means the study of the conditions for which the trivial straight-rolling
solution [y, ψ, δ]

T
= 0 of equations (45)-(47) loses its stability; of interest are also the features of the emerging
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Figure 4: Coexisting torsional (column a) and lateral (column b) oscillations at V = 20m/s, µ = 3t and M = 13t,
shown as time series of the variables ψ, δ, y and λ.
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Parameter Name Value
Fuselage data
fn natural frequency 2 [Hz]
q relative damping 0.02
Landing gear data
lζ distance from A to B 1.3[m]
m mass of the landing gear 320 [kg]

J
ζ̂ζ̂

m.m. of inertia at B with respect to ζ̂-axis (axis trough B) 100 [kg m2]

J
ξ̂ξ̂

m.m. of inertia. at B with respect to ξ̂-axis (axis trough B) 100 [kg m2]

Jη̂η̂ m.m. of inertia at B with respect to η̂-axis (axis trough B) 100 [kg m2]

J
ξ̂η̂

p. of inertia at B with respect to (ξ̂, η̂)-axes (axes trough B) 0 [kg m2]

J
ξ̂ζ̂

p. of inertia at B with respect to (ξ̂, ζ̂)-axes (axes trough B) 0 [kg m2]

J
η̂ζ̂

p. of inertia at B with respect to (η̂, ζ̂)-axes (axes trough B) 0 [kg m2]

kδ lateral stiffnes of strut 6.1E6 [Nm rad−1]
cδ lateral damping of strut 300 [Nms rad−1]
kψ torsional stiffnes of strut 3.8E5 [Nm rad−1]
cψ torsional damping of strut 300 [Nms rad−1]
lcw distance from point A to the end of the strut 2.138 [m]
φ rake angle 9 [◦]
Tyre and wheel data
R wheel radius 0.362 [m]
L relaxation length 0.3 [m]
e caster length 0.12 [m]
kλ restoring coefficient of the tyre 0.002 [rad−1]
h contact patch length 0.1 [m]
kα self-aligning coefficient of the tyre 1.0 [m rad−1]
αm self-aligning moment limit 10[◦]
Other
g gravitational acceleration 9.81 [m s−2]

Table 1: System parameters

oscillatory behaviour. The aim is to identify parameter regions where the amplitude of the lateral displacement
y and its impact on the rest of the system is significant. The equations of motion (45)-(47) with (16) are
fully parametrized. They are studied here in terms of changes in the forward velocity V and two structural
parameters: the modal mass µ of the MSD and the vertical mass load M . The parameters of the landing gear
are fixed, as well as the natural frequency fn and the relative damping q of the MSD; see Table 1.

In Figure 4 the result of time simulations of the system at V = 20m/s, µ = 3t and M = 13t is presented.
After a transient, the system settles to a stable periodic solution, which is shown in terms of the ψ, δ, y and
λ components in Figure 4a. This solution is dominated by oscillations of the torsional angle (with a maximum
of ψ ≈ 8◦) and, hence, is also is referred to as torsional shimmy oscillation. The motions of other degrees-of-
freedom remain damped, but the dominating oscillation is accompanied by oscillations of both the lateral angle
and the lateral fuselage displacement, as well as of the lateral tyre displacement, all at the same frequency of
f ≈ 10.5Hz. This solution, however, is not unique due to the nonlinearities in the system. Perturbation can
move the system to another stable periodic solution for which the lateral angle is dominant, while the motions
of other degrees-of-freedom follow passively, at the frequency of oscillation of f ≈ 16.0Hz; see Figure 4b. This
solution is refered to as lateral shimmy oscillation. Figure 5 shows a time series of a stable trajectory for
V = 50m/s. Here, the solution contains multiple frequencies, and the dominant one is different for the different
states; the torsional angle ψ oscillates at close to the torsional frequency of f ≈ 10.8Hz, whereas the lateral
states δ and y oscillate at close to the lateral frequency of f ≈ 16.2Hz. The tyre displacement λ, however,
experiences coupled oscillation with two dominant frequencies.

