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	is paper is concerned with a delayed SVEIR worm propagation model with saturated incidence. 	e main objective is to
investigate the e
ect of the time delay on the model. Su�cient conditions for local stability of the positive equilibrium and
existence of a Hopf bifurcation are obtained by choosing the time delay as the bifurcation parameter. Particularly, explicit formulas
determining direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are derived by using the normal
form theory and the center manifold theorem. Numerical simulations for a set of parameter values are carried out to illustrate the
analytical results.

1. Introduction

Worms, as one kind of malicious codes, have become one of
the main threats to the security of networks. Since the �rst
Morris worm in 1998, new worms have come into networks
frequently, including Slammer worm [1], Commwarrior
worm [2], Cabir worm [3], and Chameleon worm [4]. Each
of them can cause enormous �nancial losses and social panic
[5–7]. 	erefore, it is signi�cant to explore e
ective methods
to counter against worms. To this end, we need to accurately
understand the dynamic behaviors of worm propagation in
networks. Considering that the process of worm propagation
in networks is similar to that of biological virus propagation
in the population, mathematical models have been important
tools used to analyze the propagation and control of worms
based on the theory of Kermack and McKendrick [8].

In [9], Kim et al. proposed the SIS (Susceptible-
Infectious-Susceptible)model in order to analyze the dynam-
ical behaviors of worm propagation on Internet. However,
the SIS model neglects the e
ect of the antivirus so�ware.
	us, the SIR (Susceptible-Infectious-Recovered) model is
proposed [9]. Although SIR model considered the immu-
nity of the nodes in which the worms have been cleaned,
however, it assumes that the recovered hosts have permanent

immunity. 	is is not consistent with the reality in networks,
because they may be infected by some new emerging worms
again. To overcome this drawback of the SIR model, Wang et
al. investigated the SIRS (Susceptible-Infectious-Recovered-
Susceptible) mode for analyzing the dynamics of worm
propagation in networks [10–12]. It should be pointed out
that both the SIR mode and the SIRS model assume that
the susceptible nodes become infectious instantaneously. As
we know, worms usually have a latent period. Based on this
consideration, the SEIR (Susceptible-Exposed-Infectious-
Recovered) model [13, 14] and the SEIRS (Susceptible-
Exposed-Infectious-Recovered-Susceptible) model [11, 15]
are proposed to describe the dynamics of worm propagation
in networks. Considering in�uence of the quarantine strategy
and the vaccination strategy on the propagation of worms,
some worm models with quarantine strategy [16–19] and
vaccination strategy [20–25] are formulated and analyzed.

It should be pointed out that all the models above use the
bilinear incidence rate ���. As stated in [26], the dynamics
of a model system heavily depends on the choice of the
incidence rate. Gan et al. have considered the di
erent inci-
dence rate functions ���/�(�) in their work [27, 28]. It was
found that the saturated incidence rate ���/(1 + ��) is more
general than the bilinear incidence rate ���. Based on this,
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Wang et al. [29] proposed the following model with partial
immunization to defend against worms:�� (�)�� = (1 − 
)� − �� (�) � (�)1 + �� (�) − � (�) + �� (�) ,�� (�)�� = 
� − ��� (�) � (�) − ( + �)� (�) ,
�� (�)�� = �� (�) � (�)1 + �� (�) + ��� (�) � (�) − ( + �) � (�) ,�� (�)�� = �� (�) − ( + � + �) � (�) ,
�� (�)�� = �� (�) − � (�) ,

(1)

where �(�), �(�), �(�), �(�), and �(�) present numbers of the
susceptible, vaccinated, exposed, infectious, recovered hosts
at time �, respectively. 	e meanings of more parameters are
described and shown in “Parameters of the Model and 	eir
Meanings” section. Wang et al. [29] investigated the stability
of system (1).

