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Abstract

In this work, an attempt is made to understand the dynamics of a modified

Leslie–Gower model with nonlinear harvesting and Holling type-IV functional

response. We study the model system using qualitative analysis, bifurcation theory

and singular optimal control. We show that the interior equilibrium point is locally

asymptotically stable and the system under goes a Hopf bifurcation with respect to

the ratio of intrinsic growth of the predator and prey population as bifurcation

parameter. The existence of bionomic equilibria is analyzed and the singular optimal

control strategy is characterized using Pontryagin’s maximum principle. The existence

of limit cycles appearing through local Hopf bifurcation and its stability is also

examined and validated numerically by computing the first Lyapunov number.

Optimal singular equilibrium points are obtained numerically for various discount

rates.
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1 Introduction

The Leslie–Gower model [1, 2] (LG model) shows how asymptotic solutions converge to

a stable equilibrium (independent of the initial conditions) state. The equilibrium point

depends on the intrinsic factors which govern the system dynamics (in the sense of biol-

ogy). It marks a significant improvement over the famous Lotka–Volterra model and it is

limited in its explanatory capability [3]. Korobeinikov [4] established the global stability

of a positive equilibrium point and showed that the limit cycle could be admitted by the

model system. This limit cycle also exists if we take the Holling type-II or -III functional

response. Aziz and Okiye [5] have designed and studied the modified LGmodel with cyr-

toid type functional response. Huang and Xiao [6] investigated a predator–prey system

with Holling type-IV functional response. The qualitative analysis and bifurcation theory

along with numerical simulations indicated that it has a unique stable limit cycle. Yafia et

al. [7] studied the limit cycle in a modified LG model with Holling type-II scheme bifur-

cated from small and large time delays. Ji et al. [8] extended the study of the modified LG
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model designed by Aziz and Camara for stochastic perturbation. Huang et al. [9] studied

controlling bifurcation in a delayed fractional predator–prey system with incommensu-

rate orders. Rihan et al. [10] investigated fractional-order delayed predator–prey systems

with Holling type-II functional response. Song et al. [11] have studied dynamic analysis

of a fractional-order delayed predator–prey system with harvesting. Xu et al. [12] studied

the stability and Hopf bifurcation of a population model with Holling type-IV functional

response and time delay. Jana et al. [13] have studied a hybrid type tri-trophic food chain

model (Holling type-IV and Beddington–DeAngelis type functional responses) and try

to understand the role of top predator interference and gestation delay and observed the

subcritical Hopf bifurcation phenomena in the designedmodel system and the bifurcating

periodic solution is unstable for the considered set of parameter values. Yu [14] studied

the global stability of a modified LG model with Beddington–DeAngelis type functional

response. Recently, Agrawal et al. [15] investigated the occurence of double Hopf bifurca-

tion at positive equilibrium point when they choose appropriate measure of the tolerance

of the prey. Furthermore, some dynamic behaviors, such as stability switches, chaos, bifur-

cation and double Hopf bifurcation scenarios are observed using numerical simulations.

Presently, the population dynamics is a very importance topic in the field of bio-

economics and related to the optimalmanagement of renewable resources. It is more real-

istic to introduce the harvesting factor in the model system.We also introduce the idea of

maximal sustainable yield in the management of renewable resources. It suggests exploit-

ing the surplus production on the basis of biological growth model. Clark [16] reviewed

how harvesting affects the fisheries management using ecological and economic mod-

els. Hoekstra et al. [17] studied the conservation and harvesting of a population dynamic

model system and illustrated that several types of optimal harvesting solutions are possible

and depend on both ecological parameters such as the predators search and handling time

of prey and economic parameters (e.g., the maximum harvest rate, the discount rate and

the cost of fishing). We know that mainly three types of harvesting have been reported in

the literature: (i) constant rate of harvesting, (ii) proportional harvesting h(x) = qEx, where

q is the catch ability coefficient, E is the effort made for harvesting and the product qE is

the fishing mortality [18], and (iii) nonlinear harvesting h(x) = qEx/(m1E + m2x), where

m1 and m2 are suitable positive constants, proportional to the ratio of the stock level to

the harvesting rate at high levels of effort and to the ratio of the effort level to the harvest-

ing rate at high stock levels, respectively. Azar et al. [19] studied the Lotka–Volterra type

two prey one predator model where the predator is harvested with two different schemes:

(i) constant harvesting quota and (ii) constant harvesting effort, and one reported that a

constant harvesting quota on the predator may destabilize the system. Zhu and Lan [20]

made a Hopf bifurcation analysis of the LG model with constant prey harvesting. The

dynamics of a model with proportionate harvesting has been studied by Mena-Lorca et

al. [21]. Zhang et al. [22] studied the harvested LG model and found that harvesting has

no influence on the persistence of the model system. So, the predator density strictly de-

creases with harvesting effort but it has no effect on the prey density. Kar and Ghorai [23]

analyzed the dynamics of a delayed predator–prey model with harvesting in a modified

LG model. Gupta et al. [24] studied the bifurcation analysis and control of the LG model

with Michaelis–Menten type prey harvesting and observed that for a wide range of ini-

tial values the system goes to extinction. Recently, Huang et al. [25] studied the effect of

constant yield predator harvesting on the dynamics of a LG model. The model exhibits



Zhang et al. Advances in Difference Equations  ( 2018)  2018:127 Page 3 of 21

different types of bifurcations including the saddle-node bifurcation, attracting and re-

pelling Bogdanov–Takens bifurcations, and all types of Hopf bifurcation with the varia-

tion of the control parameters. Saleh [26] studied the dynamics of a modified LG model

with quadratic predator harvesting.

We have proposed a new 2D modified Leslie–Gower type predator–prey model with

Holling type-IV functional response in this manuscript. We have also incorporated the

nonlinear harvesting in the prey population. Andrews [27] explored a function of the form

f (x) =mx/((x2/i)+x+a) and named it theHolling type-IV functional response orMonod–

Haldane [28] function, which is similar to the Monod (i.e., the Michaelis–Menten) func-

tion for low concentration but includes the inhibitory effect at high concentrations. The

parameters m and a can be interpreted as the maximum per capita predation rate and

the half saturation constant in the absence of any inhibitory effect. The parameter i is a

measure of the predator’s immunity from or tolerance of the prey. We have analyzed this

model for its rich dynamics and studied the bio-economic equilibria using singular opti-

mal control strategies.