3.1 One-parameter bifurcation analysis

The simulation results show that, for a given set of parameters, different behaviours of the system can be
observed. However, since the behaviour depends on the initial conditions as well it is difficult to investigate all
possible types of behaviour by simulation only. Therefore, the system is analysed further by means of numerical
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Figure 5: Multiple frequency oscillations at V = 50m/s, µ = 3t and M = 13t, shown as time series of the
variables ψ, δ, y and λ in panels (a1)-(a4) with associated frequency spectra in panels (b1)-(b4).

bifurcation analysis, specifically with the continuation software AUTO [15]. To this end, in the simplest case, all
but one parameter is fixed. The chosen parameter is called the continuation parameter. By continuously varying
the continuation parameter the qualitative changes of the solutions can be studied (for details of bifurcation
theory see for example [16]). Moreover, the difference between models with and without the additional lateral
fuselage mode, can be revealed as well.

During take-off, the forward velocity V is one of the changing parameters. Since the onset of shimmy
oscillations are observed at certain velocities, it is a natural choice to choose V as the continuation parameter.

Figure 6 shows a set of one-parameter bifurcation diagrams for µ = 3t and M = 13t and for V as the
continuation parameter. Each panel shows steady state solutions of the system for a state, plotted as a function
of V . The solution measure is the maximum vibration amplitude. The different branches correspond to different
types of solutions. These can either be equilibria with zero amplitude, referring to the straight rolling motion of
the system, or periodic vibrations (referred as to periodic orbits) with single or multiple-frequency components.
The diagrams in Figure 6 also indicate the stability of the solution; solid lines correspond to stable solutions,
whereas dashed lines to unstable ones. A stable solution in this sense not only refers to the stable equilibrium
(no oscillations), but also to stable periodic orbits (constant maximum amplitude). Since Figure 6 shows what
dynamics the system experiences at a continuous range of velocities, it gives a more global view of the system
dynamics for a certain take-off scenario for a chosen fixed mass load M . At low velocities only stable equilibria
exists, which means that the system is in stable straight forward rolling. At V ≈ 4.5m/s this solution becomes
unstable at a supercritical Hopf bifurcation Ht, and it regains stability at another Hopf-bifurcation Hl at
V ≈ 180.0m/s. From the Hopf-bifurcation point Ht a branch of periodic orbits, corresponding to torsional
shimmy oscillations, emerges. This periodic branch is initially stable and the amplitudes gradually become
larger as velocity increases. The dominance of the torsional motion at these low velocities can be captured
by comparing the amplitudes of the states on the respective branches at the same velocity. A relatively small
increment in V is enough for this periodic solution to lose its stabilty at a torus bifurcation Tt at V ≈ 5.4m/s.
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It regains stability at another torus bifurcation Tt at V ≈ 14.6m/s, and then it becomes unstable again at a
third torus bifurcation Tt at V ≈ 41.2m/s before the branch bifurcates with the unstable equilibrium at a Hopf
bifurcation at V ≈ 75.6m/s. The second branch of periodic solutions emerges from the unstable equilibrium
branch at the Hopf bifurcation Hl at V ≈ 6.5m/s. It is initially unstable but becomes stable when the torus
bifurcation Tl at V ≈ 12.9m/s is passed. The solutions along this branch are lateral shimmy oscillations. This
branch also becomes unstable at a second torus bifurcation Tl at V ≈ 20.9m/s, but regains stabilty at the
torus bifurcation Tl at V ≈ 120.1m/s. It remains stable until it joins the equlibrium branch at the previously
mentioned Hopf-bifurcation Hl at V ≈ 180.0m/s. There are also two branches of multiple-frequency periodic
solutions (thin solid lines) which connect the two single frequency periodic branches. One emerges from the
torisonal branch at the torus bifurcation Tt at V ≈ 5.4m/s and joins the lateral branch at the torus bifurcation
Tl at V ≈ 12.9m/s. The other connects the two branches between the torus bifurcations Tt at V ≈ 41.2m/s
and Tl at V ≈ 120.1m/s. These branches are calculated by a series of time simulations, since they can not
readily be computed by continuation with AUTO. After identifying a point on the branch by running the
simulation for long enough to get through the transient, the maximum amplitude of the resulting multiple-
frequency oscillation is obtained. The next point is then calculated at a different V (sufficiently close to the
previous value) by using the amplitudes of the previous solution as initial conditions for the new simulation.
The final curves are interpolated splines, fitted to the obtained sequence of points. The main drawback of this
method is that only stable branches can be calculated.