One of the signi�cant features of computer viruses is their
latent characteristics [30, 31]. In addition, time delays of one
type or another could cause the numbers of hosts in system (1)
to �uctuate. And worm propagation models with time delay
have been investigated by some scholars [14, 17, 19]. Based
on above discussions, in this paper, we extend system (1) by
incorporating the time delay due to the latent period of the
worms in the exposed hosts into system (1) and obtain the
following delayed worm propagation model:�� (�)�� = (1 − 
)� − �� (�) � (�)1 + �� (�) − � (�) + �� (�) ,�� (�)�� = 
� − ��� (�) � (�) − ( + �)� (�) ,

�� (�)�� = �� (�) � (�)1 + �� (�) + ��� (�) � (�) − � (�)− �� (� − �) ,�� (�)�� = �� (� − �) − ( + � + �) � (�) ,
�� (�)�� = �� (�) − � (�) ,

(2)

where � is the latent period of the worms in the exposed
nodes.

	e remainder of this paper is organized as follows.
Local stability of the positive equilibrium and existence of
a Hopf bifurcation at the positive equilibrium are analyzed
in the next section. Properties of the Hopf bifurcation
such as direction and stability are investigated in Section 3.
Numerical simulations are carried out in Section 4 to support
the obtained theoretical results. Finally, conclusions are given
in Section 5 to end our work.

2. Existence of Hopf Bifurcation

By direct computation, we know that if the condition (�1):( +�)( +�+�)(���∗ ++ �) > ���
� holds, then system
(2) has a positive equilibrium �∗(�∗, �∗, �∗, �∗, �∗), where�∗
= (1 + ��∗) [( + �) ( + � + �) (���∗ +  + �) − ���
�]�� (���∗ +  + �) ,
�∗ = 
����∗ +  + � ,
�∗ =  + � + �� �∗,
�∗ = ��∗.

(3)

And �∗ is the positive root of the following equation:�2�2 + �1� + �0 = 0, (4)

where�0 =  ( + �) ( + �) ( + � + �)− ��� (� + 
� + (1 − 
) ) ,�1 = ( + �) ( + � + �) [�� + ( + �) (� + �)]− ���� (� + 
�) ,�2 = �� ( + �) ( + � + �) (� + �) .
(5)

	e Jacobi matrix of system (2) about �∗(�∗, �∗, �∗, �∗, �∗) is
given by

� (�∗) =((
(

 11  12 0  14 00  22 0  24 0 31  32  33 + !33"−��  34 00 0 !43"−��  44 00 0 0  54  55
))
)

, (6)

where  11 = −( ��∗1 + ��∗ + ) , 12 = �,
 14 = − ��∗(1 + ��∗)2 , 22 = − ( + � + ���∗) , 24 = −���∗,
 31 = ��∗1 + ��∗ , 32 = ���∗, 33 = −,
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 34 = ��∗(1 + ��∗)2 + ���∗, 44 = − ( + � + �) , 54 = �, 55 = −,!33 = −�,!43 = �.
(7)

	e characteristic equation of that matrix (6) is*5 +-4*4 +-3*3 +-2*2 +-1* +-0+ (34*4 + 33*3 + 32*2 + 31* + 30) "−�� = 0, (8)

with-0 = − 11 22 33 44 55,-1 =  11 22 33 44 +  55 [ 11 22 ( 33 +  44)+  33 44 ( 11 +  22)] ,-2 = − [ 11 22 ( 33 +  44) +  33 44 ( 11 +  22)]−  55 [ 11 22 +  33 44+ ( 11 +  22) ( 33 +  44)] ,-3 =  11 22 +  33 44 + ( 11 +  22) ( 33 +  44)+  55 ( 11 +  22 +  33 +  44) ,-4 = − ( 11 +  22 +  33 +  44 +  55) ,30 =  11 22 55!43 ( 34 −  44)+  55!43 ( 14 22 31 −  11 24 32−  12 24 31) ,31 = !43 [ 11 22 ( 44 +  55) +  44 55 ( 11 +  22)+  12 24 31] + [ 24 32!43 ( 11 +  55)−  14 31!43 ( 22 +  55)] −  34!43 ( 11 22+  11 55 +  22 55) ,32 = !43 ( 14 31 −  24 32) +  34!43 ( 11 +  22+  55) − !43 [ 11 22 +  44 55+ ( 11 +  22) ( 44 +  55)] ,33 = !43 ( 11 +  22 +  44 +  55 −  34) ,34 = −!43.