This work is organized as follows. In the next section, model formulation and biological

meaning of the parameters are given. In Sect. 3, we presented the detail analysis of the

model system. In Sect. 4, we discuss the linear stability analysis and Hopf bifurcation.

Stability of the limit cycle is also presented in this section. Section 5 discusses the bionomic

equilibria and optimal harvesting policy. In Sect. 6, some numerical simulation results

are presented to illustrate or complement our mathematical findings. Conclusions and

discussions are given in the final section which summarizes our findings.

2 Model formulation

The Leslie–Gower type model described [29] in extended form is given by

⎧

⎨

⎩

du
dt

= (r(1 – u
K
) – mv

u2
i +u+a

)u,

dv
dt
= s(1 – nv

u
)v,

(1)

subject to positive initial condition u(0) > 0, v(0) > 0. Here u ≡ u(t) and v ≡ v(t) are the

prey and predator population density, respectively.

Model system (1) is defined on the set

� =
{

(u, v) ∈ R2|u≥ 0, v ≥ 0
}

(2)

with all the parameters r,K ,m, i, s, a and n being positive. Further, the biologicalmeanings

of the parameters are listed in Table 1.

The interaction between prey and predator is expressed by a Holling type-IV functional

response, that is, f (u) = mu
u2
i +u+a

[3]. Taylor [30] has suggested that the subsistence of the

predator depends on prey population therefore, the conventional environmental carrying

capacity Kv of the predator is taken to be proportional to the prey abundance u, thus Kv =
u
n
.
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Table 1 Parameters and their biological meanings in this paper

Parameter Description

r Intrinsic growth rate of the prey

s Intrinsic growth rates of the predator

K The environmental carrying capacity for prey

m The maximum per capita predation rate

i A direct measure of the predator’s immunity from or tolerance of the prey

a The half saturation constant in the absence of any inhibitory effect

n Number of prey required to support one predator at equilibrium

2.1 The model with prey harvesting

We introduce the nonlinear harvestingH(u) = qEu
m1E+m2u

in themodel system (1). Therefore

the modified system of differential equations is

⎧

⎨

⎩

du
dt

= (r(1 – u
K
) – mv

u2
i +u+a

– qE
m1E+m2u

)u,

dv
dt
= s(1 – nv

u
)v,

(3)

subject to the positive initial condition u(0) = u0 > 0 and v(0) = v0 > 0. The parameter r,

K , m, i, s, a and n have the same biological meaning as in model (1), q is the catchability

coefficient, E is the effort made to harvest individuals and m1, m2 are suitable constants.

All parameter are assumed to be positive. System (3) is defined on the set �.

We introduce the following substitutions to bring the system of equations into non-

dimensional form:

u = Kx, t = rT , h =
qE

rm2K
, c =

m1E

m2K
, v =

rKy

m
, α =

i

K
,

β =
nr

m
, γ =

a

K
, δ =

s

r
.

The constants m1, m2 are chosen in such a way that (m1
m2

)E < u where u is the prey

biomass at a given instant of time. The model system takes the following form:

⎧

⎨

⎩

dx
dt

= x(1 – x) – xy

x2
α +x+γ

– hx
x+c

≡ xψ(x, y),

dy

dt
= δy(1 – β

y

x
) ≡ yφ(x, y),

(4)

subject to the initial condition

x(0) = x0 > 0, y(0) = y0 > 0. (5)

Here,

ψ(x, y) = (1 – x) –
y

x2

α
+ x + γ

–
h

x + c
, (6)

φ(x, y) = y

(

1 – β
y

x

)

, (7)

and α, β , γ , δ, h and c are positive constants.
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3 Analysis of themodel system

3.1 Positivity and boundedness of solution

Lemma 1 (a) All solutions (x(t), y(t)) of system (4) with the initial condition (5) are posi-

tive for all t ≥ 0. (b) All solutions (x(t), y(t)) of system (4) with the initial condition (5) are

bounded for all t ≥ 0.

Proof (a) Integrating Eq. (4) with initial condition (5) we have

x(t) = x0 exp

(∫ t

0

ψ
(

x(s), y(s)
)

ds

)

> 0,

y(t) = y0 exp

(∫ t

0

ψ
(

x(s), y(s)
)

ds

)

> 0.

Hence the whole solution starting in Int(�) = {(x, y) ∈ R2|x > 0, y > 0} remains in Int(�)

for all t ≥ 0. Since the trajectories which start in positive direction of the x-axis and remain

on it at all future time, the positive x-axis is an invariant set and similarly the positive y-

axis is an invariant set for the system (4). Combining the two we observe that the set �

defined in (2) is an invariant set for system (4).

(b) To prove the boundedness of solutions of Eq. (4), we use the positivity of variables x,

y and results of Lin and Ho [31]. From (4) we can write

dx

dt
= x(1 – x) –

xy

x2

α
+ x + y

–
hx

c + x
≤ x(1 – x),

which gives

x ≤ 1

1 + 1–x0
x0

e–t
.

Therefore,

x(t)≤ max{1,x0} ≡M1.

Further, from Eq. (4) we have

dy

dt
= δy

(

1 – β
y

x

)

≤ δy

(

1 – β
y

M1

)

,

which gives

y

1 – βy

M1

≤ y0

1 – βy0
M1

eδt .

Therefore, y(t) ≤ max{M1
β
, y0} ≡ M2. This completes the proof of the boundedness of

solutions and hence the system under consideration is a dissipative system. �
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3.2 Equilibrium analysis

To find the equilibrium points of the model system (4), we need to study the zero growth

isoclines and the point of interaction. The equilibrium points of system (4) are obtained

by

ψ(x, y) = 0, φ(x, y) = 0.

The axial equilibrium points are given by the roots of the quadratic equation,

x2 + (c – 1)x + h – c = 0, (8)

and the interior equilibria are given by the roots of the following bi-quadratic equation:

Px4 +Qx3 + Rx2 + Sx + T = 0, (9)

where P = β ,Q = β(α+c–1),R = αβc–cβ+α+hβ+αβγ –αβ , S = α(c+βh–βγ +cβγ –cβ)

and T = αβγ (h – c).

The roots of Eqs. (8) and (9) depend on the parameters h and c, so we shall consider the

following cases.

Case I.When h > c

Axial Equilibria

The possible equilibrium points on the boundary of the first quadrant for system (4) are

E1 = (x1, 0), E2 = (x2, 0) where x1, x2 are the positive real roots of the quadratic equation

(8) with x1 < x2 and are given by

x1 =
(1 – c) –

√

(1 + c)2 – 4h

2
, x2 =

(1 – c) +
√

(1 + c)2 – 4h

2
.