In Figure 6 one can follow the dynamics of the system when velocity increases. At low velocities the system
is on the stable equlibrium branch, and so it experiences straight forward rolling. After losing stability at
the first Hopf bifurcation Ht, torsional shimmy oscillation occur. As velocity increases, the amplitude of the
oscillations become larger. However, this periodic oscillation too loses stability at the first torus bifurcation
Tt, beyond which the system is attracted to the first multiple-frequency branch that connects the torsional
and lateral branches. Since between the torus bifurcation points Tt and Tl this branch is the only stable one,
the system follows that branch when velocity increases. Close to the torus bifurcation point Tt the torsional
frequency component is significant; however, the further the velocity moves from Tt the more dominant the
lateral component becomes. The dominance of the frequencies and, hence, the observed type of oscillation
completely exchanges as the branch approaches the periodic branch of lateral solutions. This exchange can be
seen in the amplitudes as well. Initially the system experiences torisonal shimmy with a torsional amplitude of
ψ ≈ 5◦ and negligible amplitudes of the lateral angle δ and lateral fuselage displacement y amplitudes. However,
when moving along the multiple-frequency branch, the torsional amplitude becomes smaller, whereas the lateral
amplitudes become larger. After passing the torus bifurcation point Tl, the system experiences single frequency
lateral shimmy oscillation. However, since the torsional branch regains stability at V = 14.6m/s and the
torsional branch loses it only at V = 20.9m/s, in between, two stable solutions exist. This means, that the right
perturbation can move the system from one solution to the other. Indeed, Figure 4 shows two such coexisting
solutions in this region. The end of this bistable region is reached with the second torus bifurcation Tl of the
lateral branch, where the lateral solution loses stabilty. Passing this point the only remaining stable solutions
are torsional shimmy opscillations and so the system necesserly jumps to them. When that solution too loses
stabilty the system is attracted to another multiple-frequency branch, which – being the only stable branch – the
system follows as velocity increases further, until the branch joins the single frequency lateral periodic branch.
The solution shown in Figure 5 is from this region. From that velocity on the system experiences lateral shimmy
up to the velocity where the branch bifurcates to the stable equilbrium branch at the Hopf bifurcation Hl. The
value of V here, is well outside the range of realistic take-off or landing speeds; nevertheless, continuing the
branches up to these high velocities makes the bifurcation diagrams complete and, hence, helps to understand
the dynamics in the realistic range.

The same analysis can be performed for a different value of mass load M , while the modal mass is kept
µ = 3t. The results can then be compared, and the effect of the variation in M can be studied. Figure 7
shows the results for M = 8t. In this case as well, at low velocities, the only solution is the stable equilibrium.
However, the first Hopf bifurcation occurs at a slightly higher velocity of V ≈ 7.5m/s than in the previous case
for M = 13t. The emerging periodic solutions are stable torsional shimmy oscillations with gradually larger
amplitudes, although the amplitudes, in general, are smaller for this M = 8t case. However, this solution
remains stable for a much greater range of velocities, and so the amplitude peaks at V ≈ 14.2m/s and starts
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Figure 7: One-parameter bifurcation diagrams for µ = 3t and M = 8t. Panels (a)-(d) show the maximum
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decreasing afterwards, as can best be seen in Figure 7a. The torsional shimmy oscillation only loses its stability
at V ≈ 30.6m/s at the torus bifurcation Tt, and at V ≈ 45.9m/s the unstable periodic branch bifurcates with
the unstable equilibrium at the Hopf bifurcation Ht. The second branch of periodic solutions emerges again,
from the unstable equilirium branch at the Hopf bifurcation Hl at V ≈ 13.1m/s. This branch is initially
unstable, becomes stable when the torus bifurcation Tl at V ≈ 49.1m/s is passed and remains stable until
joining the branch of equlibria at the Hopf bifurcation Hl at V ≈ 84.6m/s. Due to the nature of stable and
unstable branches, only one connecting multiple-frequency branch exists. However, the torus bifurcation Tt here
is subcritical, meaning that the branch is initially unstable; it becomes stable very quickly at a velocity only
marginally higher than that of the torus bifurcation Tt. The stable branch then joins the lateral branch at the
torus bifurcation Tl. These multiple-frequency branches are again obtained by simulation. As discussed earlier,
only the stable part of the branches are calculated in this way. Therefore, the unstable branch is represented
by double-headed arrows, meaning that only the endpoints of the unstable branch is known, the actual curve
in between is not. Notice, that this unstable part of the multiple-frequency branch appears to be very steep.