(9)

When � = 0, (8) becomes*5 +-04*4 +-03*3 +-02*2 +-01* +-00 = 0, (10)

where -00 = -0 + 30,-01 = -1 + 31,-02 = -2 + 32,-03 = -3 + 33,-04 = -4 + 34.
(11)

	us,�∗(�∗, �∗, �∗, �∗, �∗) is locally asymptotically stable
when � = 0 if the condition (�2) is satis�ed and (�2) is
de�ned as follows:-00 > 0,-04 > 0,-03-04 > -02,-02 (-01 +-03-04) > -01-204 +-202,-02-03 (-00 +-01 +-02) + 2-00-01-04> -200 +-01-202 +-04 (-201-04 +-00-203) .

(12)

For � > 0, let * = 67 (7 > 0) be the root of (8).	en, we have(317 − 3373) sin �7 + (3474 − 3272 + 30) cos �7= -272 −-474 −-0,(317 − 3373) cos �7 − (3474 − 3272 + 30) sin �7= -373 − 75 −-17.
(13)

	us, we can get the following equation:

710 + ℎ478 + ℎ376 + ℎ274 + ℎ172 + ℎ0 = 0, (14)

where ℎ0 = -20 − 320 ,ℎ1 = -21 − 2-0-2 − 321 + 23032,ℎ2 = -22 + 2-0-4 − 2-1-3 + 23133 − 322− 23034,ℎ3 = -23 − 2-2-4 + 2-1 − 323 + 23234,ℎ4 = -24 − 2-3 − 324 .
(15)

Let V = 72; then (14) becomes

V
5 + ℎ4V4 + ℎ3V3 + ℎ272 + ℎ1V + ℎ0 = 0. (16)

Based on the discussion about the distribution of the roots
of (16) in [32], we suppose that (�3): (16) has at least one
positive root V0.
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If the condition (�3) holds, then (16) has a positive root70 = √V0 and (8) has a pair of purely imaginary roots ±670.
For 70, we have

�0 = 170 × arccos{;1 (7);2 (7)} , (17)

with;1 (7)= (33 −-434) 78+ (-234 +-432 −-333 − 31) 76+ (-331 +-133 −-034 −-232 −-430) 74+ (-032 +-230 −-131) 72 +-030,;2 (7)= 32478 + (323 − 23234) 76+ (322 + 23034 − 23 − 133) 74+ (321 − 23032) 72 + 320 .

(18)

Di
erentiating on both sides of (8) with respect to �, we
can obtain

[�*��]−1
= (5*4 + 4-4*3 + 3-3*2 + 2-2* +-1) "��* (34*4 + 33*3 + 32*2 + 31* + 30)− �* .

(19)

Further, we have

Re [�*��]−1�=�0 = �� (V0);2 (70) , (20)

where �(V) = V
5 + ℎ4V4 + ℎ3V3 + ℎ272 + ℎ1V + ℎ0.

Obviously, if the condition (�4) : ��(V0) ̸= 0 is satis�ed,
then Re[�*/��]−1�=�0 ̸= 0. Based on the discussion above and

the Hopf bifurcation theorem in [33], we have the following
results.

�eorem 1. For system (2), if the conditions (�1)–(�4)
hold, then the positive equilibrium �∗(�∗, �∗, �∗, �∗, �∗) is
locally asymptotically stable when � ∈ [0, �0); system (2)
undergoes aHopf bifurcation at the�∗(�∗, �∗, �∗, �∗, �∗)when� = �0 and a family of periodic solutions bifurcate from�∗(�∗, �∗, �∗, �∗, �∗).
3. Properties of the Hopf Bifurcation

Let G1(�) = �(�) − �∗, G2(�) = �(�) − �∗, G3(�) = �(�) − �∗,G4(�) = �(�) − �∗, and G5(�) = �(�) − �∗, and normalize
the time delay with the scaling � → (�/�). Let � = �0 +I (I ∈ �); then I = 0 is the Hopf bifurcation value of
system (2). System (2) can be transformed into the following
form:

Ġ (�) = K� (G�) + L (I, G�) , (21)

where G(�) = (G1, G2, G3, G4, G5)� ∈ M = M([−1, 0], �5) andK�: M → �5 and L: � × M → �5 are given, respectively,
by