The two real positive roots x1 and x2 will exist if c < 1 and (1 + c)2 –4h > 0. Note that the

other cases are not biologically feasible.

Interior Equilibria

From (9), it is obvious that P > 0 and T > 0. If either (i) Q,R,S < 0, or (ii) Q,S > 0, R < 0,

or (iii) Q < 0, S,R > 0, or (iv) Q,R > 0, S < 0, or (v)Q > 0, S,R < 0, or (vi) Q,R < 0, S > 0, then

by Descartes’ rule Eq. (9) has either two positive real roots or no real root and if either

Q,S < 0, R > 0, then by Descartes’ rule Eq. (9) has either four positive real root or two

positive real roots or no real root. Note that the other cases are not biologically feasible.

Case II.When h < c

Axial Equilibria

In this case x = x̃ is the only positive real root of Eq. (8). For h < c, the product of roots is

negative. Therefore, the two roots are either of opposite sign or complex conjugates. The

root x̃ =
(1–c)+

√
(1+c)2–4h

2
and the real positive root x̃ will exist if c < 1 and (1 + c)2 – 4h > 0.

Hence the axial equilibria are Ẽ = (x̃, 0).

Interior Equilibria

From Eq. (9), obviously P > 0 and T < 0. If either (i) Q,R,S < 0, or (ii) Q,R,S > 0, then by

Descartes’ rule Eq. (9) has only one positive real root and if either (i) Q > 0, R > 0, S < 0, or

(ii)Q > 0, R < 0, S > 0, or (iii)Q < 0, R < 0, S > 0, or (iv)Q < 0, R > 0, S < 0, or (v)Q > 0, R < 0,
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S < 0, or (vi)Q < 0, R > 0, S > 0, then by Descartes’ rule Eq. (9) has either three positive real

roots or one positive real root. Note that the other cases are not biologically feasible.

Case III.When h = c

Axial Equilibria

In this case x = 1 – c is the only positive real root of Eq. (8). Therefore the axial equilib-

rium point is E = (1 – c, 0) provided c < 1.

Interior Equilibria

From Eq. (9), it is obvious that P > 0. If either (i) Q,R,S < 0, or (ii) Q > 0, R < 0, S < 0, or

(iii) Q > 0, R > 0, S < 0, then by Descartes’ rule Eq. (9) has only one positive real root and if

eitherQ < 0, R > 0, S < 0, then by Descartes’ rule Eq. (9) has either three positive real roots

or one positive real root and if either (i) Q > 0, R < 0, S > 0, or (ii) Q < 0, R > 0, S > 0, or

(iii) Q < 0, R < 0, S > 0, then by Descartes’ rule Eq. (9) has either two positive real roots or

no positive real root. Note that the other cases are not biologically feasible.

4 Linear stability analysis and Hopf bifurcation

Theorem 1

(a) For h > c, the axial equilibrium point E1 = (x1, 0) is a repeller and E2 = (x2, 0) is a

saddle point.

(b) For h < c, the axial equilibrium point Ẽ = (x̃, 0) is always a saddle point.

(c) For h = c, the axial equilibrium point E = (1 – c, 0) is always a saddle point.

Proof The Jacobian of system (4) evaluated at a point (x, 0) is

⎛

⎝

1 – 2x – hc
(c+x)2

– x
x2
α +x+γ

0 δ

⎞

⎠ .

The eigenvalues of the Jacobian matrix are 1 – 2x – hc
(c+x)2

and δ.

(a) For the equilibrium point E1 = (x1, 0), the eigenvalues 1 – 2x – hc
(c+x)2

and δ are both

positive and so the equilibrium point E1 is a repeller. Similarly at the equilibrium

point E2 = (x2, 0), the eigenvalue 1 – 2x – hc
(c+x)2

and δ > 0 and the equilibrium point

E2 is a saddle point.

(b) Since Ẽ = E2, Ẽ is saddle point.

(c) For the axial equilibrium point E = (1 – c, 0), the eigenvalues are

1 – 2x – hc
(c+x)2

= –(1 – c)2 < 0 and δ > 0 and the equilibrium point E is a saddle point.

�

Theorem 2

(a) The equilibrium point E∗(x∗, y∗) (for all three cases) is locally asymptotically stable if
1
2
< x∗ <

√
αγ .

(b) System (4) undergoes a Hopf bifurcation with respect to the bifurcation parameter

δ = δ̃ around the equilibrium point E∗(x∗, y∗) if x∗ >
1
2
and

αβδ̃( x
2

α
+ x + γ )2 = α( x

2

α
+ x + γ )[β(1 – 2x∗)(x∗ + c)( x

2

α
+ x + γ ) – cβ(1 – x∗)(

x2

α
+ x +

γ ) + cx∗] – x∗(αγ – x2∗β)(x∗ + c).

The proof is given in Appendix A1.
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Theorem3 System (4) undergoes a saddle-node bifurcation around E∗(x∗, y∗)with respect

to the bifurcation parameter h if:

(i) 2βx5∗ + β(4α + c – 1)x4∗ + αβ(2c + 2α – 2 + 4γ )x3∗ + α(2cβγ – β + cαβ + α – c +

4αβγ – βγ )x2∗ + (cβγ – β + 2βγ 2 – βγ + 2γ )x∗ + α2(βcγ + βγ + cγ ) = 0,

(ii) 2βx6∗ +β(4α+ c–1+δ)x5∗ +(2cαβ +2α2β +2αβδ–α+2αβγ + cβδ+2αβγ –2αβ)x4∗ +

α(2cβγ +cβ–βγ –β–2c+cαβ+4αβγ –αβ+αβδ–2cβδ)x3∗+α(2cαβγ –2αβγ –cα+

αβγ 2+2αβγ δ+αγ +2cβγ δ+cαβδ)x2∗+α2β(cγ 2+γ 2δ+2cγ δ–γ 2)x∗+cα2βγ 2δ > 0,

and

(iii)
√

αγ

3
< x∗ < (2hc)1/3 – c.

The proof is given in Appendix A2.

4.1 Stability of limit cycles

Following Perko [32], we now compute the Lyapunov coefficient σ at the point E∗(x∗, y∗)

of system (4) to discuss the stability of the limit cycle. Let us translate the equilibrium

E∗(x∗, y∗) of system (4) to the origin by using the transformation x̃ = x – x∗ and ỹ = y – y∗.