As Figure 7 shows, variation in the mass load M results in a qualitative change of the bifurcation diagram.
ForM = 8t, the torsional solution is dominant for a wider range of velocities, which means that, with increasing
velocity, the system experiences torisonal shimmy oscillations with increasing amplitudes. Then the amplitude
reaches a maximum and starts decreasing. Passing the torus bifurcation Tt the only stable branch of solutions
is the multiple-frequency branch. Therefore, the system jumps to that branch and, hence, experiences multiple-
frequency oscillations. The dominant oscillation gradually changes from torsional to lateral until it reaches the
velocity of the torus bifurcation Tl, passing of which means that the system again experiences single frequency
lateral oscillations. At the Hopf bifurcation Hl, the system returns to the straight forward rolling.

The two cases presented are different not only in terms of the type of single–multiple-frequency transition,
but also in terms of the amplitudes and the range of velocities where the equilibrium (no shimmy) solution
is stable. For the case of M = 8t the observed ampitudes are smaller in general, which also means that the
considered fuselage mode is not excited as much as for M = 13t. On the other hand, the region of stable
equilibrium solution is larger, indicating that the mass load has a destabilizing effect on the system; this is in
agreement with previous work where the fuselage dynamics are not included; see [12].
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3.2 Stability diagrams in the (V,M)-plane

In order to study more thoroughly how the mass load M effects the system, two-parameter continuation is
performed in the continuation parameters V and M . This means that both V and M are now continuously
changed, for a fixed value of parameter µ. The bifurcation diagram for µ = 3t and for a realistic range of mass
load M is shown in Figure 8. Horizontal slices of the diagram correspond to one-parameter continuations for
fixed mass M , and the red dashed lines correspond to the cases M = 13t and M = 8t in Figures 6 and 7. The
two-parameter bifurcation diagram does not show the amplitudes of states, but labels the bifurcation points
of Figure 6 and Figure 7 along the respective horizontal line. When continuously changing the value of mass
load M , these bifurcation points generate bifurcation curves: Hopf bifurcation curves, Ht and Hl, and torus
bifurcation curves, Tt and Tl, respectively. Further, the two Hopf bifurcation curves intersect at the double Hopf
bifurcation point D; two of the four torus bifurcation curves emerge from this point. As Figure 6 and Figure 7
show, the stability of the equilibrium solution and, hence, the onset of shimmy oscillations is determined by the
Hopf-bifurcations. Therefore, the Hopf bifurcation curves in Figure 8 define stability boundaries for the system.
The shaded region represents all pairs of V and M , at which the equilibrium solution – corresponding to the
straight-rolling motion – is stable.

The analysis so far has been performed at the fixed modal mass µ = 3t. However, in order to study the
effects of the introduced fuselage dynamics and its different characterics on the system, variation of the fuselage
modal mass µ also needs to be considered. Figure 9 shows a set of two-parameter bifurcation diagrams in the
(V,M)-plane for different values of µ. They are similar to the one in Figure 8, but have an extended M -axis.
Extending the axes beyond the realistic range gives a more global view on the arrangement of the curves and,
therefore, helps to interpret the bifurcation diagram in the realistic range as well. Figure 9b corresponds to the
case of µ = 3t, from Figure 8 but over a larger range of M . Figure 9b shows that the Hopf bifurcation curve Ht