K�N = (�0 + I) (-1N (0) + -2N (−1)) ,
L (I, N) =((

(

 15N1 (0) N4 (0) +  16N24 (0) +  17N1 (0) N24 (0) +  18N34 (0) + ⋅ ⋅ ⋅ 25N2 (0) N4 (0) 35N1 (0) N4 (0) +  36N24 (0) +  37N1 (0) N24 (0) +  38N34 (0) +  39N2 (0) N4 (0) ⋅ ⋅ ⋅00
))
)

, (22)

with

-1 =(((
(

 11  12 0  14 00  22 0  24 0 31  32  33  34 00 0 0  44 0P51 0 0  54  55
)))
)

,
-2 =(

(

0 0 0 0 00 0 0 0 00 0 !33 0 00 0 !43 0 00 0 0 0 0
)
)

,
 15 = − �(1 + ��∗)2 ,
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 16 = ���∗(1 + ��∗)3 ,
 17 = ��(1 + ��∗)3 ,
 18 = − ��2�∗(1 + ��∗)4 , 25 = −��,
 35 = �(1 + ��∗)2 ,
 36 = − ���∗(1 + ��∗)3 ,
 37 = − ��(1 + ��∗)3 ,
 38 = ��2�∗(1 + ��∗)4 , 39 = ��.

(23)

According to the Riesz representation theorem, there
exists a 5 × 5 matrix function �(Q, I): Q ∈ [−1, 0] → �5 such
that

K�N = ∫0
−1
�� (Q, I) N (Q) , for N ∈ M. (24)

In fact, choosing� (Q, I) = (�0 + I) (�max� (Q) + Smax� (Q + 1)) (25)

and �(Q) is the Dirac delta function.
For N ∈ M([−1, 0], �5), de�ne
� (I) N = {{{{{{{

�N (Q)�Q , −1 ≤ Q < 0,
∫0
−1
�� (Q, I) N (Q) , Q = 0,

� (I) N = {{{
0, −1 ≤ Q < 0,L (I, N) , Q = 0.

(26)

	en system (21) can be transformed into the following
operator equation:Ġ (�) = � (I) G� + � (I) G�. (27)

For Z ∈ M1([0, 1], (�5)∗), we further de�ne the adjoint
operator

�∗ (Z) = {{{{{{{
−�Z (\)�\ , 0 < \ ≤ 1,
∫0
−1
��� (\, 0) Z (−\) , \ = 0 (28)

and the bilinear inner product as follows:⟨Z (\) , N (Q)⟩ = Z (0) N (0)
− ∫0
	=−1

∫	

=0
Z (` − Q) �� (Q) N (`) �`, (29)

where �(Q) = �(Q, 0).
Based on the discussion above, we know that ±670�0

are eigenvalues of �(0). 	us, they are also eigenvalues of�∗. Let a(Q) = (1, a2, a3, a4, a5)�"��0�0	 be the eigenvector
of �(0) corresponding to +670�0 and a∗(\) = (1/b)(1, a∗2 ,a∗3 , a∗4 , a∗5 )�"��0�0 be the eigenvectors of �∗ corresponding to−6�070. By direct computation, we can obtain

a2 =  24 (670 −  11) 12 24 +  14 (670 −  22) ,
a3 = 670 −  44!43"−��0�0 a4,
a4 = 670 −  22 24 a2,
a5 =  54670 −  55 a4,a∗2 = − 12 +  32a3670 +  22 ,
a∗3 = −670 +  11 31 ,
a∗4 = −670 +  33 + !33"��0�0!43"��0�0 ,
a∗5 = − 24a∗2 +  34a∗3 + (670 +  11) a∗4 54 ,
b = 1 + a2a∗2 + a3a∗3 + a4a∗4 + a5a∗5+ �0"−��0�0a3 (!33a∗3 + !43a∗4 ) .