Then system (4) in a neighborhood of the origin can be written as

dx̃

dt
= (x̃ + x∗)(1 – x̃ – x∗) –

(x̃ + x∗)(ỹ + y∗)
(x̃+x∗)2

α
+ (x̃ + x∗) + γ

–
h(x̃ + x∗)

c + (x̃ + x∗)
,

dỹ

dt
= δ(ỹ + y∗)

(

1 – β
ỹ + y∗
x̃ + x∗

)

.

(10)

Now

dx̃

dt
= x∗ – x2∗ –

αx∗(ỹ + y∗)

x2∗ + αx∗ + αγ
–

hx∗
c + x∗

+ x̃

[

1 – 2x∗ –
α(ỹ + y∗)

x2∗ + αx∗ + αγ
+

αx∗(2x∗ + α)(ỹ + y∗)

(x2∗ + αx∗ + αγ )2
–

hc

(c + x∗)2

]

+ x̃2
[

–1 +
αx∗(3x∗ + α)(ỹ + y∗)

(x2∗ + αx∗ + αγ )2
–

αx∗(2x∗ + αγ )2(ỹ + y∗)

(x2∗ + αx∗ + αγ )3
+

hc

(c + x∗)3

]

+ x̃3
[

–
2αx∗(2x∗ + α)(y∗ + ỹ)

(x2∗ + αx∗ + αγ )2
–

α(2x∗ + α)2(y∗ + ỹ)

(x2∗ + αx∗ + αγ )3

+
αx∗(2x∗ + α)3(y∗ + ỹ)

(x2∗ + αx∗ + αγ )4
–

hc

(c + x∗)4

]

+ F1(x̃, ỹ),

dỹ

dt
= y∗δ –

βδy2∗
x∗

(

1 –
x̃

x∗
+
x̃2

x2∗
–
x̃3

x3∗

)

+ δỹ

[

1 –
2βy∗
x∗

(

1 –
x̃

x∗
+
x̃2

x2∗
–
x̃3

x3∗

)]

+ δỹ2
[

–
β

x∗

(

1 –
x̃

x∗
+
x̃2

x2∗
–
x̃3

x3∗

)]

+ F2(x̃, ỹ),

where F1(x̃, ỹ) and F2(x̃, ỹ) are power series in powers of x̃iỹj satisfying i + j > 4. Then we

obtain

dx̃

dt
= a10x̃ + a01ỹ + a20x̃

2 + a11x̃ỹ + a02ỹ
2 + a30x̃

3 + a21x̂
2ŷ + a03ỹ

3 + F1(x̃, ỹ),

dỹ

dt
= b10x̃ + b01ỹ + b20x̃

2 + b11x̃ỹ + b02ỹ
2 + b30x̃

3 + b21x̂
2ŷ + b03ỹ

3 + F2(x̃, ỹ),
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where

a10 = 1 – 2x∗ –
αy∗

x2∗ + αx∗ + αγ
+

αx∗(2x∗ + α)y∗
(x2∗ + αx∗ + αγ )2

–
hc

(c + x∗)2
,

a01 = –
αx∗

x2∗ + αx∗ + αγ
,

a20 = –1 +
αx∗y∗

(x2∗ + αx∗ + αγ )2
+

α(2x∗ + α)y∗
(x2∗ + αx∗ + αγ )2

–
αx∗(2x∗ + αγ )2y∗
(x2∗ + αx∗ + αγ )3

+
hc

(c + x∗)3
,

a11 =
α(x2∗ – γ )

(x2∗ + αx∗ + αγ )2
, a02 = 0,

a30 = –
2αx∗(2x∗ + α)y∗
(x2∗ + αx∗ + αγ )2

–
α(2x∗ + α)2y∗

(x2∗ + αx∗ + αγ )3
+

αx∗(2x∗ + α)3y∗
(x2∗ + αx∗ + αγ )4

–
hc

(c + x∗)4
,

a21 =
αx∗

(x2∗ + αx∗ + αγ )2
+

α(2x∗ + α)

(x2∗ + αx∗ + αγ )2
–

αx∗(2x∗ + αγ )2

(x2∗ + αx∗ + αγ )3
, a12 = 0,

a03 = 0,

b10 =
βδy2∗
x2∗

, b01 = δ

(

1 –
2βy∗
x∗

)

, b20 = –
βδy2∗
x3∗

, b11 =
2βδy∗
x2∗

,

b02 = –
βδ

x∗
, b30 =

βδy2∗
x4∗

, b21 = –
2βδy∗
x3∗

, b12 =
βδ

x2∗
, b03 = 0,

with F1(x̃, ỹ) =
∑∞

i+j=4 aijx̃
iỹj and F2(x̃, ỹ) =

∑∞
i+j=4 bijx̃

iỹj. Hence the first Lyapunov coeffi-

cient σ for the planar system is given by

σ = –
3π

2a01�3/2

[{

a10b10
(

a211 + a11b02 + a02b11
)

+ a10a01
(

b211 + a20b11 + a11b02
)

+ b210(a11a02 + 2a02b02) – 2a10b10
(

b220 – a20a02
)

– 2a10a01
(

a220 – b20b02
)

– a201(2a20b20 + b11b20) +
(

a01b10 – 2a210
)

(b11b02 – a11a20)
}

–
(

a210 + a01b10
){

3(b01b03 – a01a30) + 2a10(a21 + b12) + (b10a12 – a01b21)
}]

,

where

� =
δx∗

α2β(x∗ + c)( x
2∗
α
+ x∗ + γ )2

[

2βx5∗ + β(4α + c – 1)x4∗ + αβ(2c + 2α – 2 + 4γ )x3∗

+ α(2cβγ – β + cαβ + α – c + 4αβγ – βγ )x2∗

+ α2
(

cβγ – β + 2βγ 2 – βγ + 2γ
)

x∗ + α2(cβγ – βγ + cγ )
]

.

Since the expression for the Lyapunov number σ is complicated we cannot say anything

about the sign of σ and therefore we have analyzed it numerically.

5 Bionomic equilibria

The bionomic equilibrium is obtained when the total revenue obtained by selling the har-

vested biomass equals the total cost utilized in harvesting. The net profit at any time [33]
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is given by

P(x,E) =

(

pqx

m1E +m2x
–C

)

E. (11)

Note that if the harvesting cost is greater than the revenue for prey species (i.e. C >
pqx

m1E+m2x
), then the harvesting in prey species is not profitable and it is of no interest. Hence,

we consider that the cost must be less than the revenue for prey species (i.e. C < pqx
m1E+m2x

).