in Figure 8 is actually an isola, and the Hopf bifurcation curve Hl intersects it at two double Hopf bifurcation
pointsD. Over this extended range it can also be seen that two of the four torus curves in Figure 8 are connected,
forming the torus bifurcation curve Tt. Moreover, this curve Tt connects the double Hopf bifurcation points.
Further, each of the other two torus bifurcation curves Tl emerges from one of the double Hopf bifurcation points
D. The sequence presented in Figure 9 shows how the relative positions of the curves and, hence, the region
of stable equlibria evolves when the value of modal mass µ is changed from the rather small value of µ = 1t to
µ = 15000t; the latter condition is an approximation of the case of µ tending to infinity, representing a laterally
inactive fuslage. It can be seen that, as the modal mass µ increases, the isola becomes smaller. However, from
its local minimum, M ≈ 5.3t, to M ≈ 11t the loci of the Hopf bifurcations do not change significantly. Above
this load, the locus of the second Hopf bifurcation point, and so the maximum in V of the curve Ht moves to
measurably lower velocity values. On the other hand, the curve Hl too moves towards the direction of smaller
M values as µ becomes larger, which implies that the double Hopf bifurcation points D move towards smaller
M and V values. The change of the torus bifurcation curves is more obvious. As µ increases the endpoints of
the curves move closer to each other – due to the move of the secondary Hopf bifurcation points. Moreover,
the loop of the curve Tt becomes narrower and the upper and lower Tl curves move closer to each other. At
µ ≈ 7.6t the two separate Tl curves connect and split again right after, now in a different way; see Figure 9c and
Figure 9d. They become a left and a right curve which move further apart as µ increases from µ = 8t to µ = 20t;
see Figure 9d and Figure 9e. This topological change in the (V,M)-plane is due to a saddle transition of the Tl
surface in the (V,M, µ)-space; see, for example [17, 18] for other examples of this transition. In Figure 9f the
µ = 15000t case is shown. The topology of the two-parameter bifurcation diagram is the same as that of the
µ = 20t case, although the loop of the torus bifurcation curve Tt is narrower and the two Tl bifurcation curves
are further apart. This suggests that fuselage modes even with relatively large modal mass µ behave differently
than the system with an inactive modal mass. In this regard, it is worth noting that the inactive modal mass
case is effectively what is considered by Thota et al. in [12], where the fuselage motions are not taken into
account. Qualtitatively the two models show good agreement. Both the isolated Ht bifurcation curve and the
Hl bifurcation curve is present in both models; however, the size of the isola and the location of the bifurcation
curve Hl with respect to the isola are somewhat different. This is due to the fact that in the model considered
here, the vertical loads and reactions now affect both the lateral and torsional motions instead of the torsional
motion only. This is a consequence of the genuinely three-dimensional rotation of the NLG.
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Figure 9: Two-parameter bifurcation diagrams in the (V,M)-plane for µ = 1t (a), µ = 3t (b), µ = 6t (c), µ = 8t
(d), µ = 20t (e) and µ = 15000t (to approximate an infinitely large modal mass) (f). Shown are (black) curves
of Hopf bifurcation and (light) curves of torus bifurcation; in the shaded region the straight-rolling solution is
stable.
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3.3 Stability diagrams in the (V, µ)-plane

As discussed in Section 3.2, not only do the bifurcation diagrams in the (V,M)-plane show how changes in
the modal mass µ affect the stability of the system, but the case approximating the inactive mass makes the
connection with previous work [12] as well. Figure 9 also reveals that, due to the changing topology of the
torus bifurcation curves Tt and Tl, the number of changes in the stability of the periodic solutions, and the
velocities at which those happen, is affected by the variation of µ. However, the selected distinct values of µ do
not appear to significantly affect the region of stable equlibria. In order to obtain a more general understanding
of the dynamics related to the introduced fuselage dynamics, and to identify modal mass µ values, where the
effect on the stable equilibria is significant, a second two-parameter analysis is performed, this time in V and µ
for fixed values of M . A sequence of bifurcation diagrams in the (V, µ)-plane is shown in Figure 10, where the
panels correspond to different fixed M values between M = 7t and M = 15t. Here, all panels are composed
of the same curves as those of Figure 9, although they are shown from a different perspective. The connection
between Figure 10 and Figure 9 is made by the horizontal slices of different panels; i.e. the slice taken at µ = 3t
in Figure 10a represents dynamics for the same parameters as that taken at M = 7t in Figure 9b.