(30)

	en we have ⟨a∗, a⟩ = 1 and ⟨a∗, a⟩ = 0.
Next, we can obtain the coe�cients which can determine

the properties of the Hopf bifurcation at �0 by following the
algorithms given in [33] and using the computation process
similar to those in [34–36]:

e20 = 2�0b [ 15a4 +  16a24 +  25a2∗a2a4 + a∗3 ( 35a4
+  36a24 +  39a2a4)] ,e11 = �0b [ 15 (a4 + a4) + 2 16a4a4 +  25a∗2 (a2a4+ a2a4) + a∗3 ( 35 (a4 + a4) + 2 36a4a4+  39 (a2a4 + a2a4))] ,
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e02 = 2�0b [ 15a4 +  16a24 +  25a2∗a2a4 + a∗3 ( 35a4
+  36a24 +  39a2a4)] ,

e21 = 2�0b [ 15 (12j(4)20 (0) + j(4)11 (0) + 12j(1)20 (0)
+ j(1)11 (0) a4) +  16 (j(4)20 (0) a4 + 2j(4)11 (0) a4)
+  17 (a24 + 2a4a4) + 3 18a24a4 +  25a∗2 (12
⋅ j(2)20 (0) a4 +j(2)11 (0) a4 + 12j(4)20 (0) a2
+j(4)11 (0) a2) + a∗3 ( 35 (12j(4)20 (0) + j(4)11 (0)
+ 12j(1)20 (0) + j(1)11 (0) a4) +  36 (j(4)20 (0) a4+ 2j(4)11 (0) a4) +  37 (a24 + 2a4a4) + 3 38a24a4
+  39 (12j(2)20 (0) a4 +j(2)11 (0) a4 + 12j(4)20 (0) a2
+j(4)11 (0) a2))] ,

(31)

withj20 (Q)
= 6e20m (0)�070 "��0�0	 + 6e02m (0)3�070 "−��0�0	 + �1"2��0�0	,

j11 (Q) = −6e11m (0)�070 "��0�0	 + 6e11m (0)�070 "−��0�0	 + �2,
�1

= 2((((
(

 �11 − 12 0 − 14 00  �22 0 − 24 0− 31 − 32  �33 − 34 00 0 −!43"−2��0�0  �44 00 0 0 − 54  �55
))))
)

−1

×((((
(

�(1)1�(2)1�(3)100
))))
)

,

�2
= −((

(

 11  12 0  14 00  22 0  24 0 31  32  33 + !33  34 00 0 !43  44 00 0 0  54  55
))
)

−1

×(((
(

�(1)2�(2)2�(3)200
)))
)

,
(32)

where  �11 = 2670 −  11, �22 = 2670 −  22, �33 = 2670 −  33 − !33"−2��0�0 , �44 = 2670 −  44, �55 = 2670 −  55,�(1)1 =  15a4 +  16a24,�(2)1 =  25a2a4,�(3)1 =  35a4 +  36a24 +  39a2a4,�(1)2 =  15 (a4 + a4) + 2 16a4a4,�(2)2 =  25 (a2a4 + a2a4) ,�(3)2 =  35 (a4 + a4) + 2 36a4a4+  39 (a2a4 + a2a4) .

(33)

	en, one can obtain

M1 (0) = 62�070 (e11e20 − 2 ooooe11oooo2 − ooooe02oooo23 ) + e212
2 = − Re {M1 (0)}

Re {*� (�0)} ,�2 = 2Re {M1 (0)} ,
s2 = − Im {M1 (0)} + 2 Im {*� (�0)}�070 .

(34)

In conclusion, we have the following results.

�eorem 2. For system (2), 2 determines the direction of the
Hopf bifurcation: if 2 > 0 (2 < 0), then the Hopf bifurcation
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is supercritical (subcritical); �2 determines the stability of the
bifurcating periodic solution: the bifurcating periodic solutions
are stable (unstable) if �2 < 0 (�2 > 0); s2 determines the
period of the bifurcating periodic solutions: the period increases
(decreases) if s2 > 0 (s2 < 0).
4. Numerical Simulation

In this section, some numerical simulations are carried out
for qualitative analysis by using Matlab so�ware package.
By extracting some values from [29] and considering the
conditions for the existence of the Hopf bifurcation, we
choose a set of parameters as follows: � = 100, 
 = 0.5,� = 0.0001, � = 0.003, � = 0.0001, � = 0.4, � = 1,� = 0.05� = 0.02, and  = 0.001. 	en, we can get the
following speci�c case of system (2):�� (�)�� = 50 − 0.003� (�) � (�)1 + � (�) − 0.001� (�)