The bionomic equilibrium (x, y,E) is given by the positive solutions of dx
dt

=
dy

dt
= P = 0.

That is,

r

(

1 –
x

K

)

–
mx

x2

i
+ x + a

–
qE

m1E +m2x
= 0, (12)

x = ny, (13)

pqx

m1E +m2x
–C = 0. (14)

Thus, the bionomic equilibria are the points of intersection of biological equilibrium

line and zero profit line. Solving Eqs. (12) and (13), we obtain the value of x∞ and y∞ and

from (14) we obtain E∞ = pq–Cm2
cm1

x∞ if Cm2 < pq.

5.1 Optimal harvesting policy

In this section, we explain the optimal harvesting policy or singular optimal control to be

adopted by a regulatory agency. With the help of Pontryagin’s maximum principle [34],

we maximize the current value of the continuous time stream of revenues, which is given

by

J(x∗,E) =

∫ ∞

0

e–μtP(x,E)dt, (15)

where μ denotes the continuous annual discount rate which is fixed by harvesting agen-

cies. The control variable E is subject to the constraint 0 ≤ E ≤ Emax, where Emax is a

feasible upper limit for the harvesting effort.

Therefore, the optimal control problem over an infinite time horizon is given by

max
0≤E≤Emax

∫ ∞

0

e–μtP(x,E)dt, (16)

subject to Eqs. (3) with (x, y) 	= (0, 0) and x(0) = x0, y(0) = y0.

The Hamiltonian function is given by

H(x, y,E, t) =

(

pqx

m1E +m2x
–C

)

Ee–μt

+ λ1

(

r

(

1 –
x

K

)

–
mx

x2

i
+ x + a

–
qE

m1E +m2x

)

+ λ2sy

(

1 –
ny

x

)

,

where λi = λi(t), i = 1, 2, are adjoint variables.
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Differentiating the Hamiltonian H with respect to the control variable E, we get

∂H

∂E
=

(

pqm2x

(m1E +m2x)2
–C

)

e–μt – λ1

qm2x

(m1E +m2x)2
. (17)

The considered control problem admits a singular solution on the control set [0,Emax],

if ∂H
∂E

= 0, which gives

λ1e
μt = p –

C(m1E +m2x)
2

qm2x2
, (18)

where λ1e
μt is the usual shadow price [30].

In order to find the path of a singular control, Pontryagin’s maximum principle [34] is

utilized and the adjoint variables must satisfy the adjoint equations given by

dλ1

dt
= –

∂H

∂x
,

dλ2

dt
= –

∂H

∂y
. (19)

For a singular optimal equilibrium solution, we use the steady state equations (12) and

(13) in terms of x∗ and y∗ = x∗
n
, hence x∗, y∗ and E can be taken as constant [35]. Thus

Eq. (19) along with the steady state equations (12) and (13) give

dλ1

dt
= λ1

(

rx∗

K
–

m
n
x∗2 ( 2x

∗
i
+ 1)

( x
∗2

i
+ x∗ + a)2

–
qm2Ex

∗

(m1E +m2x∗)2

)

–
λ2s

n
–

pqm1E
2

(m1E +m2x∗)2
e–μt , (20)

dλ2

dt
= sλ2 + λ1

(

mx∗

x∗2

i
+ x∗ + a

)

. (21)

Due to the presence of the term e–μt , no steady state is possible for the above system.

Following Srinivasu et al. [36], we consider the transformation

λi(t) = τi(t)e
–μt , i = 1, 2,

where τi represents the present value of the adjoint variable λi. Using Eq. (18), Eq. (21) can

be written in terms of τ2 as follows:

dτ2

dt
– (s +μ)τ2 = –R

(

x∗), (22)

where

R
(

x∗) =

(

mx∗

x∗2

i
+ x∗ + a

)(

C(m1E +m2x
∗)2

qm2x∗2 – p

)

.

This shadow price τi(t) = λi(t)e
–μt , i = 1, 2, should remain constant over time in singular

equilibrium to satisfy the transversality conditions at ∞ (i.e. limt→∞ λi(t) = 0 for i = 1, 2).

Thus, the solution of Eq. (23) satisfying the transversality condition for the discounted

autonomous infinite horizon problem (16) is τ2 =
R(x∗)
(s+μ)

.
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Using the above value of τ2 Eq. (20) can be written in terms of τ1 as follows:

dτ1

dt
–

(

ξ
(

x∗) +μ
)

τ1 = –η
(

x∗), (23)

where

ξ
(

x∗) =
rx∗

K
–

m
n
x∗2 ( 2x

∗
i
+ 1)

x∗2

i
+ x∗ + a

–
qm2Ex

∗

(m1E +m2x∗)2
,

η
(

x∗) =
pqm1E

2

(m1E +m2x∗)2
+

sR(x∗)

n(s +μ)
.

The solution of Eq. (23) satisfying the transversality condition at ∞ is given by

τ2 =
η(x∗)

ξ (x∗) +μ
. (24)

From Eqs. (18) and (24) we obtain

pqm2x
∗2

(m1E +m2x∗)2
–C =

(

η(x∗)

ξ (x∗) +μ

)

qm2x
∗2

(m1E +m2x∗)2
. (25)

This gives the desired singular path.

Equation (25) alongwith the steady state equations (12) and (13) reduces to the following

polynomial equation in x∗:

f
(

x∗) = A1x
∗5 +A2x

∗4 +A3x
∗3 +A4x

∗2 +A5x
∗ +A6 = 0, (26)

where A1, A2, A3, A4, A5, A6 are found using MATHEMATICA and are given by

A1 =
Hr

K
, A2 = –G + EH +

2irH

K
,

A3 = 2iG + 2iEH – 2imH +
2iarH

K
+
i2rH

K
–

imsF

n(s +μ)
,

A4 = –2iaG + 2aiEH – i2G + i2EH – i2mH +
2i2arH

K
–

i2msF

n(s +μ)
,

A5 = –2iaG2 + 2i2aEH +
i2a2rH

K
–

i2msF

n(s +μ)
,

A6 = –i2aG + i2a2EH ,

E = μ –
m2C

m1p2q
(pq –Cm2),F =

p2q

Cm2

– p,G =
(pq –Cm2)

2

pqm1

,H =
(m2C – pq)p

m2C
.