Figure 10a shows the bifurcation diagram for M = 7t. The isolated Hopf bifurcation curve Ht of Figure 9
now manifests itself as two separate curves Ht, while the Hopf bifurcation curve Hl is connected in the (V, µ)-
plane as well. Again, the curves Ht and Hl intersect at the double Hopf bifurcation point D and a pair of torus
bifurcation curves, Tt and Tl emerge from the these points. Due to the fact that there are now two curves Ht,
the region of stable equilibrium solutions now consists of two components. The sequence of panels in Figure 10
shows how the arrangement changes due to the variation of the load M . As M increases, the region of stable
equlibria shrinks. This is due to the descending curve Hl, but also to the fact that the curves Ht move further
apart; this corresponds to the widening of the isola in Figure 9. The joint relocation of the curves also results
in different locations of the double Hopf bifurcation point D and the appearing of another intersection point D
in the region of interest when M = 15t; see Figure 10f. Further, the shape of the two torus bifurcation curves
Tt and Tl changes significantly. The monotone curves in Figure 10a start to have local minima and maxima
for larger values of M ; see Figure 10b and Figure 10c. As M increases, the local minima and maxima move
towards smaller and larger values of µ, respectively. Moreover, the maxima of the curves gradually move out of
the region of interest; see Figure 10c and Figure 10d. The position of the minima are of importance in terms of
the dynamics of the system, because they define critical values of modal mass, below which stable branches of
periodic solutions appear or disappear.

To illustrate this, Figure 11 presents for comparison a one-parameter bifurcation diagram for M = 8t and
µ = 15000t, that is, for the case of an inactive modal mass µ. In this case the MSD is not oscillating and, hence,
the displacement y is always zero; see Figure 11c. Due to the fact that the modal mass is still present, albeit
very large, there are oscillations in y (although their amplitudes are very tiny) and, therefore, the corresponding
bifurcation points are still shown in Figure 11c. The stable straight rolling solution loses stability at a Hopf-
bifurcation Ht at V ≈ 7.5m/s and becomes stable again at a second Hopf-bifurcation Ht at V ≈ 103.4m/s. The
emerging torsional branch is initially stable, but loses stability at the torus bifurcation Tt at V ≈ 20.6m/s; it
remains unstable until it connects to the branch of unstable equlibria at the Hopf bifurcationHt at V ≈ 45.3m/s.
The branch of lateral solutions, which emerges from the Hopf bifurcationHl at V ≈ 10.0m/s as initially unstable,
becomes stable at the torus bifurcation Tl at V ≈ 15.2m/s, but loses stabilty at the second torus bifurcation
Tl at V ≈ 40.3m/s. However, it regains stabilty at the third torus bifurcation Tl at V ≈ 48.9m/s after a short
gap of instability. The branch then remains stable until it bifurcates with the branch of stable equilibria at the
second Hopf-bifurcation Hl. In this case as well, there is a region where the only stable solution is a muliple
frequency solution. It is between the second and third torus bifurcation points Tl of the lateral branch, and so
this multiple-frequency branch connects stable parts of the same periodic branch (unlike in case µ = 3t, where
the multiple-frequency branch connects stable parts of different braches). The torus bifurcations Tl are both
subcritical, and so the stable part of the multiple-frequency branch is not connected directly to them. As for
µ = 3t, the unstable parts of the branch are represented by arrows. There is a region of bistability between
V ≈ 15.2m/s and V ≈ 20.6m/s, where two stable periodic solutions coexist.

Let us reconsider now Figure 7 in comparison with Figure 11. Since both bifurcation diagrams belong to the
same fixed mass load ofM = 8t, the only difference in parameters between the two cases is the value of the modal
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Figure 10: Two-parameter bifurcation diagrams in the (V, µ)-plane for M = 7t (a), M = 7.8t (b), M = 8t (c),
M = 9t (d), M = 12t (e) and M = 15t (f). Shown are (black) curves of Hopf bifurcation and (light) curves of
torus bifurcation; in the shaded regions the straight-rolling solution is stable.
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mass µ. Therefore, the changes that an active modal mass may cause in the behaviour of the NLG-fuselage
system compered to the inactive case, can be studied. One obvious difference between Figure 7 and Figure 11
is the activated oscillations of the MSD and, hence, of its lateral displacement y. A second change, considering
this particular modal mass case of µ = 3t, is the disappearence of the first stable region from the lateral branch.
This means that the bistable region disappears as well and, consequently, the multiple-frequency branch now
connects the lateral brach with the torsional branch instead of connecting the same lateral branch. Also, the
torus bifurcation Tt on the torsional branch moved to a higher velocity in Figure 7 whereas the second Hopf
bifurcation Hl moved to a lower velocity. These changes have a dual effect on the dynamics. The first is that
between V ≈ 20.6m/s and V ≈ 40.3m/s, where the only stable solution is the lateral solution in the inactive
case, the stable solutions are now either the torisonal solution (V ≈ 20.6− 30.6m/s) or the multiple-frequency
solution (V ≈ 30.6−40.3m/s); hence, in this region the lateral shimmy oscillations are now changed to torsional
shimmy oscillations or multiple-frequency oscillations. Moreover, due to the relocation of the Hopf bifurcation
Hl, the region where the straight-rolling solution is stable is smaller.