+ 0.0001� (�) ,�� (�)�� = 50 − 1.5000" − 004� (�) � (�)
− 0.0011� (�) ,�� (�)�� = 0.003� (�) � (�)1 + � (�) + 1.5000" − 004� (�) � (�)
− 0.001� (�) − 0.02� (� − �) ,�� (�)�� = 0.02� (� − �) − 0.4011� (�) ,

�� (�)�� = 0.4� (�) − 0.0001� (�) .

(35)

By some computations, we can obtain the following equation
with respect to �:5.0539" − 009�2 − 1.0117" − 006� − 4.7907" − 006= 0. (36)

It follows that system (35) has a unique positive
equilibrium �∗(12723, 1571.3, 4107.5, 204.8103, 81924) and
we can verify that �∗(12723, 1571.3, 4107.5, 204.8103, 81924)
is locally asymptotically stable when � = 0. Further, we have70 = 0.5508 and �0 = 69.6986. According to	eorem 1, it can
be concluded that�∗(12723, 1571.3, 4107.5, 204.8103, 81924)
is locally asymptotically stable when � ∈ [0, �0 = 69.6986).
	is property can be shown as in Figures 1 and 2. However, a
Hopf bifurcation will occur and a family of periodic solutions
bifurcate from �∗(12723, 1571.3, 4107.5, 204.8103, 81924)
when the value of � passes through the Hopf bifurcation
value �0, which can be illustrated by Figures 3 and
4.

In addition, we obtainM1(0) = −4.3990+2.90576, *�(�0) =0.7014 − 0.02126 by some complicate computations. 	us,
we get 2 = 7.8776 > 0, �2 = −8.798 < 0, and s2 =−0.0713 < 0 based on (34). It follows from 	eorem 2 that
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Figure 1: Dynamic behavior of system (35): projection on S-E-R
with � = 65.85 < �0.

160
180

200
220

240
260

3500
4000

4500
5000
1000

1200

1400

1600

1800

2000

I(t)
E(t)

V
(t
)

Figure 2: Dynamic behavior of system (35): projection on V-E-I
with � = 65.85 < �0.
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with � = 76.65 > �0.
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Figure 4: Dynamic behavior of system (35): projection on V-E-I
with � = 76.65 > �0.
the Hopf bifurcation is supercritical and the bifurcating peri-
odic solutions are stable and decrease. Since the bifurcating
periodic solutions are stable, then the �ve classes of hosts
in system (35) may coexist in an oscillatory mode from
the view of the biological point, which is not welcome in
networks.
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5. Conclusions

In this study, the dynamical behaviors of a delayed SVEIR
worm propagation model with saturated incidence are dis-
cussed based on the work in literature [29]. 	e dynamical
behaviors of the model are investigated from the point of
view of local stability and Hopf bifurcation both analytically
and numerically. 	e threshold of the time delay �0 at which
the model causes a Hopf bifurcation is obtained by using
eigenvalue method. We found that characteristics of the
propagation of worms in the model can be predicted and
controlled when the value of delay is suitably small (� ∈[0, �0)). However, propagation of the worms in the model
will be out of control once the value of the time delay is
above the threshold value �0. Accordingly, we can know that
the propagation of worms in the model can be controlled by
postponing occurrence of the Hopf bifurcation. Moreover,
the properties of the Hopf bifurcation are investigated by
applying the normal form theory and the center manifold
theorem. Numerical simulations are also presented in order
to testify our obtained theoretical results.

Parameters of the Model and Their Meanings�: Recruitment rate of the susceptible host
: Vaccinated rate of the susceptible host�: Infection rate of the susceptible host��: Infection rate of the vaccinated host�: E�cient measuring the inhibitory e
ect: Natural death rate of all the hosts�: Death rate of the infectious host due to worm attack�: Recovery rate of the infectious hosts�: Rate of the exposed hosts that become infectious�: Rate of the vaccinated hosts that become susceptible.

Data Availability

All data can be accessed in the numerical simulation section
of this article.
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