Equation (26) will have at least one positive real root for x∗ if A1 > 0 and A6 < 0. Equiv-

alently, we can say that if m2C > pq and G > aEH , then Eq. (26) will have at least one

positive real root for x∗, which together with the steady state equations (12) and (13) gives

the singular equilibrium point

(

x∗, y∗,E∗) =

(

x∗,
x∗

n
,
n(m1rx

∗ + qK –m1rK)( x
∗2
i
+ x∗ + a) +mx∗

m2x∗(nr(K – x∗)( x
∗2
i
+ x∗ + a) –mx∗K)

)

.
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Notice that

∂2H(x∗, y∗,E∗, t)

∂x2
= –

2λ1r

K
+
2ix∗(x∗3 + ax∗ + 2ai)

n(x∗2 + ix∗ + ai)3

–
2m1E

∗2

x∗2(m1E∗ +m2x∗)

(

∂H

∂E
+Ce–μt

)

–
2λ2s

nx∗

and

∂2H(x∗, y∗,E∗, t)

∂y2
= –

2λ2ns

x∗ .

Therefore, in the case of singular control (i.e. ∂H
∂E

= 0)

∂2H(x∗, y∗,E∗, t)

∂x2
< 0,

∂2H(x∗, y∗,E∗, t)

∂y2
< 0,

for all t ∈ [0,∞) provided

–
2λ1r

K
+
2ix∗(x∗3 + ax∗ + 2ai)

n(x∗2 + ix∗ + ai)3
–

2m1E
∗2

x∗2(m1E∗ +m2x∗)
Ce–μt –

2λ2s

nx∗ < 0, (27)

and λi(t), i = 1, 2 are positive i.e. R(x∗) > 0 and ξ (x∗) +μ > 0, which gives

C(m1E +m2x
∗)2

qm2x∗2 > p,
rx∗

K
+μ >

m
n
x∗2( 2x

∗
i
+ 1)

( x
∗2
i
+ x∗ + a)2

+
qm2Ex

∗

(m1E +m2x∗)2
. (28)

Thus, the maximized Hamiltonian H∗ is concave in both x and y for all t ∈ [0,∞) pro-

vided (27) and (28) are satisfied. Hence, the Arrow sufficiency condition for an infinite

time horizon is satisfied [34] under certain constraints.

The generalized Legendre–Clebsch condition for the optimal control problem (16) is

trivially satisfied as ∂H
∂E

= 0 for all t ∈ [0,∞) along the optimal singular solution. Hence,

from the Arrow sufficient conditions for infinite time horizon and generalized Legendre–

Clebsch condition, the singular solution (x∗, y∗,E∗) is a part of the optimal solution (piece-

wise continuous curve) locally.

Further, by differentiating (17) with respect to t along a singular solution together with
dx
dt

= 0 and dλ1
dt

= –μη(x)
ξ (x)+μ

e–μt , we obtain

d

dt

dH

dE
=

(

qm2x
2

(m1x +m2E)2

(

–P +
η(x)

ξ (x) +μ

)

+C

)

μe–μt (29)

for all t ∈ [0,∞).

From (29), we infer that the singular optimal solution is (x∗, y∗,E∗) where x∗, the positive

root of the equation, is

qm2x
2

(m1x +m2E)2

(

–P +
η(x)

ξ (x) +μ

)

+C = 0,

which coincides with Eq. (25) for the singular solution. The maximum present value can

be found by the evaluation of the performance measure in the obtained optimal values
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from the previous analysis [37]. In this case

J
(

x∗,E∗) =

∫ ∞

0

E∗
(

pqx∗

m1E +m2x∗ –C

)

e–μt dt. (30)

This gives

J
(

x∗,E∗) =
E∗( pqx∗

m1E+m2x∗ –C)

μ
. (31)

Therefore

J
(

x∗,E∗) =
H∗(x∗, y∗,E∗, 0)

μ
. (32)

The transversality condition is

lim
t→∞

e–μtH∗(x∗, y∗,E∗, t
)

= 0,

and it is trivially satisfied. This result agrees with the Michel theorem for the discounted

autonomous infinite horizon model [38].

6 Numerical simulation results

The model system (4) is integrated numerically using the Runge–Kutta method for differ-

ent sets of parameters values.

(i) For α = 0.1, β = 2, c = 0.004, δ = 0.5, γ = 1, h = 0.09, the equilibrium points are

E1(0.101018, 0.050509) and E2(0.847354, 0.423677).

For the equilibrium point E1(0.101018, 0.050509), TrN = 0.233986 and

detN = –0.346001. For the equilibrium point E2(0.847354, 0.423677),

TrN = –1.16308 and detN = 0.355004. The equilibrium point

E1(0.101018, 0.050509) is a saddle point and the equilibrium point

E2(0.847354, 0.423677) is a stable focus, which is shown in Fig. 1.

(ii) For α = 0.2, β = 0.125, c = 0.049, δ = 0.12, γ = 1, h = 0.05, which gives the two

equilibrium point E11(0.0018, 0.0144) and E21(0.0695, 0.556).

The equilibrium point E11(0.0018, 0.0144) is a saddle point as the eigenvalues of

Jacobian matrix are –0.107753 and 0.0208392. A stable limit cycle appears in a

small neighborhood of E21(0.0695, 0.556) as the Lyapunov number

σ = –30387.3π < 0 (see Fig. 2).

Figure 1 The prey and predator nullclines are

represented by red and blue lines respectively. The

equilibrium point E1(0.101018, 0.050509) is saddle

point and the equilibrium point E2(0.847354,

0.423677) is stable focus
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Figure 2 The figure shows that the limit cycle

around the equilibrium point E21(0.0695, 0.556) is

stable

Figure 3 The prey and predator nullclines are

represented by red and blue lines respectively. The

equilibrium point E∗(0.9169, 0.1223) is stable focus

Figure 4 The figure shows that the limit cycle

around the equilibrium point E∗(0.09177, 0.73416) is
unstable

(iii) For α = 0.5, β = 7.5, c = 0.1, δ = 0.002, γ = 1, h = 0.05, we have only one equilibrium

point, E∗(0.9169, 0.1223).

For the equilibrium point E∗(0.9169, 0.1223), TrN = –0.8342 and detN = 0.0017

and so the equilibrium point E∗(0.9169, 0.1223) is a stable focus, which is shown in

Fig. 3.