The differences between the one-parameter bifurcation diagrams, Figure 7 and Figure 11, can be explained
by the two-parameter bifurcation diagram of Figure 10c. All are for the case M = 8t and the one-parameter
bifurcation diagrams are horizontal slices of the two-parameter bifurcation diagram. The µ = 15000t case is
well out of the range of Figure 10c, but it is effectively approximated as the highest available mass load value of
µ = 20t, because the locations of the curves do not change significantly above that value of µ; see also Figure 9e
and Figure 9f. As can be seen in Figure 10c, the reason for the loss of stability of the torsional branch occuring
at a higher velocity is that the torus bifurcation curve Tt moves towards higher velocities. Also, the lack of the
stable lateral solution in Figure 7 between V ≈ 15.2 − 40.3m/s is due to the fact, that the loop of the torus
bifurcation curve Tl, which bounds a region of stable lateral solutions, has a minimum at µ ≈ 7.4t. The loops
of torus bifurcation curves Tt and Tt, therefore, are of great importance as – for a fixed value of mass load –
they define limit values of modal mass µ, where the existence of stable solutions changes. The comparison of
Figures 7 and 11 clearly reveals that the laterally active mass can have a significant influence on the system
dynamics – depending on its modal properties and the value of the load.

4 Conclusions

Based on an established NLG model, an extended NLG-fuselage model was presented to model the interaction
between those two sub-systems. The NLG model has two degrees of freedom: the torsion angle ψ and the lateral
bending angle δ, and takes into account the general three-dimensional motion that the NLG is exposed to while
moving on the runway. The fuselage is modelled by a linear second-order mass-spring-damper system with one
lateral degree-of-freedom y. Consequently, fuselage modes with lateral component were considered here. This
fuselage model – as well as the landing gear model – is fully parametrized, and so the modal characteristics
of the considered mode can be changed. The tyre is modelled by the exact stretched string model. Although
the overall model is capable of handling changes in all the parameters, we focused here on changes in three of
them: the forward velocity V , the vertical mass load M , and the modal mass µ of the fuselage. In terms of the
fuselage model it means that the natural frequency is set to a fixed value, and the modal properties are varied
by changing the value of the modal mass µ only.

The main question of the study was at what modal mass values the landing gear can excite the considered
fuselage mode and, moreover, when this interaction is significant. To this end, numerical bifurcation analysis
was used and one- and two-parameter bifurcation diagrams were presented to demonstrate how the system
behaviour depends on the chosen parameters. It was found, that, due to the strong coupling between the
sub-systems, the landing gear can trigger vibrations in the fuselage. The amplitude and frequency of those
oscillations strongly depend on the modal mass of the fuselage. This means that, given the right parameters,
fuselage modes having lateral components can be excited during take-off and landing. Moreover, it was shown
that a significant proportion of the excitation energy feeds modes of lower modal masses. By comparing a
laterally inactive mass to an oscillating one, it was demonstrated that the fuselgage dynamics and its coupling
to the landing gear have an influence on the landing gear dynamics; therefore, the extended model can improve
predictions of shimmy oscillations in aircrafts.
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Overall, it was shown that the model presented here is sufficient for demonstrating that significant interaction
is possible between the nose landing gear and a lateral fuselage mode as represented by a mass-spring-damper
system. In particular, a real-time dynamic substructuring test appears to be feasible. The next step towards
implementing such a hybrid test would be to introduce the dynamics of the actuators and to identify control
parameters at which the system is stable. The NLG-fuselage model presented considers a linear, one degree-
of-freedom model of a simple fuselage mode. Moreover, the fuselage characterics were changed with the modal
mass, while the natural frequency was kept fixed. A next step would be to vary the natural frequency as well.
A longer term goal would be a full study of the dynamic effects of an aircraft fuselage, as it is connected to
the ground via the nose landing gear as well as the main landing gears; such work would require considerable
further extensions of the present model.
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