(iv) For α = 0.2, β = 0.125, c = 0.1, δ = 0.12, γ = 1, h = 0.05, the equilibrium point is

E∗(0.09177, 0.73416).

An unstable limit cycles appears in a small neighborhood of E∗(0.09177, 0.73416)

as the Lyapunov number σ = 728.498π > 0 (see Fig. 4).

(v) For α = 0.5, β = 7.5, c = 0.1, δ = 0.002, γ = 1, h = 0.1, we have only one equilibrium

point, which is E∗∗(0.8617, 0.1149).

For the equilibrium point E∗∗(0.8617, 0.1149), TrN = –0.7312 and

detN = 0.0015, so the equilibrium point E∗∗(0.8617, 0.1149) is a stable focus, which

is shown in Fig. 5.

(vi) For α = 0.2, β = 0.125, c = 0.01, δ = 0.12, γ = 1, h = 0.01, the equilibrium point is

E3(0.1196, 0.9568).
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Figure 5 The prey and predator nullclines are

represented by red and blue lines respectively. The

equilibrium point E∗∗(0.8617, 0.1149) is stable focus

Figure 6 The figure shows that the limit cycle

around the equilibrium point E3(0.1196, 0.9568) is

unstable

Table 2 Optimal singular solution for different discount rate μ

μ x
∗
(1) x

∗
(2) x

∗
(3) x

∗
(4) x

∗
(5) E

∗
(1) E

∗
(2) E

∗
(3) E

∗
(4) E

∗
(5)

0.0 0.46 4.61 –0.011 –0.41 –90.12 1.51 4.34 255.88 3.04 1.579

0.01 0.51 2.86 –0.017 –0.40 –138.43 1.29 6.30 153.04 3.095 1.26

0.02 0.57 1.96 –0.023 –0.39 –187.6 1.07 44.27 105.35 3.15 1.05

Table 3 Optimal singular solution for different discount rate μ

μ x
∗
(1) x

∗
(2) x

∗
(3) x

∗
(4) x

∗
(5) E

∗
(1) E

∗
(2) E

∗
(3) E

∗
(4) E

∗
(5)

0.0 0.84 89.59 0.023 Complex Complex 3.59 –0.417 –250.61 Complex Complex

0.01 0.305 43.73 0.019 –0.40 –3.85 4.59 –0.14 –268.88 2.44 0.58

0.02 0.25 10.86 –0.006 –0.26 –21.05 5.86 –0.42 501.69 3.75 0.125

An unstable limit cycles appears in a small neighborhood of E3(0.1196, 0.9568) as

the Lyapunov number σ = 330.29π > 0 (see Fig. 6).

Also it is too difficult to solve Eq. (26) analytically and therefore we consider the follow-

ing numerical examples.

Case (i) For h > c: For the parameters a = 1, n = 1, m = 0.4, s = 0.01, r = 0.02, i = 0.1,

p = 0.5, q = 0.9, K = 100, C = 0.03, m1 = 0.1, m2 = 0.03, the optimal singular

solutions for different rates of μ are given in Table 2.

Case (ii) For h < c: For the parameters a = 1, n = 1, m = 0.4, s = 0.01, r = 0.02, i = 0.1,

p = 0.5, q = 0.0009,K = 100,C = 0.03,m1 = 0.1,m2 = 0.03, the optimal singular

solutions for different rates of μ are given in Table 3.

Case (iii) For h = c: For the parameters a = 1, n = 1, m = 1.04, s = 0.1, r = 0.02, i = 0.9,

p = 0.5, q = 0.002,K = 100,C = 0.003,m1 = 0.1,m2 = 0.03, the optimal singular

solutions for different rates of μ are given in Table 4.

Note that y∗
(j) = x∗

(j), j = 1, 2, 3, 4, 5, since in each case n = 1.
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Table 4 Optimal singular solution for different discount rate μ

μ x
∗
(1) x

∗
(2) x

∗
(3) x

∗
(4) x

∗
(5) E

∗
(1) E

∗
(2) E

∗
(3) E

∗
(4) E

∗
(5)

0.0 94.52 0.014 –104.04 –0.338 –0.143 0.062 –783.5 0.016 1.37 4.55

0.01 73.24 0.071 –132.78 –0.306 –0.222 0.099 12.64 0.012 1.56 2.41

0.02 57.57 0.112 –167.12 Complex Complex 0.124 3.44 0.009 Complex Complex

Figure 7 Plot E∗ vs x∗ for the case (i) with μ = 0.2

Figure 8 Plot E∗ vs x∗ for the case (ii) with μ = 0.2

Figure 9 Plot E∗ vs x∗ for the case (iii) with μ = 0.2

It is clearly seen that we can find an optimum equilibrium for various discount rates μ

in various cases. From the above tables we conclude that there is at least one optimum

singular equilibrium point in each from which (x∗
(1), y

∗
(1),E

∗
(1)) is feasible from an ecological

point of view. Once the optimal singular solution is known then one can easily find the

optimal paths (see Figs. 7–9).
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7 Conclusions and discussions

In this paper, a mathematical model to study the dynamical behavior of a modified Leslie–

Gower model with Holling type-IV functional response and nonlinear prey harvesting

has been proposed and analyzed. The existence of equilibrium points and their stability

analysis have been discussed with the help of stability theory. The proposedmodel system

undergoes a Hopf bifurcation and a saddle-node bifurcation around the equilibrium point

for the control parameter δ, the ratio of intrinsic growth rates of the predator and prey

population and h = qE
rm2K

, respectively.

We have discussed the bionomical equilibrium of the model and explain the optimal

harvesting policy to be adopted by a regulatory agency. By constructing an appropriate

Hamiltonian function and using Pontryagin’s maximum principle, the optimal harvesting

policy has been discussed. We also found an optimal equilibrium solution. The effect of

harvesting the prey, predator or both on the stability of the system depends on a pretty

fine-tuned balancing of the parameter values and also on which functions/functional re-

sponses are chosen to represent the ecological harvesting policy [39].We have established

the stability of a limit cycle using the first Lyapunov number around the equilibrium point.

A stable limit cycle seems to be possible only when the per capita consumption of prey by

the predator is bounded by some maximum value, as with the nonlinear prey harvesting.

Optimal singular equilibrium points have been obtained numerically for various discount

rate in various cases. Therefore, at least one optimum singular equilibrium point in each

from which (x∗
(1), y

∗
(1),E

∗
(1)) is feasible from an ecological point of view.

Appendix A1

Proof of Theorem 2 The Jacobian matrix of system (4) evaluated at the point E∗(x∗, y∗) is

N =

⎛

⎜

⎜

⎝

1 – 2x –
γ x∗
β

–
x2∗
αβ

(
x2∗
α +x∗+γ )2– hc

(c+x∗)2
– x

x2
α +x+γ

δβy2∗
x2∗

δ(1 – 2βy∗
x∗

)

⎞

⎟

⎟

⎠

=

⎛

⎜

⎝

1 – 2x –
γ x∗
β

–
x2∗
αβ

(
x2∗
α +x∗+γ )2– hc

(c+x∗)2
– x

x2
α +x+γ

δ
γ

–δ

⎞

⎟

⎠
.

Now,

detN = –δ

[

(1 – 2x∗)(x∗ + c)(
x2∗
α
+ x∗ + γ ) – c(1 – x∗)(

x2∗
α
+ x∗ + γ ) + cx∗

β

(x∗ + c)( x
2∗
α
+ x∗ + γ )

+
δ

β

[

x2∗ + 2γ x∗
( x∗

α
+ x∗ + γ )2

]]

> 0

and

trN =

[

(1 – 2x∗)(x∗ + c)(
x2∗
α
+ x∗ + γ ) – c(1 – x∗)(

x2∗
α
+ x∗ + γ ) + cx∗

β

(x∗ + c)( x
2∗
α
+ x∗ + γ )

]

–
x∗(αγ – x2∗)

αβ( x
2∗
α
+ x∗ + γ )2

– δ < 0.
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Hence by the Routh–Hurwitz criterion the equilibrium point E∗(x∗, y∗) is asymptotically

stable.

(b) We know that if trN = 0, then the two eigenvalues will be purely imaginary, pro-

vided detN > 0. Therefore, by the implicit function theorem, a Hopf bifurcation occurs

where a periodic orbit is created as the stability of the equilibriumpoint E∗(x∗, y∗) changes.

Note that trN = 0 gives the Hopf bifurcation point δ = δ̃. Further, from the given condition

(i) trN = 0, (ii) detN > 0 at δ = δ̃, and (iii) d
dδ

trN = –1 < 0 at δ = δ̃.

This guarantees the existence of a Hopf bifurcation around the equilibrium point

E∗(x∗, y∗). �

Appendix A2

Proof of Theorem 3 Let φ = (φ(1),φ(2))T where φ(1)(x, y) = x(1 – x) – xy

x2
α +x+γ

– hx
c+x

and

φ(2)(x, y) = δy(1 – β
y

x
). Now, we calculate the Jacobian matrix J at the point E∗(x∗, y∗) to

be

J ≡Dφ(x∗, y∗) =

(

A B
δ
β

–δ

)

,

where

A = 1 – 2x∗ –

γ x∗
β

–
x3∗
αβ

( x
2∗
α
+ x∗ + γ )2

–
hc

(c + x∗)2
, B = –

x∗
x2∗
α
+ x∗ + γ

.

Let h = h̃ be such that the matrix J has a simple zero eigenvalue at h = h̃. This requires

that det J = x∗δ

α2β(x∗+c)(
x2∗
α +x∗+γ )2

[2βx5∗ + β(4α + c – 1)x4∗ + αβ(2c + 2α – 2 + 4γ )x3∗ + α(2cβγ –

β + cαβ + α – c + 4αβγ – βγ )x2∗ + (cβγ – β + 2βγ 2 – βγ + 2γ )x∗ + α2(βcγ + βγ + cγ )] = 0.

In addition, tr J < 0, if 2βx6∗ + β(4α + c – 1 + δ)x5∗ + (2cαβ + 2α2β + 2αβδ – α + 2αβγ +

cβδ + 2αβγ – 2αβ)x4∗ + α(2cβγ + cβ – βγ – β – 2c + cαβ + 4αβγ – αβ + αβδ – 2cβδ)x3∗ +

α(2cαβγ – 2αβγ – cα + αβγ 2 + 2αβγ δ + αγ + 2cβγ δ + cαβδ)x2∗ + α2β(cγ 2 + γ 2δ + 2cγ δ –

γ 2)x∗ + cα2βγ 2δ > 0.

Therefore, one of the eigenvalues of J is negative at h = h̃.

Let v = (β , 1)T and w = (1,– x∗

δ(
x2∗
α +x∗+γ )

) be the eigenvector of J and JT corresponding

to the zero eigenvalue, respectively. Thus, �1 = wTφh(E, h̃) = (1,– x∗

δ(
x2∗
α +x∗+γ )

)
(

– x∗
x∗+c
0

)

< 0 at

h = h̃.

Now

�2 = wT
[

D2φ(E, h̃)(v, v)
]

=

(

1,–
x∗

δ( x
2∗
α
+ x∗ + γ )

)

(

β2φ
(1)
xx + 2βφ

(1)
xy + φ

(1)
yy

β2φ
(2)
xx + 2βφ

(2)
xy + φ

(2)
yy

)

,

where

φ(1)
xx = –2 +

2hc

(c + x∗)3
+

αx∗(6αγ x∗ – 2x3∗ + 2α2γ )

β(x2∗ + αx∗ + αγ )3
,



Zhang et al. Advances in Difference Equations  ( 2018)  2018:127 Page 20 of 21

φ(1)
xy =

α(αγ – x2∗)

(x2∗ + αx∗ + αγ )2
, φ(1)

yy = 0,

φ(2)
xx = –

2δ

βx∗
, φ(2)

xy =
2δ

x∗
, φ(2)

yy = –
2βδ

x∗
.

Therefore,

�2 =
2β2(2hc – (c + x∗)3)

(c + x∗)3
+

α2(2βγ (3x2∗ – αγ ) + 2βx2∗)

(x2∗ + αx∗ + αγ )3
> 0.

Thus, from Sotomayor’s theorem, the system undergoes a saddle-node bifurcation

around E∗(x∗, y∗) at h = h̃. Hence, we conclude that when the bifurcation parameter h

passes from one side of h = h̃ to the other side, the number of interior equilibria of system

(4) changes. Biologically, for a range of initial data 0 < h < h̃, i.e. co-existence for model (4)

is possible in the form of an equilibrium for a certain choice of initial values, but for h > h̃

the system collapses, i.e. the two species do not exist. �
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